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ABSTRACT: Explicitly correlated F12 methods are becoming the first
choice for high-accuracy molecular orbital calculations and can often
achieve chemical accuracy with relatively small Gaussian basis sets. In most
calculations, the many three- and four-electron integrals that formally
appear in the theory are avoided through judicious use of resolutions of the
identity (RI). However, for the intrinsic accuracy of the F12 wave function
to not be jeopardized, the associated RI auxiliary basis set must be large.
Here, inspired by the Head−Gordon−Pople and PRISM algorithms for
two-electron integrals, we present an algorithm to directly compute three-
electron integrals over Gaussian basis functions and a very general class of
three-electron operators without invoking RI approximations. A general
methodology to derive vertical, transfer, and horizontal recurrence
relations is also presented.

1. INTRODUCTION
Many years ago, Kutzelnigg1 showed that introducing the
interelectronic distance r12 = |r1 − r2| into a simple wave
function Ψ0 for the helium atom yields
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where χ(r1,r2) is expanded in a determinantal basis, and
dramatically improves the convergence of second-order
perturbation theory,2 coupled cluster,3 and other variational
calculations.4 This approach, which gave birth to the so-called
“R12 methods”,2,5,6 is a natural extension of pioneering work by
Hylleraas in the 1920s.7,8

Kutzelnigg’s idea was later generalized to more accurate
correlation factors f12 ≡ f(r12).

9−14 Nowadays, a popular choice
for f12 is a Slater-type geminal15 (STG)

λ= −f rexp( )12
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which is sometimes expanded as a linear combination of
Gaussian-type geminals9,10 (GTG)
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for computational convenience.11,13,14

The resulting “F12 methods” achieve chemical accuracy for
small organic molecules with relatively small Gaussian basis
sets16−20 and are quickly becoming the first-choice non-
stochastic method for high accuracy.19,20 They are now
appearing within state-of-the-art composite procedures.21

However, whereas a conventional (nonexplicitly correlated)
calculation using N Gaussian one-electron basis functions leads
to an energy expression with O(N4) relatively easy two-electron

integrals,22−32 the explicitly correlated wave function has an
energy expression with O(N6) three-electron integrals and
O(N8) four-electron integrals. These many-electron integrals
are known in closed form in a few special cases;33 however, in
general, they are computationally expensive, and the task of
computing O(N6) or O(N8) of them appears overwhelming.
To render F12 methods computationally tractable and to

avoid these three- and four-electron integrals without
introducing unacceptable errors, Kutzelnigg and Klopper2

proposed to insert the resolution of the identity (RI)

∑ χ χ̂ ≈ | ⟩⟨ |
μ

μ μI
NRI

(4)

into the three- or four-electron operators.17,34 In this way,
three- and four-electron integrals are expanded in terms of one-
and two-electron integrals that can be found efficiently using
conventional quantum chemistry software.
Of course, the approximation (eq 4) introduces chemically

acceptable errors only if the auxiliary basis set {χμ} is
sufficiently large (NRI ≫ N). (For example, for the leflunomide
molecule C12H9F3N2O2 studied recently by Bachorz et al.,

35 the
primary aug-cc-pVTZ and auxiliary36,37 basis sets have 1081
and 2864 basis functions, respectively.) This realization has
fueled much research, and there now exist very efficient RI
formulations based on highly optimized auxiliary basis sets
(ABS)38 and complementary ABS (CABS).39 However, to
achieve millihartree accuracy, such bases must be approximately
complete up to 3Locc,

17 where Locc is the highest angular
momentum of basis functions in the orbital basis set associated
with the occupied molecular orbitals. Even if this requirement
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can be reduced to 2Locc by density fitting,40 it remains
demanding in cases (e.g., for transition metals) where high
angular momenta are needed in the orbital basis.
For two reasons, however, we believe that the RI tactic can

be avoided. First, the number of significant (i.e., greater than a
threshold) three- and four-electron integrals is significantly
smaller than O(N6) and O(N8), respectively. Second, the task
of computing many-electron integrals over Gaussian basis
functions is less formidable than many believe. For example, for
three-electron integrals, a reduction of the computational effort
from O(N6) to O(N4) is already achievable by exploiting robust
density fitting techniques.41

