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Using spherical geometry, we introduce a novel model to study excitons confined in a three-dimensional
space, which offers unparalleled mathematical simplicity while retaining much of the key physics. This
new model consists of an exciton trapped on the 3-sphere (i.e. the surface of a four-dimensional ball),
and provides a unified treatment of Frenkel and Wannier–Mott excitons. Moreover, we show that one
can determine, for particular values of the dielectric constant ε, the closed-form expression of the exact
wave function. We use the exact wave function of the lowest bound state for ε = 2 to introduce an
intermediate regime which gives satisfactory agreement with the exact results for a wide range of ε
values.

 2012 Elsevier B.V. All rights reserved.

1. Excitons

An exciton (X) is a quasiparticle created by the association of
an electron (e) and an electron hole (h) attracted to each other
by the Coulomb force [1,2]. The electron and hole may have ei-
ther parallel or anti-parallel spins, and form an electrically neutral
quasiparticle able to transport energy without carrying net electric
charge. The concept of an exciton was first proposed by Frenkel [3]
in 1931 to described excitations in insulators. In semiconductors,
a hole is usually created when a photon is absorbed, and excites
an electron from the valence to the conduction band, yielding a
positively-charged hole. In such materials, excitons play a key role
in optical properties [4].

These systems are of particular interest in quantum information
and computation to construct coherent combinations of quantum
states [5]. Following DiVincenzo’s theory [6], quantum gates op-
erating on just two qubits at a time are sufficient to construct
a general quantum circuit. The basic quantum operations can be
performed on a sequence of pairs of physically distinguishable
quantum bits and, therefore, can be illustrated by a simple four-
level system, as shown in Fig. 1. In optically driven systems, direct
excitation to the upper |11〉 level (lowest biexciton1 state) from
the ground state (GS) |00〉 is usually forbidden and the most effi-
cient alternative is to use two distinguishable excitonic states with
orthogonal polarizations (|01〉 and |10〉) as intermediate states.
However, in atomic systems, excitation to the upper level does not
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1 A biexciton (B) corresponds to the association of two excitons.

Fig. 1. Four-level excitonic system as a prototype of a quantum gate.

ensure quantum coherence between |00〉 and |11〉 leading to errors
in the quantum logic device [7].

There are two main kinds of excitons: Frenkel excitons [3]
(sometimes called molecular excitons [2]) are found in materials
where the dielectric constant is generally small, and are character-
ized by compact, localized wave functions. Wannier–Mott excitons
[8,9] are found in semiconductors with a large dielectric constant,
and have large, delocalized wave functions.

2. The model

In 1983, Laughlin [10] proposed an accurate trial wave function
in order to explain and predict the fractional quantum Hall effect
(FQHE), and eventually received the Nobel prize in physics in 1998
(jointly with Horst L. Störmer and Daniel C. Tsui) for the discov-
ery of this new form of quantum fluid with fractionally charged
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excitations. A few months after the publication of Laughlin’s pa-
per, Haldane [11] introduced spherical geometry for the study of
the FQHE, wherein the two-dimensional sheet containing electrons
is wrapped around the surface of a 2-sphere, and a perpendicu-
lar (radial) magnetic field is generated by placing a Dirac magnetic
monopole at the centre of the 2-sphere. This geometry has played
an important role in testing various theoretical conjectures. The
main reason for the popularity of this compact geometry is that
it does not have edges, which makes it suitable for an investiga-
tion of bulk properties. Spherical geometry has been instrumental
in establishing the validity of the FQHE theory, and provides the
cleanest proof for many properties [12].

Following Haldane’s footsteps, we introduce a simple model
using spherical geometry to study excitons confined in a three-
dimensional space for any value of the dielectric constant. It yields
a unified treatment of Frenkel and Wannier–Mott excitons [13],
and we will show that one can determine, for a particular value
of the dielectric constant, the closed-form expression of the exact
wave function associated with the lowest bound state (i.e. associ-
ated with a negative energy).

Our model consists of an exciton trapped on the 3-sphere (i.e.
the surface of a four-dimensional ball). Excitons on the surface
of a 2-sphere have been previously studied theoretically [14,15]
and experimentally [16,17]. However, our model has the advan-
tage of having the same dimensionality as real three-dimensional
solid-state or molecular systems. Moreover, previous studies on
two-electron [18–21] and many-electron systems [22] have shown
many similarities between real and spherically-confined systems.

