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We show that the exact solution of the Schrödinger equation for two electrons confined to two distinct
concentric rings or spheres can be found in closed form for particular values of the ring or sphere radii.
In the case of rings, we report exact polynomial and irrational solutions. In the case of spheres, we report
exact polynomial solutions for the ground and excited states of S symmetry.
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1. Introduction

Exactly or quasi-exactly [1] solvable models [2] can be seen as
“theoretical laboratory” for physicists and chemists [3], due to their
usefulness for both testing and developing approximate methods,
such as density-functional [4–6], GW [7], and density-matrix func-
tional [8] theories. Indeed, understanding correlation effects re-
mains one of the central problem in theoretical quantum chemistry
and physics and is the main goal of most of the new theories and
models in this research area [4,9].

In a recent series of papers [10–12], we have found exact so-
lutions for several new quasi-exactly solvable models. In particu-
lar, we have shown that one can solve the Schrödinger equation
for two electrons confined to a ring [12] or to the surface of
a sphere [10,11] for particular values of the ring or sphere radius.
In particular, we showed that some of the solutions exhibit the
Berry phase phenomenon, i.e. if one of the electrons moves once
around the ring and returns to its starting point, the wave function
of the system changes sign [12]. Subsequently, Guo et al. reported
some exact solutions for two vertically coupled quantum rings us-
ing the same technique [13] but their analysis is incomplete [14].

From the experimental point of view, much effort has been
devoted in the past decade to the fabrication of GaAs/AlGaAs
concentric double quantum rings using droplet-epitaxial tech-
niques [15–17] in order to study the Aharonov–Bohm effect [18]
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and the influence of the Coulomb interaction on the magnetic
properties [17]. More recently, accurate theoretical calculations,
using local spin density functional theory [19], exact diagonaliza-
tion [20] and quantum Monte Carlo [21] techniques, have shown
that Wigner molecules [22] are formed at low density.

Multiple-shell fullerenes or “buckyonions” [23,24] are another
kind of concentric material which have attracted research attention
for many years. Since the 1985 discovery of fullerene [25], ex-
perimental search for such carbon-based materials have been very
fruitful, leading to the discovery of carbon nanotubes, boron buck-
yballs, etc. The morphology of buckyonions and the interaction
energy between shells have been investigated using first principles
calculations [26,27] and continuum models [28,29].

A minimalist model for these systems consists of electrons con-
fined to concentric rings or spheres in three-dimensional space.
In Ref. [30], we reported a comprehensive numerical study of the
singlet ground state of two electrons on concentric spheres with
different radii. We analyzed the strengths and weaknesses of sev-
eral electronic structure models, ranging from the mean-field ap-
proximation (restricted and unrestricted Hartree–Fock solutions)
to configuration interaction expansion, leading to near-exact wave
functions and energies. Berry and collaborators also considered this
model to simulate doubly-excited states of helium [31] and the
rovibrational spectra of the water molecule in both the ground [32]
and excited states [33]. More recently, the model has been ap-
plied to quantum-mechanical calculations of large-amplitude light
atom dynamics in polyatomic hydrides [34,35], confirming again
the broad applicability of theoretical models of concentric elec-
trons.
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Fig. 1. Two electrons on concentric rings: electron 1 is located on the inner ring of
radius R1 and electron 2 is located on the outer ring of radius R2. φ1 and φ2 are
the azimuthal angles of electrons 1 and 2, respectively.

In this Letter, we extend our analysis to the case where two
electrons are located on concentric rings or spheres with different
radii, focusing our attention on the rotationally-invariant (i.e. S)
states. Although our principal concerns are concentric rings (i.e.
D = 1) and concentric spheres (i.e. D = 2), we consider the general
case in which the electrons are confined to concentric D-spheres
of radius R1 and R2 [36]. For R1 �= R2, the singlet and triplet states
are degenerate and one can easily switch from singlets to triplets
(or vice versa) by antisymmetrizing (or symmetrizing) the spatial
wave function [30]. Note that the potential is infinite between the
rings/spheres and tunnelling is therefore impossible.

In Section 2, we define the Hamiltonian of the system and var-
ious other important quantities. In Section 3, we give the explicit
expression of the Hartree–Fock (HF) wave function and energy for
two electrons on concentric rings or spheres. The general method
to obtain exact solutions of the Schödinger equation is given in
Section 4. Finally, we report the explicit expression of the exact
wave functions in Section 5.

