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We introduce a new paradigm for one-dimensional uniform electron gases (UEGs). In this model,
n electrons are confined to a ring and interact via a bare Coulomb operator. We use Rayleigh-
Schrödinger perturbation theory to show that, in the high-density regime, the ground-state reduced
(i.e., per electron) energy can be expanded as ε(rs, n) = ε0(n)r−2

s + ε1(n)r−1
s + ε2(n) + ε3(n)rs

+ · · · , where rs is the Seitz radius. We use strong-coupling perturbation theory and show that, in
the low-density regime, the reduced energy can be expanded as ε(rs, n) = η0(n)r−1

s + η1(n)r−3/2
s

+ η2(n)r−2
s + · · · . We report explicit expressions for ε0(n), ε1(n), ε2(n), ε3(n), η0(n), and η1(n) and

derive the thermodynamic (large-n) limits of each of these. Finally, we perform numerical studies of
UEGs with n = 2, 3, . . . , 10, using Hylleraas-type and quantum Monte Carlo methods, and combine
these with the perturbative results to obtain a picture of the behavior of the new model over the full
range of n and rs values. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802589]

I. INTRODUCTION

In a recent paper,1 we showed that the traditional con-
cept of the uniform electron gas (UEG), i.e., a homogeneous
system of finite density, consisting of an infinite number of
electrons in an infinite volume,2–4 is inadequate to model the
UEGs that arise in finite systems. Accordingly, we proposed
to embark on a comprehensive study of quasi-exact properties
of finite-size UEGs, in order eventually to create improved ap-
proximations in density-functional theory.5

In an earlier paper,6 we introduced an alternative
paradigm, in which n electrons are confined to a D-sphere
(with D ≥ 2), that is, the surface of a (D + 1)-dimensional
ball. These systems possess uniform densities, even for finite
n and, because all points on a D-sphere are equivalent, their
mathematical analysis is relatively straightforward.7–12 In the
present paper, we study the one-dimensional (D = 1) version
of the model, in which n electrons are confined to a ring of
radius R. The electron density of this n-electron UEG, which
we will call n-ringium, is

ρ = n

2πR
= 1

2 rs

, (1)

where rs = πR/n is the Seitz radius. In this study, the high-
density (small-rs) limit is defined by R → 0 for fixed n, while
the low-density (large-rs) limit is defined by R → ∞ for fixed
n. We do not include a fictitious uniform positive background
charge because, unlike the situation in 2D and 3D UEGs,
its inclusion in 1D systems causes the Coulomb energy to
diverge.

In most previous work on the one-dimensional (1D)
UEG, the true Coulomb potential 1/r12 has been avoided be-
cause of the intractability of its Fourier transform. Instead,
most workers have softened the potential, either by adding a
transverse harmonic component13–15 or by using a potential
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of the form 1/

√
r2

12 + μ2. In the latter case, the μ parameter
eliminates the singularity at r12 = 0 while retaining the long-
range Coulomb tail.15–17

However, the introduction of a parameter μ > 0 is un-
desirable, for it modifies the physics of the system in the
high-density regime where neighboring electrons repel far too
weakly. It is also unnecessary, because the true Coulomb po-
tential is so repulsive that it causes the wave function to van-
ish when any two electrons touch, thereby removing the pos-
sibility of an energy divergence.18 For 1D systems, we have
recently shown that the exact wave function � behaves as

�(r12) = r12

(
1 + r12

2

)
+ O

(
r3

12

)
(2)

for small r12,19 which is the 1D analog of the (three-
dimensional) Kato cusp condition.20

This nodal behavior leads to the 1D Bose-Fermi
mapping21 which states that the ground state wave function
of the bosonic (B) and fermionic (F) states are related by
�B(R) = |�F(R)|, where R = (r1, r2, . . . , rn) are the one-
particle coordinates. In case of bosons, the divergence of the
Coulomb potential has the effect of mimicking the Pauli prin-
ciple which prohibits two same-spin fermions from touching.
This implies that, for 1D systems, the bosonic and fermionic
ground states are degenerate and the system is “spin-blind.”
Consequently, the paramagnetic and ferromagnetic states are
degenerate and we will consider only the latter.15

