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We discuss the model of a D-dimensional confined electron gas in which the particles are trapped by a harmonic
potential. In particular, we study the non-interacting kinetic and exchange energies of finite-size inhomogeneous
systems, and compare the resulting Thomas–Fermi and Dirac coefficients with various uniform electron gas
paradigms. We show that, in the thermodynamic limit, the properties of this model are identical to those of the
D-dimensional Fermi gas.
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1. Introduction

Recent technical advances based on Bose–Einstein
condensation in vapours of bosonic atoms [1–4] have
led to the experimental realization of ultracold Fermi
gases composed of dilute gases of fermionic alkali
atoms [5–10]. These experiments are usually performed
in harmonic traps using magneto-optical confinement
techniques, and it is now possible to tune the harmonic
trap to obtain not only three-dimensional gases but
also quasi-two- and quasi-one-dimensional Fermi sys-
tems. Such experiments have been the driving force of
numerous theoretical studies both at zero [11–19] and
finite [20–22] temperature.

The D-dimensional version of the jellium model (or
D-jellium) consists of interacting electrons within an
infinite volume and in the presence of a uniformly
distributed background positive charge, and is the
foundation of most density functionals. Traditionally,
this system is constructed by allowing the number n of
electrons in a D-dimensional cube of volume V to
approach infinity with �¼ n/V held constant [23,24].

A weakness of the electrons-in-a-box model is that
it yields a uniform density only in the thermodynamic
(i.e. n!1) limit [25]. We have recently [26] intro-
duced an alternative model called D-spherium,1 in
which the electrons are confined to the surface of a
D-sphere.2 This system possesses a uniform density,
even for finite n, and because all the points in a
D-sphere are equivalent, its mathematical analysis is
relatively straightforward [28–31]. In [26], we have
shown that the properties of D-spherium can be

calculated for finite n and approach those of D-jellium
as n!1.

In this paper, we will study the non-interacting
kinetic and exchange energies of a spin-polarized
many-electron system trapped in an isotropic harmonic
trap.3 These quantities are of great importance in the
framework of density-functional theory (DFT) [24] for
studying inhomogeneous systems and finite-size effects
[32–34]. We will compare the resulting Thomas–Fermi
and Dirac coefficients with various uniform electron
gas paradigms, such as the jellium and spherium
models.

We will focus our attention on the physically
important D¼ 2 and D¼ 3 systems. The D¼ 1 case will
be also studied due to the importance of the Bose–
Fermi mapping in one-dimensional systems (bosoniza-
tion) [35,36].

2. Trapped jellium model

We consider a system of n interacting electrons trapped
in the D-dimensional isotropic harmonic potential

VðrÞ ¼
1

2
r2, ð1Þ

where r¼ jrj. The Hamiltonian is

H ¼
Xn
i¼1

�
r2
i

2
þ VðriÞ

� �
þ
Xn
i5j

1

rij
ð2Þ

with rij¼ jri� rjj.
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In the standard paradigm for modelling the elec-

tron liquid [23], one neglects the inter-electron repul-

sion terms in Equation (2) in order to obtain the ‘non-

interacting’ wave function, which is a determinant of

orbitals that describe the motion of a single electron in

the external potential. We adopt this approach in the

present study, and use that wavefunction to obtain the

‘non-interacting’ kinetic and exchange energies of our

harmonically trapped electrons.
The Lth orbital of an electron in a harmonic trap is

CLðrÞ ¼
YD
i¼1

 ‘iðxiÞ, ð3Þ

where xi is the ith cartesian coordinate of the electron.

The composite index L is given by

L ¼ ‘1, ‘2, . . . , ‘Df g, ð4Þ

where the ‘’s are non-negative integers. The functions

 ‘, which satisfy the one-dimensional Schrödinger

equation

�
1

2

d2 ‘
dx2
þ
1

2
x2 ‘ ¼ �‘  ‘, ð5Þ

with "‘¼ ‘þ 1/2, are the one-dimensional harmonic

oscillator wave functions

 ‘ðxÞ ¼
1

2‘‘!p1=2ð Þ
1=2

H‘ðxÞ exp �
x2

2

� �
, ð6Þ

where H‘ is the ‘th Hermite polynomial [37]. We

confine our attention to full-shell ferromagnetic

systems, that is, every orbital with ‘1þ � � � þ ‘D�L is

occupied by one spin-up electron.