2. Hamiltonian

The model consists of two concentric rings or spheres of
radii R1 and R2, each bearing one electron, and, in the remain-
der of this study, we assume R1 < R2 (see Fig. 1). The electronic
Hamiltonian of the system is

Ĥ = T̂ + u−1, (1)

where

T̂ = T̂1 + T̂2 = − ∇2
1

2R2
1

− ∇2
2

2R2
2

(2)

is the kinetic energy operator and u−1 is the Coulomb operator.
In (2), ∇2

i is the angular part of the Laplacian for the ith electron,
and reads

∇2
i =

⎧⎪⎨
⎪⎩

∂2

∂φ2
i
, rings (D = 1),

∂2

∂θ2
i

+ cot θi
∂

∂θi
+ 1

sin2 θi

∂2

∂φ2
i
, spheres (D = 2),

(3)

where φi ∈ [0,2π) and θi ∈ [0,π ] are the usual azimuthal and po-
lar angles of the ith electron. The interelectronic distance

u =
√

R2 + R2 − 2R1 R2 cosω (4)
1 2
ranges from R2 − R1 to R1 + R2, and ω ∈ [0,π ] is the interelec-
tronic angle and satisfies

cosω =
{ cos(φ1 − φ2), rings (D = 1),

cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2),

spheres (D = 2).

(5)

For notational simplicity, we introduce

1

σ
= 1

R2
= 1

2R2
1

+ 1

2R2
2

, σ± = R2± = (R1 ± R2)
2, (6)

where R is an “effective” radius, and R− and R+ are respectively
the lowest and highest possible values of u.

3. Hartree–Fock approximation

Within the HF approximation [37], the high symmetry of the
system implies that there is a symmetric solution (called SHF) in
which each orbital is constant over its ring/sphere. For two elec-
trons on concentric rings (D = 1), the resulting wave function and
energy are

ΨSHF = 1

2π
√

R1 R2
, ESHF = 2

π(R2 − R1)
K

(
−4R1 R2

σ−

)
, (7)

where K (x) is the complete elliptic integral of the first kind [38].
We note that, for R1 = R2, ESHF diverges due to the singularity of
the Coulomb operator.

For two electrons on concentric spheres (D = 2), the SHF wave
function and energy are [30]

ΨSHF = 1

4π R1 R2
, ESHF = 1

R2
, (8)

and we note that ESHF only depends on the radius of the second
electron.

For certain values of the radii, a second, lower-energy HF solu-
tion exists, in which the two electrons tend to localize on opposite
sides of the rings/spheres [12,30].

4. Exact solutions

For states of zero angular momentum (S states), the wave func-
tion depends only on u and, using (4), the Hamiltonian (1) can be
recast

Ĥ = 1

4σ

{[
u2 + σ−σ+

u2
− (σ− + σ+)

]
d2

du2

+
[
(2D − 1)u − (D − 1)(σ− + σ+)

u
− σ−σ+

u3

]
d

du

}
+ 1

u
.

(9)

The resulting Schrödinger equation is Fuchsian [38] with singular-
ities at −R+ , −R− , 0, R− and R+ , which means that it can be
written in the form [39]

Ψ ′′(u) +
[

D/2

u +R+
+ D/2

u +R−
− 1

u
+ D/2

u −R−
+ D/2

u −R+

]
Ψ ′(u)

+ V (u)

(u −R2−)(u −R2+)
Ψ (u) = 0, (10)

where V (u) = 4R2u(1 − Eu) is a Van Vleck polynomial [40]. The
Fuchsian equation is a generalization of the Heun equation [41]
(which appears when R1 = R2 [10–12]) for higher number of sin-
gularities [42].

Knowing that Eq. (10) is Fuchsian, we seek solutions of the
form



P.-F. Loos, P.M.W. Gill / Physics Letters A 378 (2014) 329–333 331
Table 1
Exact wave functions for ground and excited states of two electrons on concentric rings.