Although there are O(N4) two-electron integrals, it is well-
known to quantum chemistry programmers that the number of
significant two-electron integrals in a large system is only
O(N2) if the two-electron operator is long-range42−44 and
O(N) if it is short-range.45,46 Similar considerations apply to
many-electron integrals, and one can show that the number of
significant three- and four-electron integrals is only O(N3) and
O(N4), respectively, even for long-range operators. (For short-
range operators, there are even fewer.) Thus, if we can find
good algorithms for identifying and computing the tiny fraction
of many-electron integrals that are significant, large-scale
calculations using F12 methods will become feasible without
the need for the RI approximation.
The present manuscript is the first of a series on many-

electron integrals. Here, we present an algorithm to compute
integrals over three-electron operators using recurrence
relations (RRs). The second paper47 in the series will discuss
the construction of upper bounds and effective screening
strategies, and the third48 will describe optimized numerical
methods for the efficient generation of [sss|sss] integrals. Our
recursive approach applies to a general class of multiplicative
three-electron operators and thus generalizes existing schemes
that pertain only to GTGs.10,49−54

Section 2 contains basic definitions, classifications of three-
electron operators, and permutational symmetry consider-
ations. In section 3, we propose a recursive algorithm for the
computation of three-electron integrals. Details of a general
scheme for deriving three-electron integral RRs are presented
in the Appendix. Atomic units are used throughout.

2. THREE-ELECTRON INTEGRALS
A primitive Gaussian-type orbital (PGTO)
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(5)

is defined by its exponent α, its center A = (Ax, Ay, Az), its
angular momentum vector a = (ax, ay, az), and its total angular
momentum a = ax + ay + az.
A contracted Gaussian-type orbital (CGTO) ψa

A(r) is a linear
combination of KA PGTOs. We are interested in the three-
electron operator

≡f g h f r g r h r( ) ( ) ( )12 13 23 12 13 23 (6)

and we write the integral of six CGTOs over this as

∫ ∫ ∫ ψ ψ ψ

ψ ψ ψ

⟨ | ⟩ ≡ ⟨ | | ⟩

=

f g h

f g h

a a a b b b a a a b b b

r r r

r r r r r r

( ) ( ) ( )

( ) ( ) ( ) d d d

a
A

a
A

a
A

b
B

b
B

b
B

1 2 3 1 2 3 1 2 3 12 13 23 1 2 3

1 2 3

12 13 23 1 2 3 1 2 3

1

1

2

2

3

3

1

1

2

2

3

3

(7)

We will use square brackets if the integral is over PGTOs
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and the fundamental integral (i.e., one in which all six PGTOs
are s-type) is therefore

∫ ∫ ∫ φ φ φ| = S S S f g h000 000 r r r r r r[ ] ( ) ( ) ( ) d d d0
Z

0
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where the exponents ζi, centers Zi, and prefactors Si of the
Gaussian product rule for the three electrons are
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α β
α β

=
+
+

Z
A B

i
i i i i

i i (11)

α β
α β

= −
+

| − |
⎡
⎣
⎢⎢

⎤
⎦
⎥⎥S A Bexpi

i i

i i
i i

2

(12)

For conciseness, we will adopt a notation in which missing
indices represent s-type Gaussians. For example, [a2a3] is
shorthand for [0a2a3 | 000]. We will also use non-bold indices,
e.g., ⟨a1a2a3|b1b2b3⟩ to indicate a complete class of integrals
from a shell-sextet.

2.1. Three-Electron Operators. We are particularly
interested in two types of three-electron operators: “chain”
operators of the form f12 g13 and “cyclic” operators of the form
f12 g13 h23. In both types, the most interesting cases arise
when2,16−18
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2

and various combinations of these produce three-electron
integrals of practical importance. We note that, by virtue of the
identity r12 ≡ r12

−1 (r1
2 + r2

2 − 2r1·r2), integrals involving the anti-
Coulomb operator can be reduced to linear combinations of
integrals over the Coulomb operator.

2.2. Permutational Symmetry. For real basis functions, it
is known55 that two-electron integrals have 8-fold permuta-
tional symmetry, meaning that the integrals

⟨ | ⟩ ⟨ | ⟩ ⟨ | ⟩ ⟨ | ⟩

⟨ | ⟩ ⟨ | ⟩ ⟨ | ⟩ ⟨ | ⟩

a a b b b a a b b b a a a b b a

a a b b b a a b b b a a a b b a
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1

are all equal. Three-electron integrals also exhibit permutational
symmetry, and for computational efficiency, it is important that
this be fully exploited. The degeneracy depends on the nature
of the three-electron operator, and the five possible cases are
listed in Table 1.