3. One-particle density matrix and electron density

The total number of electrons is

n ¼
� LþDþ 1ð Þ

� Lþ 1ð Þ� Dþ 1ð Þ
, ð7Þ

where � is the gamma function [37], and the one-

particle density matrix is

�1 r1, r2ð Þ ¼
XL
‘¼0

X
‘1þ���þ‘D¼‘

CL r1ð ÞCL r2ð Þ: ð8Þ

Introducing the relative and centre-of-mass

coordinates,

u ¼ r1 � r2, U ¼
r1 þ r2

2
, ð9Þ

the one-particle density matrix becomes [21,38,39]

�1 u,Uð Þ ¼
1

pD=2
XL
‘¼0

ð�1Þ‘LD=2
L�‘

u2

2

� �
exp �

u2

4

� �
L
ðD=2Þ�1
‘

� 2U2
� �

expð�U2Þ, ð10Þ

where L�‘ is an associated Laguerre polynomial [37].

Equation (10) is derived using the connection between

the inverse Laplace transform of the Bloch density

matrix and the one-particle density matrix [39]. The

one-particle density matrix is represented in Figure 1

for L¼ 5 and various D.
The electron density can be easily obtained [40,41]

from (10) and reads

� rð Þ ¼
1

pD=2
XL
‘¼0

ð�1Þ‘
� L� ‘þ D

2 þ 1
� �

� L� ‘þ 1ð Þ� D
2 þ 1
� �

� L
ðD=2Þ�1
‘ 2r2

� �
expð�r2Þ: ð11Þ

Within the Thomas–Fermi (TF) approximation

[42,43], Equation (11) becomes [13,15,19]

�TF rð Þ ¼
R2

TF � r2
� �D=2
2DpD=2� D

2 þ 1
� � , ð12Þ

where

R2
TF ¼ 2

� LþDþ 1ð Þ

� Lþ 1ð Þ

� �1=D
ð13Þ

measures the radial extent of the density within the TF

approximation. Figure 1 shows � and �TF for various

D and L and reveals that the TF approximation is

remarkably good, even when L is quite small. It fails,

however, to reproduce the fine structure that results

from statistical Fermi correlations and we note that

this fine structure is most pronounced when D is small.

4. Kinetic and exchange energies

The kinetic energy of the system can be easily obtained

[39] via the one-particle density matrix, and it reads

ET D,Lð Þ ¼ �
1

2

Z
r2
u �1 u,Uð Þ

��
u¼0

dU

¼
D

2
Lþ

Dþ 1

2

� �
� LþDþ 1ð Þ

� Dþ 2ð Þ� Lþ 1ð Þ
, ð14Þ

which behaves as

ET Dð Þ !
D=2

ðDþ 1Þ!
LDþ1 ð15Þ

for large L.
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Moreover, we have been able to show that the non-

interacting exchange energy is

EX D,Lð Þ ¼�
1

2

�1 u,Uð Þ
2

u
dudU

¼�
� D�1

2

� �
ð2pÞ1=2 � D=2þ 1ð Þ� D=2ð Þ

2

�
XL
‘¼0

� D
2 þ ‘
� �

� L� ‘þ 3
2

� �
� D

2 þ 1� ‘þL
� �

� ‘þ 1ð Þ� L� ‘þ 1ð Þ
2

� 3F2

�1=2,
D� 1

2
, ‘�L

D=2þ 1, ‘�L�
1

2

;1

2
64

3
75, ð16Þ

where 3F2 is the generalized hypergeometric function. One

can verify that, for D¼ 2, Equation (16) reduces to the

expression given in [21]. In the limit of large L, it becomes

EX Dð Þ ! �
21=2

p
� D�1

2

� �
� D

2

� �
� Dþ 3

2

� �LDþ1=2: ð17Þ

2 4 6 8
r

0.5
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(a)
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Figure 1. Left: the one-particle density matrix for L¼ 5 and various D. Right: the electron density (solid) and its TF
approximation (dashed) for various D. Plots for L¼ 5 (blue), L¼ 10 (red) and L¼ 20 (yellow). (a) D¼ 1; (b) D¼ 2; (c) D¼ 3.

Table 1. Thomas–Fermi and Dirac coefficients of the
harmonically-trapped electron gas for various D in the
thermodynamic (large-L) limit.