The electrons-on-a-ring paradigm has been intensively
studied as a model for quantum rings (QRs), which are
tiny, self-organised, ring-shaped semiconductors22, 23 char-
acterised by three parameters: radius (R), width (δ), and
electron number (n). Modern microfabrication technology
has yielded InGaAs and GaAlAs/GaAs QRs that bind
only a few electrons,24, 25 in contrast with the meso-
scopic rings on GaAs which hold much larger numbers of
electrons.26 These low-dimensional systems are the subject
of considerable scientific interest and have been intensively
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studied, both experimentally22–29 and theoretically,13, 19, 30–39

mainly because of the observation of Aharonov-Bohm
oscillations.35, 40–42

As a first approximation, QRs can be modelled by elec-
trons confined to a perfect ring (i.e., δ = 0). In a recent
paper,19 we considered a pair of electrons (i.e., n = 2) on such
a ring and discovered that their Schrödinger equation can be
solved exactly, provided that the radius takes one of an infinite
number of special values. Some of the solutions exhibit the
Berry phase phenomenon, i.e., if one of the electrons moves
once around the ring and returns to its starting point, the wave
function of the system changes sign. QRs are among the sim-
plest systems with this peculiar property.

In Sec. II, we first use Rayleigh-Schrödinger perturbation
theory to investigate the energy in the high-density regime43

and then strong-coupling perturbation theory to study the low-
density regime, where the electrons form a Wigner crystal.44

In Sec. III, we use explicitly correlated (EC) methods to deter-
mine the energy of n-ringium for n = 2, 3, 4, 5. These methods
are accurate for very small n but their cost grows very rapidly
with n. In Sec. IV, we turn to quantum Monte Carlo (QMC)
approaches for studying n-ringium up to n = 10 over a range
of densities. These methods provide a different approach to
the many-body problem: variational Monte Carlo (VMC)45–47

and diffusion Monte Carlo (DMC)48–50 methods can be used
to treat systems in one and higher dimensions at a computa-
tional cost that grows relatively slowly with n (at least, when
n is not too large51).

We frame our discussion in terms of reduced energy ε(rs,
n), i.e., energy per electron, so that we can pass smoothly from
finite to infinite n. One of the key goals of the paper is to
develop an understanding of the correlation energy, which is
defined as the difference

εc(rs, n) = ε(rs, n) − εHF(rs, n), (3)

between the exact and Hartree-Fock (HF) energies. Atomic
units are used throughout, but we report total energies in
hartrees (Eh) and correlation energies in millihartrees (mEh).

II. PERTURBATIVE METHODS

A. High-density expansion

The Hamiltonian of the system is

H = − 1

2R2

n∑
i=1

∂2

∂θ2
i

+
n∑

i<j

1

rij

, (4)

where θ i is the angle of electron i around the ring center, and

rij = |ri − rj | = R
√

2 − 2 cos(θi − θj ) (5)

is the across-the-ring distance between electrons i and j.
In the high-density (i.e., small rs) regime, the kinetic en-

ergy is dominant and it is natural to define a zeroth-order
Hamiltonian

H0 = − 1

2R2

n∑
i=1

∂2

∂θ2
i

, (6)

and a perturbation

V =
n∑

i<j

r−1
ij . (7)

The non-interacting orbitals and orbital energies are

χa(θ ) = (2πR)−1/2 exp(i a θ ), (8)

κa = a2

2R2
, (9)

where

a =
{

. . . ,−2,−1, 0,+1,+2, . . . , if n is odd,

. . . ,− 3
2 ,− 1

2 ,+ 1
2 ,+ 3

2 , . . . , if n is even.
(10)

A Slater determinant n� i of any n of these orbitals has an en-
ergy Ei and is an antisymmetric eigenfunction of H0. In the
lowest energy (aufbau) determinant n�0, we occupy the or-
bitals with

a = −n − 1

2
,−n − 3

2
, . . . ,+n − 3

2
,+n − 1

2
. (11)

Following the approach of Mitas,52 one discovers the remark-
able result

n�0 ∝
n∏

i<j

r̂ij , (12)

where

r̂ij = 2R sin

(
θi − θj

2

)
(13)

is a signed interelectronic distance. It follows immediately
that n�0 has a node whenever θ i = θ j and, therefore, pos-
sesses the same nodes as the exact wave function. This will
have important ramifications in Sec. IV.

