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The form of the wave function at three-electron coalescence points is examined for several spin states
using an alternative method to the usual Fock expansion. We find that, in two- and three-dimensional
systems, the non-analytical nature of the wave function is characterized by the appearance of
logarithmic terms, reminiscent of those that appear as both electrons approach the nucleus of the
helium atom. The explicit form of these singularities is given in terms of the interelectronic distances
for a doublet and two quartet states of three electrons in a harmonic well. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4935374]

I. INTRODUCTION

Universal features of the electronic wave function� are of
continued interest to physicists and chemists, as they guide the
construction of highly accurate wave functions,1,2 explicitly
correlated ansätze within F12 theory3,4 and accurate Jastrow
factors for quantum Monte Carlo (QMC) calculations.5–7 The
Coulombic singularity at short interelectronic distances r12
= |r1 � r2| dominates all other terms and, near the two-particle
coalescence (2PC) point r12 = 0, the behavior of � becomes
independent of other details of the system.

Early work by Kato,8,9 and elaborations by Pack and
Byers Brown,10 showed that, as two opposite-spin electrons
approach, � has the form

� =
✓
1 +

r12

2

◆
�(r12 = 0) +O(r2

12). (1)

Similar 2PC conditions are known for triplet and unnatural
parity singlet states.10,11

To remove divergences in the local energy ��1Ĥ� at the
2PC points, cusp conditions such as (1) must be satisfied.
These divergences are especially harmful in di↵usion QMC
calculations, where they can lead to population-control prob-
lems and significant biases.6 Recently, several authors have
further probed the coalescence behavior of the wave function,
extending the analysis of Pack and Byers Brown to higher-
order 2PC conditions.12–15 Surprisingly, imposing these addi-
tional conditions in QMC calculations was not found to be
beneficial.6,7

A wave function with correct 2PC behavior nonetheless
yields a discontinuous local energy at three-particle coales-
cences (3PCs), i.e., where r12 = r13 = r23 = 0. Unfortunately,
a theoretical understanding of 3PC behavior has been much
more elusive.16–18 In 1954, Fock19 rediscovered a result derived
earlier by Gronwall20 and Bartlett, Jr.21 Using hyperspherical
coordinates, he showed that, when both electrons approach the
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nucleus in a helium atom, the wave function takes the form

� = 1 � 2(r1 + r2) +
r12

2
� ⇡ � 2

3⇡
r1 · r2 ln

�
r2

1 + r2
2
�
+ · · ·. (2)

Such logarithmic terms are characteristic of 3PC behavior22–24

and using a wave function based on (2) yields a continuous
local energy for the helium atom.25

The present work aims to elucidate the form of the wave
function at three-electron coalescences for three electrons, in
various spin states, confined to a harmonic potential in D
= 2 orD = 3 dimensions. Eschewing the usual hyperspherical
approach, we develop a new technique to show that in each
case, the wave function has non-analytical behavior character-
ized by a logarithmic term. Atomic units are used throughout.

II. THEORY

A system of three electrons, interacting coulombically but
confined within a harmonic well, is variously called hookium,
harmonium, or Hooke’s law atom. It has been studied at high
and low densities by Taut et al.26 and Cioslowski et al.27–29

The previous work of White and Stillinger,30 and other work
showing that the Kato cusp conditions are independent of the
external potential,31–37 implies that our 3PC results will also
hold for any external potential.

The Hamiltonian of the system is

Ĥ =
1
2

3X

i=1

�
�r2

i + !
2 r2

i

�
+ 

3X

i< j

1
ri j

, (3)

where r2
i is the D-dimensional Laplacian for electron i and

ri j =
�
ri � r j

�
is the interelectronic distance between electrons i

and j. The strength of the interelectronic repulsion is measured
by . Without loss of generality, we choose the harmonic force
constant !2 = 1.

We consider only S states (i.e., L = 0) and, after adopting
Jacobi coordinates, the center-of-mass coordinate,

� = (r1 + r2 + r3)/
p

3, (4)
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separates and one can write