In Ref. [15], Pedersen reports exact solutions for the unbound
states (i.e. associated with a positive energy) of an exciton on the
surface of a 2-sphere based on the recursive approach developed in
Ref. [18]. However, excitons on a three-dimensional spherical sur-
face have not been considered before, and this Letter presents the
first study of exact solutions and asymptotic regimes of excitons in
a spherical three-dimensional space. To our best knowledge, this is
also the first study reporting an exact closed-form solution associ-
ated with the lowest bound state of an exciton.

3. Schrödinger equation

Let us consider an exciton created on the surface of a 3-sphere
of radius R . The coordinates of a particle on a 3-sphere are given
by the set of hyperspherical angles Ω = (θ,φ,χ). In atomic units
(h̄ = e = 1), the Schrödinger equation of the system is
( ∇2

e

2meR2 + ∇2
h

2mhR2 − 1
u

)
Ψ (Ωe,Ωh) = EΨ (Ωe,Ωh), (1)

where

∇2 = 1

sin2 θ

[
∂

∂θ

(
sin2 θ

∂
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)
+ 1

sinφ

∂

∂φ

(
sinφ

∂
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+ 1

sin2 φ

∂2
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]
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is the Laplace operator in hyperspherical coordinates [23], me and
mh are the masses of the electron and the hole, and

u−1 = |r1 − r2|−1 =
(
R
√
2 − 2cosω

)−1
(3)

is the Coulomb interaction between the two particles, where the
cosine of the interparticle angle is

cosω = r21 + r22 − u2

2r1r2
= cos θe cos θh + sin θe sin θh cosφe cosφh

+ sin θe sin θh sinφe sinφh cos(χe − χh). (4)

Here, we consider exciton states with zero angular momentum
and in which the two particles have opposite spin (singlet states).
The present study can be easily generalized to higher angular mo-
mentum states for both the singlet and triplet manifolds [20].

For zero angular momentum states, Ψ depends only on the rel-
ative coordinate ω or u. An analysis of (1) reveals that Ψ , like the
para-positronium wave function, possesses an “anti-Kato” behav-
ior [24]

Ψ ′(u)

Ψ (u)

∣∣∣∣
u=0

= −1
2
, (5)

which shows that Ψ must behave as Ψ (u) = 1 − u/2 + O (u2) for
small interparticle distance.

After a suitable scaling of energy (E ← µER2), the Schrödinger
equation (1) is

Ψ ′′(ω) + 2cotωΨ ′(ω) +
(

1

ε
√
2− 2cosω

+ E
)

Ψ (ω) = 0, (6)

where ε = 1/(µR) can be regarded as the relative dielectric con-
stant of the system, and µ = 2memh/(me + mh) is the reduced
mass of the exciton [25].

4. Frenkel regime

In the Frenkel (small-ε) regime (Ψ ≡ ΨF and E ≡ EF), the
Coulomb interaction is dominant and the electron and hole form
a tightly bound pair (ω ≈ 0) [14,26]. Assuming cotω ≈ (2 −
2cosω)−1/2 ≈ ω−1, we find

Ψ ′′
F (ω) + 2

ω
Ψ ′

F(ω) +
(

1
εω

+ EF

)
ΨF(ω) = 0. (7)

The above equation is a hydrogenic-like Schrödinger equation, and
yields, for the nth bound state, the following zeroth-order eigen-
function and eigenvalue:

Ψ
(n,0)
F (ω) ∝ L1n

(
ω

nε

)
exp

(
− ω

2nε

)
, (8)

E(n,0)
F = − 1

4ε2n2
, (9)

where n ∈ N∗ and Lmn (x) is a generalized Laguerre polynomial [27].
The lowest state (n = 1) is a bound state, and the zeroth-order
wave function Ψ

(1,0)
F is an exponential function strongly peaked at

ω = 0 associated with the zeroth-order energy E(1,0)
F = −1/(4ε2).

Taking into account the first-order correction (cotω ≈ ω−1 − ω/3
and (2− 2cosω)−1/2 ≈ ω−1 + ω/24) yields

E(1,1)
F = − 1

4ε2 − 9
8
, (10)

which is plotted in Fig. 2, and has the effect of stabilizing the
lowest bound state. A similar calculation for an exciton on a 2-
sphere [14] yields E(n,0)

F = −1/(ε2(2n − 1)2). It shows that, similar
to anisotropic semiconductors [28], the binding energy of the low-
est state of the two-dimensional exciton is four times larger than
in three dimensions. The similarity between flat and spherical ge-
ometries is actually not surprising because, in the small-ε (large
radius) limit, the surface of a 2- or 3-sphere is locally flat, and the
tightly bound pair behaves as on a flat space.