Rayleigh-Schrödinger theory yields the perturbation ex-
pansion for the reduced energy

ε(rs, n) = ε0(n)

r2
s

+ ε1(n)

rs

+ ε2(n) + ε3(n)rs + · · · , (14)

where the high-density coefficients εj(n) are found by setting
R = 1 and evaluating

ε0(n) = π2

n3
〈�0|H0|�0〉, (15a)

ε1(n) = π

n2
〈�0|V |�0〉, (15b)

ε2(n) = 1

n

∑
i

〈�0|V |�i〉〈�i |V |�0〉
E0 − Ei

, (15c)

ε3(n) = 1

π

∑
i

∑
j

〈�0|V |�i〉〈�i |V − n2ε1/π |�j 〉〈�j |V |�0〉
(E0 − Ei)(E0 − Ej )

.

(15d)
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TABLE I. High-density coefficients for n-ringium. (ζ (3) is Apéry’s constant.53)

n ε0(n) ε1(n) ε2(n) ε3(n)

2 1
32 π2 1

2 1 − 10
π2

8(12 ln 2−19)
3π2 + 16(26−7ζ (3))

π4

3 1
27 π2 20

27
16
9 − 1436

81π2
8(1080 ln 2−997)

81π2 + 8(13046−4725ζ (3))
243π4

4 5
128 π2 9

10
109
45 − 244168

10125π2 0.00487354

5 1
25 π2 892

875
4688
1575 − 514012364

17364375π2 0.00556461

6 35
864 π2 6323

5670
2339
675 − 461265158

13395375π2 0.00605813

7 2
49 π2 13528

11319
1420256
363825 − 33870168846728

873632962125π2 0.00642454

8 21
512 π2 7591

6006
20349053
4729725 − 81975019672689056

1919371617788625π2 0.00670533

9 10
243 π2 4831544

3648645
66244064
14189175 − 266761139809046216

5758114853365875π2 0.00692616

10 33
800 π2 2512297

1823250
1207979879
241215975 − 7026989855398034506022

141448091372932719375π2 0.00710359

∞ π2/24 ln
√

n −π2/360 0.00844621

1. Double-bar integrals

To evaluate the coefficients εj(n) with j > 0, one requires
the “double-bar” integrals

〈ab||cd〉

=
∫ 2π

0

∫ 2π

0

χ∗
a (θ1)χ∗

b (θ2)[χc(θ1)χd (θ2) −χc(θ2)χd (θ1)]

r12
dθ1dθ2.

(16)

By elementary integration, one can show that

〈ab||cd〉 =
{

Vc−b,c−a, a + b = c + d,

0, otherwise,
(17)

where

Vp,q = 1

π

[
ψ

(
p + 1

2

) − ψ
(
q + 1

2

)]
, (18)

and ψ is the digamma function.53

2. Zeroth order

The zeroth-order coefficient (15a) becomes

ε0(n) = π2

n3

occ∑
a

a2

2
, (19)

where the “occ” indicates sums over all occupied orbitals
(11), and this reduces to

ε0(n) = n2 − 1

n2

π2

24
. (20)

In the thermodynamic (i.e., n → ∞) limit, this approaches

ε0 = π2

24
, (21)

which is identical to the kinetic energy coefficient in the ideal
Fermi gas in 1D.2, 6

3. First order

The first-order coefficient (15b) becomes

ε1(n) = π

n2

occ∑
a<b

〈ab||ab〉, (22)

which can be reduced to

ε1(n) =
(

1

2
− 1

8n2

) [
ψ

(
n + 1

2

) − ψ
(

1
2

)] − 3

4
. (23)

This can be found in closed form for any n (see Table I). Be-
cause of the slow decay of the Coulomb operator, the coeffi-
cient grows logarithmically with n and it can be shown that

ε1(n) ∼ ln
√

n + (ln 2 + γ /2 − 3/4) + O(n−2 ln n), (24)

where γ is the Euler-Mascheroni constant.53

The sum of the first two terms in (14) gives the HF energy
of n-ringium

εHF(rs, n) = ε0(n)

r2
s

+ ε1(n)

rs

. (25)

4. Second order

The second-order coefficient (15c) becomes

ε2(n) = −1

n

occ∑
a<b

virt∑
r<s

〈ab||rs〉〈rs||ab〉
κr + κs − κa − κb

, (26)

where the “virt” indicates sums over all virtual orbitals. If the
double-bar integrals do not vanish, i.e., a + b = r + s, then

κr + κs − κa − κb = (r − a)(r − b), (27)

and we obtain

ε2(n) = −1

n

occ∑
a<b

∞∑
r=rmin

V 2
r−a,r−b

(r − a)(r − b)
, (28)

where

rmin = n + 1

2
+ max(a + b, 0). (29)
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The sums in (28) can be evaluated in closed form for any n
(see Table I). In the rs → 0 limit, the higher terms in (14)
vanish and the ε2(n) expressions in Table I are therefore the
exact correlation energies of infinitely dense n-ringium.