Coefficient D¼ 1 D¼ 2 D¼ 3

CT �2/6 � (9�/5)(�/6)1/3

�CX 1/2 8/(3�1/2) (3/4)(6/�)1/3
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5. Thomas–Fermi and Dirac coefficients

The non-interacting kinetic and exchange energies can

also be obtained using the TF [42,43] and Dirac [44]

functionals, which read

ETðD,LÞ ¼ CTðD,LÞ

Z
�ðrÞ1þ2=D dr, ð18Þ

EXðD,LÞ ¼ CXðD,LÞ

Z
�ðrÞ1þ1=D dr: ð19Þ

In the thermodynamic (large-L) limit, �(r) can be

replaced by �TF(r), and, after integration, we have

ETðDÞ ¼ CTðDÞ
1

4p
Dþ 2

Dþ 1

�ðDþ 1Þ1=D

� D
2 þ 1
� �2=D n1þ1=D, ð20Þ

EXðDÞ ¼CXðDÞ
1

ð2pÞ1=2
�ðDþ32 Þ

�ðDþ 3
2Þ

�ðDþ 1Þ1þð1=2DÞ

� D
2 þ 1
� �1þð1=DÞ n1þð1=2DÞ:

ð21Þ

(a)

(b)

(c)

Figure 2. Convergence of the Thomas–Fermi and Dirac coefficients for various D with respect to the number of electrons n for
the harmonically-trapped jellium model using the true density �(r) (blue circles) and the TF density �TF(r) (red squares) and the
spherium model (yellow diamonds). (a) D¼ 1; (b) D¼ 2; (c) D¼ 3.
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Equating (15) and (17) with (20) and (21) yields

CTðDÞ ¼ 2p
D

Dþ 2
�

D

2
þ 1

� �2=D

, ð22Þ

CXðDÞ ¼ �
4

p1=2
D

D2 � 1
�

D

2
þ 1

� �1=D

: ð23Þ

For D¼ 1, the non-interacting exchange energy is
infinite because it must compensate the Coulomb
energy, which is also infinite [45,46]. However, one
can determine the value of the coefficient CX(1) by
replacing the Coulomb interaction by a short-ranged
interaction potential (see Appendix 1). The resulting
values of CT and CX, which are gathered in Table 1, are
identical to the D-jellium expressions [23], showing
that, in the thermodynamic limit, the two paradigms
are equivalent.

Several observations can be made from Figure 2,
which shows how the coefficients CT and CX evolve
with the number of electrons n for various D. For
D¼ 1, one sees that the values of CT in spherium are
different from those in the harmonic jellium model, but
follow the same trend. For D¼ 2, it turns out that the
TF functional (18) is actually exact for the harmonic
jellium model [15]. In other words, it means that, using
the exact non-interacting electron density �(r), one can
get the exact value of the non-interacting kinetic energy
(no gradient correction is needed).

This applies to the one-dimensional case if one uses
the TF density instead of the true density. We note that
for both D¼ 2 and D¼ 3, the spherium values for CT

follow different trends from the harmonic jellium
model, but converge to the same limiting values. For
the CX coefficient, one finds that the harmonic jellium
and spherium values are similar, and it may be possible
to use the closed-form expressions of the CX coefficient
in spherium to estimate the exchange energy in non-
uniform systems [26,34].

6. Conclusion

In this article, we have studied the non-interacting
kinetic and exchange energies for a system consisting
of n electrons trapped in an isotropic harmonic
potential. We have shown that, in the thermodynamic
limit, this paradigm is identical to the conventional
uniform electron gas (jellium) and the spherium model.
Particular attention has been devoted to the study of
the convergence of the Thomas–Fermi and Dirac
coefficients as functions of the number of electrons
for various values of the dimensionality. We hope that
our results will be useful to understand finite-size

effects in homogenous and inhomogeneous systems
within DFT.
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Notes

1. This generalizes our earlier work [27] in which
‘D-spherium’ was a two-electron system [47–49].

2. We adopt the convention that a D-sphere is the surface
of a (Dþ 1)-dimensional ball.

3. Anisotropy effects can be taken into account using the
methodology developed in [50].
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Appendix 1. Dirac coefficient for D^ 1

The coefficient CX for D¼ 1 can be found by replacing the
Coulomb operator by a short-ranged interaction potential

1

x1 � x2j j
! � x1 � x2ð Þ, ð24Þ

where � is the Dirac delta function. This is commonly done in
the literature [51–53] due to the divergence of the Coulomb
operator for small interelectronic distances in one dimension.

It follows that

EX 1,Lð Þ ¼ �
1

2ð2pÞ1=2
XL
‘1,‘2¼0

ð�1Þ‘2
� ‘1 � ‘2 þ

1
2

� �
�ð‘2 þ 1Þ

� 3
~F2

1

2
, ‘1 � ‘2 þ

1

2
, �‘2

1

2
� ‘2, ‘1 � ‘2 þ 1

; 1

2
64

3
75 ð25Þ

where 3
~F2 is a regularized hypergeometric function [37].

Equation (25) yields

CXð1Þ ¼ �
1

2
, ð26Þ

which is identical to the one-dimensional jellium [23] and
spherium [54] systems.
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