5. Wannier–Mott regime

In the Wannier–Mott (large-ε) regime (Ψ ≡ ΨWM and E ≡
EWM), the kinetic energy is dominant, and the exciton is uniformly
delocalized over the 3-sphere [29]. This regime can be studied
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Fig. 2. Energy for the lowest bound state of an exciton on a 3-sphere as a func-
tion of ε−1 in the Frenkel (dashed blue), intermediate (dot-dashed black), and
Wannier–Mott (dotted red) regimes. Exact results are also reported (circles). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this Letter.)

using perturbation theory by treating the screened Coulomb in-
teraction as a perturbation. The zeroth-order wave function and
energy for the nth state are

Ψ
(n,0)
WM (ω) = 1

2π2 Un−1(cosω), (11)

E(n,0)
WM =

(
n2 − 1

)
, (12)

where Un(x) is a Chebyshev polynomial of the second kind [27].
In this regime, the lowest-energy state zeroth-order wave func-
tion Ψ

(1,0)
WM = 1/(2π2) is a constant, yielding an equally distributed

probability of finding the electron–hole pair at any point on the 3-
sphere, and is associated with the zeroth-order energy E(1,0)

WM = 0.
Taking into account the first-order correction gives

Ψ
(1,1)
WM (ω) = 1

2π2 + 13+ 6(π − ω) cotω − 3π csc(ω/2)
9π3ε

, (13)

which yields the third-order energy

E(1,3)
WM = − 8

3πε
+ 4

27ε2

(
9− 92

π2

)

− 16
243ε3

[
2248
π3 − 285

π
+ 216

π
ln2− 756

π3 ζ(3)
]
, (14)

where ζ is the Riemann zeta function [27]. The higher-order cor-
rections stabilize the lowest state, which becomes a bound state
for any value of ε . One can verify that, for ε → ∞, the wave func-
tion (13) has the right electron–hole cusp (Eq. (5)). Eqs. (10) and
(14) are reported in Fig. 2, and are compared to exact results ob-
tained by diagonalization of Eq. (6) using a non-orthogonal basis
set of the form fn(ω) ∝ sinn ω/2. The lowest bound-state energy is
the lowest eigenvalue of S−1/2 · H · S−1/2, where S and H are the
overlap and Hamiltonian matrices, respectively. (See Ref. [29] for
more details.)

6. Exact closed-form solutions

We now turn our attention to the exact closed-form solutions
which can be obtained for particular values of the dielectric con-
stant ε . In terms of r = u/R , Eq. (6) is

(
r2

4
− 1

)
Ψ ′′(r) +

(
5r
4

− 2
r

)
Ψ ′(r) =

(
1
εr

+ E
)

Ψ (r). (15)

The general solution of (15) is [27,30]

Ψ (r) =
(
1+ r

2

)−a/2

S(r), (16)

Fig. 3. Exact energies of the lowest bound state and the first few excited states of an
exciton on a 3-sphere with dielectric constant ε . Closed-form solutions are shown
by blue dots (a = 0) and red squares (a = 1). (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this Letter.)

Table 1
Closed-form solutions of the lowest bound state and first and second excited states
for an exciton on a 3-sphere.

n m a S(n)
m (u) ε E

1 0 1 1 2 −7/16
2 1 0 1− u/2

√
2/5 5/4

2 1 1 (1+ (
√
33− 15)u/24) (

√
33− 3)/6 9/16

2 2 0 1− u/2+ 7u2/132
√
2/33 3

where a = 0 or 1, and S(r) is a regular power series, i.e. S(r) =∑∞
k=0 skr

k . Substituting the previous series into (15) yields a three-
term recurrence relation for the coefficients sk ’s. To get closed-
form solutions, we assume that the series S(r) terminates at a
rank m, such as S(n)

m (r) = ∑m
k=0 skr

k . This does happen if, and only
if sm+1 = sm+2 = 0. The exact energy E and dielectric constant ε
are simply given by the roots of the polynomial equations sm+1 = 0
and sm+2 = 0. We refer the reader to Ref. [31] for more details.