In the thermodynamic limit, ε2(n) approaches

ε2 = − lim
n→∞

1

n

occ∑
a<b

∞∑
r=rmin

[
1
π

ln
(

r−a
r−b

)]2

(r − a)(r − b)

= − 1

3π2

∫ 1

0

∫ x

−x

1

x − y
ln3

(
1 + x

1 + y

)
dx dy

= − π2

360
, (30)

which implies that, in the dual thermodynamic/high-density
limit, the exact correlation energy of ringium is −27.4 mEh

per electron. The same value of ε2 can be derived for 1D
jellium,54 affirming the equivalence of the electrons-on-a-ring
and electrons-on-a-wire models in the thermodynamic limit.6

Using a quasi-1D model with a transverse harmonic po-
tential, Casula et al. were led to conclude that, in the same
limit, the correlation energy vanishes.14 This qualitatively dif-
ferent prediction stresses the importance of employing a real-
istic Coulomb operator for high-density UEGs.

5. Third order

The third-order coefficient (15d) becomes

ε3(n) = 1

8π

occ∑
abcd

virt∑
rs

〈ab||rs〉〈rs||cd〉〈cd||ab〉
(r − a)(r − b)(r − c)(r − d)

+ 1

8π

occ∑
ab

virt∑
rstu

〈ab||rs〉〈rs||tu〉〈tu||ab〉
(r − a)(r − b)(t − a)(t − b)

+ 1

π

occ∑
abc

virt∑
rst

〈ab||rs〉〈cs||tb〉〈rt ||ac〉
(r − a)(r − b)(r − a)(r − c)

+ 1

π

occ∑
abc

virt∑
rst

〈ab||rs〉〈ar||ct〉〈rs||ab〉
(r − a)(r − b)(r − a)(r − b)

, (31)

and, like ε2(n), this can be rewritten in terms of products of
Vp,q . The expression is cumbersome but can be evaluated in
closed form for any n and Table I illustrates this for n = 2
and 3.

In the thermodynamic limit, ε3(n) approaches the numer-
ical value

ε3 = +0.00844621, (32)

but we have been unable to obtain this in closed form. Numer-
ical evidence suggests54 that (32) is also true of 1D jellium.

Interestingly, second- and third-order perturbation theo-
ries applied to 1D jellium do not encounter divergence issues
as in 2D and 3D jellium, where one has to use resummation
techniques to produce finite results.43, 55 The divergence oc-
curs from third order and second order for 2D jellium and 3D
jellium, respectively. In the case of 1D jellium, every term of
the perturbation expansion seems to converge.

B. Low-density expansion

In the low-density (rs � 2) regime,34 the electrons form
a Wigner crystal. Using strong-coupling perturbation theory,7

the energy can be written

ε(rs, n) = η0(n)

rs

+ η1(n)

r
3/2
s

+ · · · , (33)

where the first term represents the classical Coulomb energy
of the static electrons and the second is their harmonic zero-
point vibrational energy.

The Wigner crystal, which is the solution to the 1D
Thomson problem,56 consists of n electrons separated by an
angle 2π /n and yields

η0(n) = π

2n2

n−1∑
k=1

n − k

sin(kπ/n)
. (34)

The second term in the expansion (33) is found by summing
the frequencies of the normal modes obtained by diagonaliza-
tion of the Hessian matrix. For electrons on a ring, the Hessian
is circulant and its eigenvalues and eigenvectors can be found
in compact form, yielding

η1(n) = π3/2

4n5/2

n−1∑
i=1

√√√√n−1∑
k=1

2 − sin2(kπ/n)

sin3(kπ/n)
sin2(ikπ/n).