 (�,⇢,�) =  (⇢,�,⇢ · �)⌦(�), (5)

where

⇢ = (r1 � r2)/
p

2, � = (2 r3 � r1 � r2)/
p

6 (6)

are the remaining Jacobi coordinates and

⌦(�) = ⇡�D/4 exp(��2/2), E⌦ = D/2 (7)

are the wave function and energy of a harmonic oscillator.
If we express the rest of the Hamiltonian in terms of

the interelectronic distances instead of ⇢, � and ⇢ · �, then
separation of variables reveals that the wave function  in (5)
is a solution of the Schrödinger-like equation�

r2 � 2 U + 2 ✏ � V
�
 = 0, (8)

where ✏ = E � E⌦, and the kinetic operator is

r2

2
=

@2

@r2
12
+
D � 1

r12

@

@r12
+

r2
12 + r2

13 � r2
23

2r12r13

@2

@r12@r13

+
@2

@r2
13
+
D � 1

r13

@

@r13
+

r2
12 + r2

23 � r2
13

2r12r23

@2

@r12@r23

+
@2

@r2
23
+
D � 1

r23

@

@r23
+

r2
13 + r2

23 � r2
12

2r13r23

@2

@r13@r23
, (9)

and the internal and external potentials are

U = r�1
12 + r�1

13 + r�1
23 , (10a)

V = r2
12 + r2

13 + r2
23. (10b)

We also define the symmetric polynomials

s1 = r12 + r13 + r23, (11a)
s2 = r12 r13 + r12 r23 + r13 r23, (11b)

s3 = r12 r13 r23, (11c)

as well as the usual “hyperradius”

R =

s
r2

12 + r2
13 + r2

23

3
(12)

and

� =
p

s1(s1 � 2r12)(s1 � 2r13)(s1 � 2r23), (13)

which is proportional to the area of the triangle defined by the
three interelectronic distances. These quantities will be helpful
for the remainder of this communication.

We are interested in the behavior of  when the ri j are all
small and, because the Laplacian is O(r�2

i j ), we can treat  as a
perturbation parameter. Expanding  in ascending powers of
ri j yields

 =  (0) +   (1) + 2 (2) + · · ·, (14)

where the zeroth-, first-, and second-order wave functions
satisfy

r2 (0) = 0, (15a)
r2 (1) = 2 U  (0), (15b)
r2 (2) = 2 U  (1) � 2 ✏  (0). (15c)

The external potential V does not contribute up to second order
in ri j (or fourth-order perturbation theory).

III. RESULTS

A. Doublet states

Following the work of Pauncz38 and Matsen,39 the wave
function of an S = 1/2 state is given by

2� =
1p
3

f
↵(1)↵(2)�(3)2 (r1,r2|r3)

� ↵(1)�(2)↵(3)2 (r1,r3|r2)
� �(1)↵(2)↵(3)2 (r3,r2|r1)

g
, (16)

where the vertical bar separates the spin-up and spin-down
electrons, and the spatial wavefunction satisfies

2 (r1,r2|r3) = �2 (r2,r1|r3), (17a)
2 (r1,r2|r3) = 2 (r1,r3|r2) + 2 (r3,r2|r1). (17b)

Equation (17a) ensures that the Pauli principle is satisfied and
(17b) (which is found in Appendix C of Ref. 40) ensures that
there is no quartet contamination.

The zeroth-order wave function is the lowest solution
of Eq. (15a) which satisfies (17a) and (17b) and, using the
Frobenius method,41,42 one finds that

2 (0) = r2
13 � r2

23. (18)

In the same way, one finds the first-order wave function

2 (1) =
s1

D2 � 1
(r13 � r23)(Dr13 +Dr23 � r12). (19)

Solving Eq. (15c) is di�cult but it can be shown that

2 (2) = 2N (2) ln(3R2)2�(2) +O(R4), (20)

where
2�(2) = (2r2

12 � r2
13 � r2

23)2 (0). (21)

These zeroth-, first-, and second-order wave functions agree
with hyperspherical 3D results of White and Stillinger.30

The general second-order coe�cient

N (2) =

⌅
2 U  (1) �(2)dn (22)

can be found by integrating over the hypersphere

n =
 
⇢2 � �2

R2 ,
2⇢ · �

R2 ,
2 |⇢ ⇥ �|

R2

!
(23)

of unit radius.43 In the 2D case, we find

2N (2) =
3⇡
8

⇥
3K( 8

9 ) � 3E( 8
9 ) � 114K( 1

4 ) + 130E( 1
4 )
⇤

⇡ 3.344 854, (24)

where K(x) and E(x) are the complete elliptic integrals of the
first and second kinds.44 In the 3D case, we find

2N (2) =
27⇡2

40
(11
p

3 � 6⇡) ⇡ 1.352 401, (25)

which disagrees with the value of White and Stillinger.45
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B. Quartet states with MS = 1/ 2

The 3PC behavior of quartet state wave functions has not
been studied before. The wave function of an S = 3/2, MS

= 1/2 state is

4�1/2 =
1p
3

f
↵(1)↵(2)�(3) + ↵(1)�(2)↵(3)

+ �(1)↵(2)↵(3)
g

4 (r1,r2,r3), (26)

where the spatial wave function is antisymmetric, i.e.,
4 (r1,r2,r3) = +4 (r2,r3,r1) = +4 (r3,r1,r2)