This produces two families of solutions characterized by the
integer a. Each family contains an infinite number of solutions, as-
sociated with distinct values of ε . Both bound and unbound state
wave functions can be obtained, and they are easily characterized
by the number of nodes (n − 1) between r = 0 and 2. The first
few closed-form solutions are gathered in Table 1 and represented
in Fig. 3. One can note that the lowest-energy state is associated
with a negative energy for any value of the dielectric constant.
This is not the case for the higher-energy states, which become
bounded when the dielectric constant is large enough to screen
the electron–hole attraction.

Without a doubt, the most interesting closed-form solution is

Ψ (1)(r) =
(
1+ r

2

)−1/2

, (17)

for ε = 2 and E(1) = −7/16. This is the unique exact wave function
for the lowest bound state2 (see Fig. 3).

Another interesting wave function due to its simplicity is

Ψ (2)(r) = 1−
√

5
8
r, (18)

which is exact for ε = √
2/5, and yields E(2) = 5/4. The three types

of wave functions (Frenkel, Wannier–Mott and exact) are plotted in
Fig. 4 for the lowest bound state and the first excited state.

2 We note that one cannot obtain bound state wave functions for an exciton on
a 2-sphere because the value of a is restricted to zero due to the dimensionality of
the system.
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Table 2
First-order Frenkel, intermediate, Wannier–Mott and exact energies for various ε values. The deviation with respect to the exact result is given in parenthesis.

ε E(1,1)
F E(1,1)

int E(1,1)
WN E(1)

0.25 −5.12500 (0.00128) −3.60055 (1.52573) −3.39531 (1.73097) −5.12628
1/3 −3.37500 (−0.02363) −2.69682 (0.65455) −2.54648 (0.80489) −3.35137
0.5 −2.12500 (−0.13978) −1.79309 (0.19213) −1.69765 (0.28757) −1.98522
1.0 −1.37500 (−0.46828) −0.88936 (0.01736) −0.84883 (0.05790) −0.90672
1.5 −1.23611 (−0.64618) −0.58812 (0.00181) −0.56588 (0.02404) −0.58993
2.0 −1.18750 (−0.75000) −0.43750 (0.00000) −0.42441 (0.01309) −0.43750
2.5 −1.16500 (−0.81725) −0.34713 (0.00062) −0.33953 (0.00821) −0.34775
3.0 −1.15278 (−0.86420) −0.28688 (0.00170) −0.28294 (0.00563) −0.28857
3.5 −1.14541 (−0.89879) −0.24384 (0.00278) −0.24252 (0.00410) −0.24662
4.0 −1.14062 (−0.92530) −0.21157 (0.00376) −0.21221 (0.00312) −0.21533
4.5 −1.13735 (−0.94627) −0.18646 (0.00461) −0.18863 (0.00245) −0.19108
5.0 −1.13500 (−0.96326) −0.16638 (0.00536) −0.16977 (0.00198) −0.17174

Fig. 4. Frenkel (black), Wannier–Mott (red) and exact (blue) wave functions as func-
tions of ω for the lowest bound (top) and first excited (bottom) states of an exciton
on a 3-sphere. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this Letter.)

7. Intermediate regime

We introduce a regime which is distinct from the Frenkel and
Wannier–Mott asymptotic regimes. This unusual intermediate case
can be experimentally observed in fluid xenon for example [32]. In
this intermediate regime (Ψ ≡ Ψint and E ≡ E int), the exact solu-
tion (17) is used as a zeroth-order wave function for perturbation
theory, where the zeroth-order Hamiltonian is given by Eq. (15) in
which ε = 2, and the perturbation operator is (ε − 2)/(2εr). This
yields, for the lowest bound state, the first-order energy

E(1,1)
int = − 7

16
+ 3(4− π)(ε − 2)

4(3π − 8)ε
+ O

[(
ε − 2

ε

)2]
, (19)

which is plotted in Fig. 2, and gives good agreement with the ex-
act results for a wide range of ε values (Table 2). Compared to
the Frenkel and Wannier–Mott energy expansions truncated at the
same order, the intermediate regime yields results closer to the
exact values for 1 � ε � 3.5.

8. Conclusion

In this Letter, we have shown that the model consisting of an
exciton located on the surface of a 3-sphere is a useful model
to study excitons for any value of the dielectric constant ε . This
model allows a smooth connection between the Frenkel and
Wannier–Mott excitons, and we have shown that one can deter-
mine the exact closed-form expression of the exact wave function
for particular values of ε .
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