(35)

In the thermodynamic limit, one finds that

η0 = ln
√

n + ln(2/π ) + γ

2
+ o(n0), (36)

which has the same logarithmic divergence as ε1, but with a
different constant term. Likewise, one can show that

η1 = π3/2

4n5/2

n−1∑
i=1

√√√√ ∞∑
k=1

4

(kπ/n)3
sin2(ikπ/n)

= 1

4π

∫ π

0

√
2 Li3(1) − Li3(eiθ ) − Li3(e−iθ ) dθ, (37)

where Li3 is the trilogarithm function.53 We have not been
able to find this integral in closed form, but it can be computed
numerically with high precision, and yields η1 = 0.359933,
which is identical to the value found by Fogler17 for an infi-

nite ultrathin wire and a potential of the form 1/

√
r2

12 + μ2.
This shows that, unlike the high-density limit where the de-
tails of the interelectronic potential are critically important,
the correct low-density result can be obtained by using a soft-
ened Coulomb potential.

Thus, in the dual thermodynamic/low-density region, we
have

εc(rs) = − ln(
√

2π ) − 3/4

rs

+ 0.359933

r
3/2
s

+ O
(
r−2
s

)
. (38)

The same expansion can be derived for the infinite wire,17

confirming the equivalence of the electrons-on-a-ring and
electrons-on-a-wire models in the thermodynamic limit.6
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TABLE II. Convergence with M of the energy of 2-ringium with rs = 1.

M ε(1, 2) −εc(1, 2)

0 0.808 425 137 534 0
1 0.797 201 143 955 11.223 993 579
2 0.797 175 502 306 11.249 635 229
3 0.797 175 223 852 11.249 913 682
4 0.797 175 219 345 11.249 918 190
5 0.797 175 219 257 11.249 918 277
6 0.797 175 219 255 11.249 918 279

III. EXPLICITLY CORRELATED METHODS

Because the full set of interelectronic distances rij deter-
mine the positions of the electrons to within an overall rota-
tion that is irrelevant in the ground state, it is appropriate to
adopt these variables as natural coordinates and to expand the
correlated wave function in terms of these distances.

A. 2-ringium

The HF wave function for 2-ringium is

2�0 = r̂12. (39)

In the light of its simplicity, and following our previous anal-
ysis of the quasi-exact solutions,19 it is natural to consider
correlated wave functions that are products of 2�0 and a cor-
relation factor, viz.,

2�M = 2�0

M∑
m=0

cmrm
12. (40)

The overlap, kinetic and potential matrix elements can be
found as outlined in the Appendix.

Table II shows the energies obtained by solving the sec-
ular eigenvalue problem for rs = 1. They converge rapidly,
with M = 1, 2, 4, 6 yielding milli-, micro-, nano-, and
pico-hartree accuracy, respectively. It is interesting to com-
pare the correlation energy (−11 mEh) with the correspond-
ing value (−114 mEh) for two electrons on a 2D sphere.57

One normally expects the correlation energy to decrease in
higher dimensions58 but the 1D case is anomalous because the
HF wave function (12) places the two electrons in different
orbitals.

The key discovery from this investigation is that includ-
ing just the linear (r12) and quadratic (r2

12) terms in the ex-
pansion (40) affords microhartree accuracy for the energy of
2-ringium. We now ask whether this is true for larger values
of n.

B. 3-ringium

The HF wave function for 3-ringium is

3�0 = r̂12 r̂13 r̂23, (41)

and we have explored both Hylleraas-type wave
functions59–61

3�
Hy
M = 3�0

M∑
m=0

∑
i+2j+3k≤m

cijk si
1 s

j

2 sk
3 , (42a)

s1 = r12 + r13 + r23, (42b)

s2 = r12 r13 + r12 r23 + r13 r23, (42c)

s3 = r12 r13 r23, (42d)

and Jastrow-type wave functions62

3�Ja
M = 3�0

(
M∑

m=0

cmrm
12

) (
M∑

m=0

cmrm
13

) (
M∑

m=0

cmrm
23

)
. (43)

The required matrix elements can be found as outlined in the
Appendix.

The Hylleraas expansion converges rapidly for 3-ringium
with rs = 1 and Table III reveals that, as in 2-ringium, M = 1,
2, 4, 6 yields milli-, micro-, nano- and pico-hartree accuracies,
respectively. The reduced correlation energy is roughly 35%
greater than that in 2-ringium. Because of its factorized form,
the limiting Jastrow energy is ≈1 μEh above the exact value.