3. ALGORITHM
In this section, we present a recursive algorithm for generating a
class of three-electron integrals of arbitrary angular momentum
from an initial set of fundamental integrals. The algorithm
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applies to any three-electron operator of the form f12 g13 h23 and
generalizes the HGP-PRISM algorithm following a OTTTC-
CCTTT pathway.28,31 The algorithm is shown schematically in
Figure 1.

After selecting a significant shell-sextet, we create a set of
generalized fundamental integrals [0]m (step O). Next, we
build angular momentum on center A3 (step T1) and on center
A2 (step T2) using vertical RRs (VRRs). This choice is
motivated by the fact that, for chain operators, the VRR for
building momentum on A1 is more expensive than that for
building on A2 and A3 (see Appendix). Then, using transfer
RRs (TRRs), we transfer momentum onto A1 (step T3). The
primitive [a1a2a3] integrals are then contracted (step C), and
horizontal RRs (HRRs) are used to shift angular momentum
from the bra centers A3, A2, and A1 onto the ket centers B3, B2,
and B1 (steps T4, T5, and T6). The number of terms in each of
these RRs is summarized in Table 2 for cyclic and chain
operators. We now describe each step in detail.
3.1. Construct Shell-Pairs, -Quartets, and -Sextets.

Beginning with a list of shells, a list of significant shell-pairs32 is
constructed. By pairing these shell-pairs, a list of significant
shell-quartets is created, and then by pairing the significant pairs
and quartets, a list of significant shell-sextets is created. This
process is critical for the efficiency of the overall algorithm and
depends on the use of tight upper bounds for the target

integrals. Such bounds are straightforward for two-electron
integrals42−46 but are much more complicated for three-
electron integrals and, for example, the popular Cauchy−
Schwartz bound does not generalize easily. However, it is
possible to construct a bound for each type of three-electron
operator depending on the short- or long-range character of f12,
g13 and (if present) h23. We will discuss these in detail in part II
of this series.47

3.2. Step O: Form Fundamental Integrals. Having
chosen a significant shell-sextet, we replace the three two-
electron operators in its fundamental integral (eq 9) by their
Laplace representations

∫= −
∞
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∞

h r H s s r s( ) ( )exp( ) d23
0

3 3 23
2

3 (13c)

Table 3 contains kernels F(s) for a variety of important two-
electron operators f(r12). From the formulas in Table 3, one can
also easily deduce the Laplace kernels for related functions,
such as f(r12)

2, f(r12)/r12, and ∇2f(r12). Integrating over r1, r2,
and r3 then yields
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and s = (s1,s2,s3). The numerator and denominator are
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where

κ = ·Y Yij ij ij (17)

Table 1. Permutational Degeneracy for Various Operators

type operator degeneracy

two-electron f12 8
three-electron chain f12 g13 8

f12 f13 16
three-electron cyclic f12 g13 h23 8

f12 f13 h23 16
f12 f13 f 23 48

Figure 1. PRISM representation31 of a scheme for computing a three-
electron integral class. In this work, we consider the (orange)
OTTTCCCTTT path.

Table 2. Number of RR Terms for Cyclic and Chain
Operators

operator

step RR type expression f12 g13 h23 f12 g13

T1 VRR eq 22 8 6
T2 VRR eq 24 10 7
T3′ VRR eq 43 12 12
T3 TRR eq 27 6 6
T4 HRR eq 28 2 2
T5 HRR eq 29 2 2
T6 HRR eq 30 2 2
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is the squared length of the vector

= −Y Z Zij i j (18)

between the ith and jth Gaussian product centers.
For reasons that will become clear later, it is convenient to

introduce the generalized fundamental integral
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and the auxiliary index vector m = (m1,m2,m3,m4).
To form an [a1a2a3|b1b2b3] class with a cyclic operator, we

require all [0]m with

≤ ≤ + + +m a a b b0 1 1 2 1 2 (21a)

≤ ≤ + + +m a a b b0 2 1 3 1 3 (21b)

≤ ≤ + + +m a a b b0 3 2 3 2 3 (21c)

≤ ≤ + + + + +m a a a b b b0 4 1 2 3 1 2 3 (21d)