Number (m)

of nodes
Degree (n)

of polynomial
Family
(a,b)

Radius
R1

Radius
R2

Energy
E

0 4 (0,0) 6.56723 15.0297 0.0552268
0 5 (0,0) 9.69674 14.7302 0.0476376
0 6 (0,0) 14.5140 18.9048 0.0339531
0 7 (0,0) 20.4922 24.6415 0.0246731
0 8 (0,0) 27.5378 31.5687 0.0185769
1 5 (1,0) 17.2072 47.7424 0.0171724
1 6 (1,0) 20.3910 37.9387 0.0189862
1 7 (1,0) 26.3702 40.6719 0.0163405
1 8 (1,0) 33.8677 46.8166 0.0134467
1 4 (0,1) 8.10699 19.293 0.0559434
1 5 (0,1) 10.9336 16.1063 0.0549899
1 6 (0,1) 16.0422 20.4823 0.0384000
1 7 (0,1) 22.3238 26.4996 0.0274453
1 8 (0,1) 29.6705 33.7181 0.0204070
2 7 (0,0) 12.1683 17.5157 0.0613308
2 8 (0,0) 17.5501 22.0442 0.0424363
2 5 (1,1) 19.9728 57.0944 0.0172333
2 6 (1,1) 22.2550 40.4332 0.0210458
2 7 (1,1) 28.4414 42.9590 0.0180032
2 7 (1,1) 36.2331 49.2980 0.0146648
3 7 (1,0) 24.9101 81.0762 0.0141096
3 8 (1,0) 24.1637 43.1663 0.0227745
4 8 (1,1) 26.1359 46.2032 0.0241549
Ψ
(a,b)

n,m (u) =
(

1 − u2

R2+

)a/2(
1 − u2

R2−

)b/2

S(a,b)
n,m (u) (11)

where (a,b) can take the values (0,0), (2 − D,0), (0,2 − D) and
(2 −D,2 −D). The functions

S(a,b)
n,m (u) =

n∑
k=0

skuk (12)

are called nth-degree Stieltjes polynomials [43]. The index m is
the number of nodes between R− and R+ . The different possi-
ble values for the set (a,b) are determined by ensuring that the
substitution of (11) into (10) conserves the Fuchsian nature of
the differential equation and the Van Vleck nature of the poly-
nomial V (u). After making this substitution, we find that S(a,b)

n,m
satisfies

1

4σ

[
P (u)

d2 S(a,b)
n,m (u)

du2
+ Q (a,b)(u)

dS(a,b)
n,m (u)

du

]
+ S(a,b)

n,m (u)

u

= E(a,b) S(a,b)
n,m (u), (13)

with

P (u) = u2 + σ−σ+
u2

− (σ− + σ+), (14)

Q (a,b)(u) = [
(2D − 1) + 2(a + b)

]
u

− (D − 1)(σ− + σ+) + 2(a σ− + b σ+)

u

− σ−σ+
u3

, (15)

E(a,b) = E +

⎧⎪⎨
⎪⎩

0, (a,b) = (0,0),

D(D − 2)/(4σ), (a,b) = (2 −D,0)

or (a,b) = (0,2 −D),

(D − 2)/σ , (a,b) = (2 −D,2 −D).

(16)

Substituting (12) into (13), it can be shown that the coeffi-
cients sk satisfy the five-term recurrence relation

sk+4 = 1 1
{

(k +D)(σ− + σ+) + 2(a σ− + b σ+)
sk+2
σ−σ+ k + 4 4σ
− 4σ

k + 2

[
sk+1 +

(
k[k + 2D + 2(a + b − 1)]

4σ
− E(a,b)

)
sk

]}
,

(17)

with the starting values

s0 = 1, s1 = 0, s3 = − 4σ

3σ−σ+
. (18)

One can note the similarity of the three-term recurrence relation
obtained for R1 = R2 [10–12] and the term in square brackets
in (17). The condition s1 = 0 shows that the exact wave func-
tions do not contain any term proportional to the interelectronic
distance u. Indeed, due to the spatial separation of the electrons,
there is no need to satisfy the electron–electron Kato cusp condi-
tion [44].

To define the nth-degree polynomial S(a,b)
n,m completely, we need

to find the values of the inner and outer radii R1 and R2, the ex-
act energy E , and the coefficient s2. These are obtained by solving
sn+1 = sn+2 = sn+3 = sn+4 = 0, which are functions of these four
unknown quantities. For sn+1 = sn+2 = sn+3 = 0, the condition

E(a,b) = n[n + 2D + 2(a + b − 1)]
4σ

(19)

ensures that sn+4 = 0 and allows us to determine the exact energy
knowing the degree of the polynomials and the effective radius.