C. 4- and 5-ringium

The HF wave functions for 4- and 5-ringium, respec-
tively, are

4�0 = r̂12 r̂13 r̂14 r̂23 r̂24 r̂34, (44)

5�0 = r̂12 r̂13 r̂14 r̂15 r̂23 r̂24 r̂25 r̂34 r̂35 r̂45. (45)

TABLE III. Convergence with M of the energy of 3-ringium with rs = 1.

Hylleraas expansion Jastrow expansion

M ε(1, 3) −εc(1, 3) ε(1, 3) −εc(1, 3)

0 1.106 281 644 485 0 1.106 281 644 485 0
1 1.091 649 204 702 14.632 439 783 1.090 999 267 912 15.282 376 573
2 1.090 936 176 037 15.345 468 448 1.090 936 808 374 15.344 836 111
3 1.090 935 619 110 15.346 025 375 1.090 936 772 712 15.344 871 773
4 1.090 935 608 007 15.346 036 478 1.090 936 607 858 15.345 036 627
5 1.090 935 607 817 15.346 036 667 1.090 936 593 657 15.345 050 828
6 1.090 935 607 811 15.346 036 674 1.090 936 589 183 15.345 055 301
7 1.090 935 607 810 15.346 036 674 1.090 936 588 261 15.345 056 224
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TABLE IV. Convergence with M of the energies of 4- and 5-ringium with
rs = 1.

4-ringium 5-ringium

M ε(1, 4) −εc(1, 4) ε(1, 5) −εc(1, 5)

0 1.285 531 0 1.414 213 0
1 1.269 785 15.746 1.398 192 16.021
2 1.268 259 17.272 . . . . . .

Hylleraas calculations on these systems are complicated be-
cause of the large number of many-electron integrals which
are required. Nonetheless, we were able to perform such cal-
culations, up to M = 2 for 4-ringium and up to M = 1 for 5-
ringium, and the results are summarized in Table IV. It is im-
portant to allow rijrkl terms (which couple two electron pairs)
and rijrik terms (which describe three-electron interactions) to
have distinct Hylleraas coefficients: failing to do so raises the
energy by ≈1 μEh. The energies in Table IV are higher than
our best estimates (see Table V) by roughly 2 mEh (for M
= 1) and 50 μEh (for M = 2).

IV. QUANTUM MONTE CARLO METHODS

A. Variational Monte Carlo

In the VMC method, the expectation value of the Hamil-
tonian with respect to a trial wave function is obtained us-
ing a stochastic integration technique. Within this approach a
variational trial wave function �T(R, c) is introduced, where
c = (c1, c2, . . . , cM ) are variational parameters. One then
minimizes the energy

εVMC = 1

n

∫
�T(R, c)H�T(R, c)dR∫

�T(R, c)2dR
, (46)

with respect to the parameters c using the Metropolis Monte
Carlo method of integration.47 The resulting VMC energy is
an upper bound to the exact ground-state energy, within the
Monte Carlo error. Unfortunately, any resulting observables
are biased by the form of the trial wave function, and the
method is therefore only as good as the chosen �T.

Here, we use electron-by-electron sampling with a tran-
sition probability density given by a Gaussian centered on the

TABLE V. Hartree-Fock, explicitly correlated and diffusion Monte Carlo
energies of n-ringium with rs = 1. Statistical errors in the last digit of the
DMC energies are shown in parentheses.

n εHF(1, n) εEC(1, n) εDMC(1, n)

2 0.808 425 0.797 175 0.797 175(0)
3 1.106 282 1.090 936 1.090 936(1)
4 1.285 531 1.268 259 1.268 212(1)
5 1.414 213 1.398 192 1.395 774(1)
6 1.514 978 . . . 1.495 841(1)
7 1.598 000 . . . 1.578 393(1)
8 1.668 711 . . . 1.648 770(1)
9 1.730 359 . . . 1.710 172(1)
10 1.785 044 . . . 1.764 671(1)

initial electron position. The VMC time step, which is the
variance of the transition probability, is chosen to achieve a
50% acceptance ratio.63

B. Diffusion Monte Carlo

DMC is a stochastic projector technique for solving the
many-body Schrödinger equation.48–50 Its starting point is the
time-dependent Schrödinger equation in imaginary time

∂�(R, τ )

∂τ
= (H − S)�(R, τ ), (47)

and it is exact, within statistical errors. For τ → ∞, the
steady-state solution of Eq. (47) for S close to the ground-state
energy is the ground-state �(R).64 DMC generates configura-
tions distributed according to the product of the trial and ex-
act ground-state wave functions. If the trial wave function has
the correct nodes, the DMC method yields the exact energy,
within a statistical error that can be made arbitrarily small
by increasing the number of Monte Carlo steps. Thus, as in
VMC, a high quality trial wave function is essential in order
to achieve high accuracy.65, 66