= �4 (r1,r3,r2) = �4 (r2,r1,r3)
= �4 (r3,r2,r1). (27)

Using the same approach as above, we seek antisymmetric
zeroth- and first-order wave functions and find

4 (0)
1/2 = (r2

12 � r2
13)(r2

12 � r2
23)(r2

13 � r2
23) (28)

and

4 (1)
1/2 =

(r12 � r13)(r12 � r23)(r13 � r23)
(D + 1)(D + 3)(D + 5)

⇥ (c020s2
2 + c101s1s3 + c210s2

1 s2 � c400s4
1), (29)

where

c020 = 8/5, c101 = 3/5 � (D + 4)(D + 6), (30)

c210 = (D + 3)(D + 6) + 2
5
, c400 = D + 3, (31)

and s1, s2, and s3 are given by (11). The second-order wave
function is

4 (2)
1/2 =

4N (2)
1/2 ln(3R2) 4�(2)1/2 +O(R8), (32)

where

4�(2)1/2 =
A (r2

12r
2
13 + r2

12r
2
23 + r2

13r
2
23) � B �2

r2
12 + r2

13 + r2
23

4 (0)
1/2 (33)

and

A = D � 1
D + 11

, B = D + 5
D + 11

. (34)

The di↵erences between (21) and (33) are interesting. In partic-
ular, the second-order wave function of the quartet, unlike that
of the doublet, is dimension-dependent, and the logarithmic
singularity for the quartet appears at order R8 ln R, rather than
R4 ln R. This agrees with the prediction by White and Still-
inger30 that the non-analytic terms for the quartet state are of
higher order.

In the 2D case, we use (22) to find

4N (2)
1/2 =

243⇡
6 522 880

⇥
48 171K( 1

4 ) � 54 572E( 1
4 )
⇤

⇡ 0.131 306. (35)

In the 3D case, we find

4N (2)
1/2 = 27⇡2 *

,
11⇡
1280

� 7641
p

3
501 760

+
- ⇡ 0.165 672. (36)

C. Quartet states with MS = 3/ 2

The wave function of an S = 3/2, MS = 3/2 state is given
by46,47

4�3/2 = ↵(1)↵(2)↵(3)D(r1,r2,r3)4 (r1,r2,r3), (37)

where

D(r1,r2,r3) =

8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

���������

x1 y1 1
x2 y2 1
x3 y3 1

���������
for D = 2,

���������

x1 y1 z1

x2 y2 z2

x3 y3 z3

���������
for D = 3,

(38)

and 4 is a symmetric solution of (8) in dimensionD + 2. This
“interdimensional degeneracy” has been used many times in
the past, especially to calculate the energy of excited states in
atomic systems.48 See Refs. 36, 46, 47, and 49 for more details.

Using the Frobenius method as before, one finds that the
zeroth- and first-order wave functions are

4 (0)
3/2 = 1, 4 (1)

3/2 =
s1

D + 1
. (39)

The second-order wave function has the form
4 (2)

3/2 =
4N (2)

3/2 ln(3R2) 4�(2)3/2 +O(R2), (40)

where

4�(2)3/2 =
A (r2

12r
2
13 + r2

12r
2
23 + r2

13r
2
23) � B �2

r2
12 + r2

13 + r2
23

4 (0)
3/2 (41)

and

A = D + 1
D + 4

, B = D + 5/2
D + 4

. (42)

Though similar, the logarithmic singularities in the quartet
states depend on MS via the constants in (34) and (42). In the

FIG. 1. ( 1+ 2)/ 0 at the vicinity of the 3PC for the 3D doublet and quartet states with collinear (left), equilateral (center), and isosceles (right) arrangements.
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2D case, we use (22) to find

4N (2)
3/2 =

9⇡3

32
⇥
7E( 8

9 ) � 3K( 8
9 )
⇤
⇡ 1.834 021. (43)

In the 3D case, we find

4N (2)
3/2 =

3⇡2

35

⇣
15
p

3 � 8⇡
⌘
⇡ 0.717 397. (44)

In Fig. 1, we have represented ( 1 +  2)/ 0 for the 3D
doublet and quartet states at the 3PC point for various arrange-
ments.

IV. CONCLUSION

In this communication, we have shown that the exact wave
function at the three-electron coalescence point for various
spin states of three electrons in a two- or three-dimensional
harmonic well diverges logarithmically. Our results should be
valuable for explicitly correlated calculations and for QMC
methods where the local energy discontinuity at the three-
electron coalescence point could be removed by including
logarithmic terms.
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