5. Results and discussion

5.1. Concentric rings

For two electrons on rings of radius R1 and R2 (i.e. D = 1),
we have four different families of solutions corresponding to the
values (a,b) = (0,0), (1,0), (0,1) and (1,1). They correspond to
the wave functions

Ψ
(0,0)

n,m (u) = S(0,0)
n,m (u), Ψ

(1,0)
n,m (u) = cos

ω

2
S(1,0)

n,m (u), (20)

Ψ
(0,1)

n,m (u) = sin
ω

2
S(0,1)

n,m (u), Ψ
(1,1)

n,m (u) = sinω S(1,1)
n,m (u). (21)

As shown in Table 1, the (0,0) family produces ground states and
excited states wave functions, while the other families produce
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Table 2
Exact wave functions for ground and excited states of two electrons on concentric spheres.

Number (m)

of nodes
Degree (n)

of polynomial
Family
(a,b)

Radius
R1

Radius
R2

Energy
E

0 5 (0,0) 13.4767 27.3109 0.0299540
0 6 (0,0) 18.0008 27.7797 0.0262917
0 7 (0,0) 24.2569 32.8421 0.0206850
0 8 (0,0) 31.7451 39.7970 0.0162370
1 7 (0,0) 17.0759 34.7323 0.0335356
1 8 (0,0) 21.3402 31.6212 0.0319596
only excited states with at least one node (m � 1) for (1,0)

and (0,1) and two nodes (m � 2) for (1,1).
The first nodeless solution is

S(0,0)
4,0 (u) = 1 − 49

1521
u2 − 343

118 638
u3 − 16 807

240 597 864
u4, (22)

for

R1 = 13

7

√
3(13 − √

78), R2 = 13

7

√
3(13 + √

78), (23)

and the energy of E = 28/507 = 0.0552268.
The first solution which has a single node at ω = 0 is produced

by the family (0,1) for n = 4 and reads

S(0,1)
4,1 (u) = 1 − 1250

58 653
u2 − 15 625

985 3704
u3 − 390 625

12 231 731 232
u4,

(24)

for

R1 = 7

25

√
399(7 − 2

√
6), R2 = 7

25

√
399(7 + 2

√
6), (25)

and the energy of E = 625/11 172 = 0.0559434.

5.2. Concentric spheres

In the case of two electrons on concentric spheres (i.e. D = 2),
there is only one family of solutions and it is associated with
(a,b) = (0,0). The first few exact solutions are reported in Table 2.
The first solution is obtained for n = 5 and is a ground state wave
function

S(0,0)
5,0 (u) = 1 − 0.0161923u2 − 0.0012233u3

− 0.000033429u4 − 3.14705 × 10−7u5, (26)

associated with the energy E = 0.029954 and the radii R1 =
13.4767 and R2 = 27.3109.

Wave function terms proportional to u are difficult to model
using configuration interaction (CI) methods, and it is common to
use explicitly correlated methods [45] to improve the convergence
of such calculations [9]. This was well illustrated in our R1 = R2
calculations [46], where we observed slow convergence of the CI
expansion with respect to basis set size. In contrast, the absence
of a linear term in the wave function (26) explains the rapid con-
vergence of our R1 �= R2 calculations [30].

6. Conclusion

In this Letter, we have shown that the Schrödinger equation
for two electrons confined to concentric rings and spheres can be
solved exactly for particular sets of the radii. In the case of con-
centric rings (D = 1), we have found four families of exact wave
functions. In this case of two concentric spheres (D = 2), we have
found only one family.

We have not reported any exact solutions for D � 3 in the
present manuscript, but these are not difficult to derive. However,
we note that only the (a,b) = (0,0) family is physically significant
because, for (a,b) �= (0,0), the exact solutions of (13) are divergent
at u = 0 or u =R+ .

A natural extension of the system studied in this Letter would
be to consider two rings of different radii vertically separated by
a distance d. We believe this system is also quasi-exactly solv-
able, but the derivation would be more complicated because of
the larger number of singularities in the Fuchsian equation. For
this reason, we chose not to consider this system in the present
study.
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