Our DMC code follows the implementation of Reynolds
et al.,50 using a population of ∼5000 walkers for each calcu-
lation. We have carefully checked that the population-control
bias is negligible. The dependence of the energy upon the
DMC time step �τ was also investigated and the extrapolated
value of the energy at �τ = 0 is obtained by a linear extrapo-
lation. The number of points used in the fitting procedure de-
pends on rs. A minimum of 4 points has been used for linear
interpolation in the set �τ = 0.0001, 0.0002, 0.0005, 0.001,
0.002, and 0.005. The extrapolated standard error is obtained
by assuming that the data follow a Gaussian distribution.63

We note that the algorithm developed in Ref. 65 does not sig-
nificantly reduce the time-step error in the present case.

C. Trial wave functions

We have employed Jastrow trial wave functions

n�M = n�0

n∏
i<j

M∑
k=1

ckr
k
ij , (48)

choosing M = 5 in order to obtain microhartree energy ac-
curacy for rs = 1. The coefficients ck were optimized using
Newton’s method following the methodology developed by
Umrigar and co-workers.67, 68 For rs ≤ 1, we used energy min-
imization; for rs > 1, energy minimization was unstable and
we minimized the variance of the local energy.67

D. Fixed-node approximation

DMC algorithms can be frustrated by the sign problem
in fermionic systems.69–71 To avoid this, it is common to ap-
ply the fixed-node approximation, i.e, to write the wave func-
tion as the product of a non-negative function and a function
with a fixed nodal surface.72 The DMC method then finds the
best energy for that chosen nodal surface, providing an up-
per bound for the ground-state energy. The exact ground-state
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TABLE VI. Reduced correlation energies (in mEh) for n-ringium with various rs. Statistical errors in the last digit of the DMC energies are shown in
parentheses.

n\rs 0 0.1 0.2 0.5 1 5 10 20

2 13.212 12.985 12.766 12.152 11.250 7.111 4.938 3.122
3 18.484 18.107 17.747 16.755 15.346 9.369 6.427 4.029
4 21.174 20.698 20.24(2) 19.00(1) 17.320(1) 10.390(0) 7.085(0) 4.425(0)
5 22.756 22.213 21.66(2) 20.33(1) 18.439(1) 10.946(0) 7.439(0) 4.636(0)
6 23.775 23.184 22.63(2) 21.14(1) 19.137(1) 11.285(0) 7.653(0) 4.762(0)
7 24.476 23.850 23.24(2) 21.70(1) 19.607(1) 11.509(0) 7.795(0) 4.844(0)
8 24.981 24.328 23.69(3) 22.11(1) 19.940(1) 11.664(0) 7.890(0) 4.901(0)
9 25.360 24.686 24.04(2) 22.39(1) 20.186(1) 11.777(0) 7.960(0) 4.941(0)
10 25.651 24.960 24.25(4) 22.62(1) 20.373(1) 11.857(0) 8.013(0) 4.973(0)
...

...
...

...
...

...
...

...
...

∞ 27.416 26.597 25.91(1) 23.962(1) 21.444(0) 12.318(0) 8.292(0) 5.133(0)

energy is reached only if the nodal surface is exact but, fortu-
nately for us, the nodal surface of the HF wave function (12)
is exact and, therefore, DMC calculations using the trial wave
function (48) yield the exact energy. We have no fixed-node
error.

E. Results and discussion

Table V summarizes the results of a systematic study of
n-ringium systems with rs = 1. In all cases, our DMC calcu-
lations yielded energies with statistical uncertainties within 1
μEh and this allowed us to assess the accuracies of our explic-
itly correlated calculations.

Table VI summarizes our best estimates of the correla-
tion energies of n-ringium for various rs (see also Fig. 1). For
rs = 0, we use the exact ε2(n) values from Table I. For
rs = 0.1, we use the Padé approximant

εc(rs, n) ≈ ε2(n)

1 − [ε3(n)/ε2(n)]rs

, (49)

which provides microhartree accuracy. For n = 2 and n = 3,
we use the explicitly correlated results from Table V. For n
= ∞ and 1 ≤ rs ≤ 20, we use the DMC results from Lee and
Drummond.15 For n = ∞ and 0.2 ≤ rs ≤ 0.5, we performed
DMC calculations using the CASINO software73 following
the Lee-Drummond methodology.