To form an [a1a2a3|b1b2b3] class with a chain operator, the
ranges of m1, m2, and m4 are as in (eq 21) but m3 = 0.
To construct an ⟨aa|aa⟩ class of two-electron integrals, one

needs only O(a) [0](m) integrals.32 However, it follows from eq
21 that, to construct an ⟨aaa|aaa⟩ class of three-electron
integrals, we need O(a3) (for a chain operator) or O(a4) (for a
cyclic operator) [0]m integrals. This highlights the importance
of computing these [0]m efficiently. If at least one of the two-
electron operators is a GTG, the [0]m can be found in closed
form.57,58 Otherwise, they can be reduced to one- or two-
dimensional integrals, which can then be evaluated by various
numerical techniques. This step can consume a significant
fraction of the total computation time,30 and a comprehensive
treatment of suitable numerical methods merits a detailed
discussion, which we will present in part III of this series.48

3.3. Step T1: Build Momentum on Center A3. Given a
set of [0]m, integrals of higher angular momentum can be

obtained recursively following Obara and Saika.26,27 Whereas
VRRs for two-electron integrals have been widely studied,
VRRs for three-electron integrals have not, except for
GTGs.10,49−54

The T1 step generates [a3]
m from [0]m via the 8-term VRR

(see the Appendix for a detailed derivation)
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where the superscript + or − denotes an increment or
decrement of one unit of Cartesian angular momentum. (Thus,
a± is analogous to a ± 1i in the notation of Obara and Saika.)
The value in the curly superscript indicates which component
of the auxiliary index vector m is incremented.
For a chain operator, the {3} terms disappear, yielding the 6-

term RR
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It is satisfying to note that, by setting ζ2 = 0 in (eq 23), we
recover the Obara−Saika two-electron RR.

3.4. Step T2: Build Momentum on Center A2. The T2

step forms [a2a3] from [a3]
m via the 10-term RR

ζζ

ζζ ζ ζ

ζ
ζζ ζζ

ζ ζ ζ

= − +

− + −

+ − −

− + +

+

+

− − −

− −

−

a a Z A a a Y a a

Y a a Y Y a a
a

a a a a a a

a a
a

a a

a a

[ ] ( )[ ] [ ]

[ ] ( )[ ]

2
{[ ] [ ] [ ]

( )[ ] }
2

{ [ ]

[ ] }

m
2 3 2 2 2 3

{0}
1 3 12 2 3

{1}

1 3 23 2 3
{3}

1 12 3 23 2 3
{4}

2

2
2 3

{0}
1 3 2 3

{1}
1 3 2 3

{3}

1 3 2 3
{4} 3

1 2 3
{3}

2 3
{4}

(24)

For a chain operator, the {3} terms disappear, yielding the 7-
term VRR

Table 3. Laplace Kernels F(s) for Various Two-Electron Operators f(r12)
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aThe variable n is an integer. Γ is the gamma function. Hn is a Hermite polynomial; erfc is the complementary error function, and (a)j is a
Pochhammer symbol. δ(k) and θ(k) are the kth derivatives of the Dirac delta function and Heaviside step function, respectively.56
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3.5. Step T3: Transfer Momentum to Center A1. The T3
step generates [a1a2a3] from [a2a3]. There are two possible
ways to do this. The first, which we call step T3′, is to build
angular momentum directly on A1 using the 12-term VRR (eq
43). However, this is computationally expensive and we choose
to avoid it. A second option exploits the translational invariance

∑ ∇ + ∇ =
=

a a a 0( )[ ]
j

A B
1

3

1 2 3j j
(26)

to derive the 6-term TRR
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which transfers momentum between centers that host different
electrons.
3.6. Step C: Contraction. At this stage, following the HGP

algorithm,28 we contract [a1a2a3 | 000] to form ⟨a1a2a3 | 000⟩.
We can perform the contraction at this point because all of the
subsequent RRs are independent of the contraction coefficients
and exponents. More details about this contraction step can be
found in ref 32.
3.7. Steps T4 to T6: Shift Momentum to Ket Centers.

We shift momentum to B3, B2, and B1 from A3, A2, and A1,
respectively, using the 2-term HRRs

⟨ | ⟩ = ⟨ | ⟩ + − ⟨ | ⟩+ +a a a b a a a b A B a a a b( )1 2 3 3 1 2 3 3 3 3 1 2 3 3 (28)

⟨ | ⟩ = ⟨ | ⟩ + − ⟨ | ⟩+ +a a a b b a a a b b A B a a a b b( )1 2 3 2 3 1 2 3 2 3 2 2 1 2 3 2 3 (29)

⟨ | ⟩ = ⟨ | ⟩ + − ⟨ | ⟩+ +a a a b b b a a a b b b A B a a a b b b( )1 2 3 1 2 3 1 2 3 1 2 3 1 1 1 2 3 1 2 3

(30)

4. CONCLUDING REMARKS
In this article, we have presented a general algorithm to
construct three-electron integrals over Gaussian basis functions
of arbitrary angular momentum from fundamental (momen-
tumless) integrals. The algorithm is based on vertical, transfer,
and horizontal RRs in the spirit of the Head−Gordon−Pople
algorithm. In part II of this series, we will report detailed
investigations of upper bounds on these integrals. In part III, we
will discuss efficient methods for computing the fundamental
integrals. Our approach can be extended to four-electron
integrals, and we will also report results on this soon.