0 5 10 15 20
2

4

6

8

10

rs a.u.

n

Ec mEh

0

5

10

15

20

25

FIG. 1. Reduced correlation energies (in mEh) for n-ringium with various rs.

For the remaining cases (4 ≤ n ≤ 10 and rs ≥ 0.2), we
used our own DMC program. We achieve sub-μEh uncertain-
ties for rs > 1 (where the electrons become localized and ap-
proach a Wigner crystal44) but it is difficult to achieve this for
smaller rs, where the uncertainties are 10–40 μEh.

V. CONCLUSIONS

We have studied n-ringium using explicitly correlated
and quantum Monte Carlo methods. Using Hylleraas wave
functions, we have obtained the near-exact ground-state en-
ergy of the n = 2 and n = 3 systems for various values of
the Seitz radius rs. For n ≥ 4, we have performed exact-
node DMC calculations to find the exact ground-state ener-
gies, with statistical errors in the μEh range.

We have shown that the reduced correlation energy of n-
ringium is

εc(rs, n) = ε2(n) + ε3(n)rs + · · · (50)

for high densities, and

εc(rs, n) = η0(n) − ε1(n)

rs

+ η1(n)

r
3/2
s

+ · · · (51)

for low densities. Expressions for the coefficients are given in
Eqs. (28), (31), (34), (24), and (35).

In the thermodynamic limit, we have found that

εc(rs) = − π2

360
+ 0.008446 rs + · · · , (52)

εc(rs) = − ln(
√

2π ) − 3/4

rs

+ 0.359933

r
3/2
s

+ · · · , (53)

and shown that the ringium and jellium models are equivalent
in the thermodynamic limit.

This provides a detailed picture of the energy of this new
model over a wide range of n and rs values and we believe
that the correlation energies in Table VI are the most accurate
yet reported for n-ringium. These systems are distinct uniform
electron gases1 and can be used to design a new correlation
functional for 1D systems. We will report such a functional in
a forthcoming paper.74
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APPENDIX: MANY ELECTRON INTEGRALS
FOR n-RINGIUM

For the ground state, the Hamiltonian (4) can be recast as

H =
n∑

i<j

[(
r2
ij

4R2
− 1

)
∂2

∂r2
ij

+ rij

4R2

∂

∂rij

+ 1

rij

]

+
n∑

i =j

i =k

n∑
j<k

r2
ik + r2

jk − r2
ij

2 rikrjk

r2
ij + r2

jk − r2
ik

2 rij rjk

∂2

∂rij ∂rik

.

(A1)

The first term in (A1) contains the two-body parts of the
Hamiltonian while the second includes coupling between
electron pairs.

The n-electron overlap integrals needed in calculations
on n-ringium can be systematically constructed using the unit-
ring Fourier resolution

rm
ij =

∞∑
k=−∞

Bm,k eikθi e−ikθj , (A2)

where

Bm,k = (−1)km!

(m/2 + k)!(m/2 − k)!
(A3)

is a signed binomial coefficient. Equation (A2) is valid for m
≥ 0 and terminates if m is an even integer.

Resolving each integrand factor, swapping the order of
summation and integration, performing the integrations and
resumming, often leads to beautiful expressions. For example,
the cyclic n-electron integral yields

〈
ra

12r
b
23r

c
34 . . . rz

n,1

〉 =
∞∑

k=−∞
Ba,kBb,kBc,k . . . Bz,k, (A4)

which can be written as a n + 1Fn hypergeometric function of
unit argument.53

In some cases, the sums can be found in closed form, for
example, 〈

ra
ij

〉 = Ba,0, (A5)

〈
ra
ij r

b
kl

〉 = Ba,0Bb,0, (A6)

〈
ra

12r
b
23r

c
31

〉 = a! b! c!(
a+b

2

)
!
(

a+c
2

)
!
(

b+c
2

)
!

(
a+b+c

2

)
!(

a
2

)
!
(

b
2

)
!
(

c
2

)
!
, (A7)

but this is not possible in general.75 (Equation (A7) uses the
result of Problem 62 of Knuth’s book.76) However, sums such
as (A4) converge rapidly and are numerically satisfactory.
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