APPENDIX. DERIVATION OF VRRS
In this appendix, we follow the Ahlrichs approach59 to derive a
VRR for the construction of [a1]

m integrals.
Defining the scaled gradient operator

α
̂ =

∇
D

2A
A

1
1

1

(31)

we can write the Boys relation22

α
= ̂ ++ −Da a

a
a[ ] [ ]

2
[ ]A1 1

1

1
11 (32)

which connects an integral of higher momentum to an integral
derivative with respect to a coordinate of A1.
In operator form, this can be written as

α
= ̂ ̂ ++ −M Da 0

a
a[ ] [ ]

2
[ ]a A1

1

1
11 1 (33)

Substituting the chain rule expression

α
κ

α κ
κ

α κ
̂ =

∇ ∂
∂

+
∇ ∂

∂
+

∇ ∂
∂

D
S

S2 2 2A
A A A1

1 1

12

1 12

13

1 13
1

1 1 1

(34)

into eq 33 using the identities

∂
∂

= −

S
S

0
0

[ ]
[ ]

m

1
1

1 {0}

(35)

κ
ζζ ζ ζζ∂

∂
= − −0

0 0
[ ]

[ ] [ ]
m

12
1 2 3

{1}
1 2

{4}

(36)

κ
ζζ ζ ζζ∂

∂
= − −0

0 0
[ ]

[ ] [ ]
m

13
1 2 3

{2}
1 3

{4}

(37)

the commutator property

ρ̂ = ̂ + ̂ −M p pM Maa a a11 1 1 (38)

where p is linear in A1 and ρ is its derivative, and the identities

β
α ζ

̂ − = −D Z A( )
2A 1 1

1

1 1
1 (39)

ζ
̂ = ̂ =D DY Y

1
2A A12 13

1
1 1 (40)

one eventually obtains the 8-term RR for building on A1

ζ ζ ζ ζ

ζ ζ

ζ
ζ ζ ζ ζ

ζ ζ

= − − −

− +

+ − −

− +

+

− − −

−

a Z A a Y a Y a

Y Y a
a

a a a

a

[ ] ( )[ ] [ ] [ ]

( )[ ]

2
{[ ] [ ] [ ]

( )[ ] }

m
1 1 1 1

{0}
2 3 12 1

{1}
2 3 13 1

{2}

2 12 3 13 1
{4}

1

1
1

{0}
2 3 1

{1}
2 3 1

{2}

2 3 1
{4}

(41)

Eq 22, which builds on A3, can be derived similarly. However,
for chain operators, the RR that builds on A1 does not shed
terms, and it is therefore cheaper to build on A3 than on A1.
Eq 24 can be derived using the relation

= ̂+ +Ma a a[ ] [ ]m
a

m
2 3 23 (42)

and the 12-term VRR for building on A1 in step T3′ is
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ζ ζ

ζ ζ ζ ζ

ζ
ζ ζ ζ ζ

ζ ζ ζ

ζ

= ̂ ̂

= − −

− − +

+ − −

− + +

+ + +

+ +

− − −

− −

− − −

M Ma a a a

Z A a a a Y a a a

Y a a a Y Y a a a
a

a a a a a a a a a

a a a
a

a a a

a a a
a

a a a a a a

[ ] [ ]

( )[ ] [ ]

[ ] ( )[ ]

2
{[ ] [ ] [ ]

( )[ ] }
2

{ [ ]

[ ] }
2

{ [ ] [ ] }

m
a a

m
1 2 3 1

1 1 1 2 3
{0}

2 3 12 1 2 3
{1}

2 3 13 1 2 3
{2}

2 12 3 13 1 2 3
{4}

1

1
1 2 3

{0}
2 3 1 2 3

{1}
2 3 1 2 3

{2}

2 3 1 2 3
{4} 2

3 1 2 3
{1}

1 2 3
{4} 3

2 1 2 3
{2}

1 2 3
{4}

3 2

(43)
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