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Abstract We show that the traditional concept of the

uniform electron gas (UEG)—a homogeneous system of

finite density, consisting of an infinite number of electrons

in an infinite volume—is inadequate to model the UEGs

that arise in finite systems. We argue that, in general, a

UEG is characterized by at least two parameters, viz. the

usual one-electron density parameter q and a new two-

electron parameter g. We outline a systematic strategy to

determine a new density functional E (q, g) across the

spectrum of possible q and g values.

Keywords Uniform electron gas � Homogeneous electron

gas � Jellium � Density functional theory

1 Introduction

The year 2012 is notable for both the journal and one of us

for, in the months ahead, both TCA and PMWG will

achieve their half-centuries. It is inevitable and desirable

that such occasions lead to retrospection, for it is often by

looking backwards that we can perceive most clearly the

way ahead. Thus, as we ruminate on the things that we

ought not to have done, we also dream of the things that we

ought now to do.

The final decade of the 20th century witnessed a major

revolution in quantum chemistry, as the subject progressed

from an esoteric instrument of an erudite cognoscenti to a

commonplace tool of the chemical proletariat. The fuel for

this revolution was the advent of density functional theory

(DFT) [1] models and software that were sufficiently

accurate and user-friendly to save the experimental chemist

some time. These days, DFT so dominates the popular

perception of molecular orbital calculations that many non-

specialists now regard the two as synonymous.

In principle, DFT is founded in the Hohenberg–Kohn

theorem [2] but, in practice, much of its success can be traced

to the similarity between the electron density in a molecule

and the electron density in a hypothetical substance known as

the uniform electron gas (UEG) or jellium [3–18]. The idea—

the local density approximation (LDA)—is attractively

simple: if we know the properties of jellium, we can under-

stand the electron cloud in a molecule by dividing it into tiny

chunks of density and treating each as a piece of jellium.

The good news is that the properties of jellium are known

from near-exact Quantum Monte Carlo calculations [19–29].

Such calculations are possible because jellium is character-

ized by just a single parameter q, the electron density.

The bad news is that jellium has an infinite number of

electrons in an infinite volume and this unboundedness

renders it, in some respects, a poor model for the electrons

in molecules. Indeed, the simple LDA described above

predicts bond energies that are much too large and this led

many chemists in the 1970s to dismiss DFT as a quanti-

tatively worthless theory.

Most of the progress since those dark days has resulted

from concocting ingenious corrections for jellium’s defi-

ciencies. For example, significant improvements in accu-

racy can be achieved by using both the density q(r) and its

gradient rq(r), an approach called gradient-corrected DFT
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[30]. Even better results can be achieved by including a

fraction of Hartree-Fock exchange (yielding hybrid meth-

ods [31, 32]) or higher derivatives of q(r) (leading to meta-

GGAs [33]).

However, notwithstanding the impressive progress since

the 1970s, modern DFT approximations still exhibit fun-

damental deficiencies in large systems [34], conjugated

molecules [35], charge-transfer excited states [36], dis-

persion-stabilized systems [37], systems with fractional

spin or charge [38], isodesmic reactions [39] and else-

where. Because DFT is in principle an exact theory, many

of these problems can be traced ultimately to the use of

jellium as a reference system and the ad hoc corrections

that its use subsequently necessitates. It is not a good idea

to build one’s house on sand!

In an attempt to avoid some of the weaknesses of jel-

lium-based DFT, we have invented and explored an alter-

native paradigm called intracule functional theory (IFT)

[40–42]. In this approach, the one-electron density q(r) is

abandoned in favor of two-electron variables (such as the

interelectronic distance r12) and we have discovered that

the latter offer an efficient and accurate route to the cal-

culation of molecular energies [43–48]. Nonetheless, IFT is

not perfect and has shortcomings that are complementary

to those of DFT. As a result, one should seek to combine

the best features of each, to obtain an approach superior to

both. That is the goal of the present work and we will use

atomic units throughout this article.

2 Electrons on spheres

In recent research, we were led to consider the behavior of

electrons that are confined to the surface of a ball. This

work yielded a number of unexpected discoveries [49–57]

but the one of relevance here is that such systems provide a

beautiful new family of uniform electron gases (see also

[58]).

2.1 Spherium atoms

The surface of a three-dimensional ball is called a 2-sphere

(for it is two-dimensional) and its free-particle orbitals

(Table 1) are the spherical harmonics Ylm(h, /). It is

known that

Xl

m¼�l

jYlmðh;/Þj2 ¼
2lþ 1

4p
ð1Þ

and doubly occupying all the orbitals with 0 B l B L thus

yields a uniform electron gas. We call this system

L-spherium and will compare it to two-dimensional jellium

[18].

The number of electrons (Table 2) in L-spherium is

n ¼ 2ðLþ 1Þ2 ð2Þ

the volume of a 2-sphere is V = 4pR2 and, therefore,

q ¼ ðLþ 1Þ2

2pR2
: ð3Þ

2.2 Glomium atoms

The surface of a four-dimensional ball is a 3-sphere (or

‘‘glome’’ [59]) and its free-particle orbitals (Table 3) are

the hyperspherical harmonics Ylmn(v, h, /). It is known

[60] that

Xl

m¼0

Xm

n¼�m

jYlmnðv; h;/Þj2 ¼
ðlþ 1Þ2

2p2
ð4Þ

and doubly occupying all the orbitals with 0 B l B L thus

yields a uniform electron gas. We call this system L-glomium

and will compare it to three-dimensional jellium [18].

The number of electrons (Table 2) in L-glomium is

n ¼ ðLþ 1ÞðLþ 2Þð2Lþ 3Þ=3 ð5Þ

the volume of a 3-sphere is V = 2p2 R3 and, therefore,

q ¼ ðLþ 1ÞðLþ 2Þð2Lþ 3Þ
6p2R3

: ð6Þ

2.3 Exactly solvable systems

One of the most exciting features of the two-electron atoms

0-spherium and 0-glomium is that, for certain values of the

Table 1 The lowest free-particle orbitals on a 2-sphere

Name l m
ffiffiffiffiffiffi
4p
p

Ylmðh;/Þ

s 0 0 1

p0 1 0 31=2 cos h

p?1 1 ?1 ð3=2Þ1=2
sin h expðþi/Þ

p-1 1 –1 ð3=2Þ1=2
sin h expð�i/Þ

d0 2 0 ð5=4Þ1=2ð3 cos2 h� 1Þ
d?1 2 ?1 ð15=2Þ1=2

sin h cos h expðþi/Þ
d-1 2 –1 ð15=2Þ1=2

sin h cos h expð�i/Þ
d?2 2 ?2 ð15=8Þ1=2

sin2 h expðþ2i/Þ
d-2 2 –2 ð15=8Þ1=2

sin2 h expð�2i/Þ

Table 2 Number of electrons in L-spherium and L-glomium atoms

L 0 1 2 3 4 5 6 7

L-spherium 2 8 18 32 50 72 98 128

L-glomium 2 10 28 60 110 182 280 408
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radius R, their Schrödinger equations are exactly solvable

[51]. The basic theory is as follows.

The Hamiltonian for two electrons on a sphere is

H ¼ �r
2
1

2
�r

2
2

2
þ 1

u
ð7Þ

where u is the interelectronic distance r12 : |r1 - r2|. If

we assume that the Hamiltonian possesses eigenfunctions

that depend only on u, it becomes

H ¼ u2

4R2
� 1

� �
d2

du2
þ ð2D� 1Þu

4R2
�D� 1

u

� �
d

du
þ 1

u
ð8Þ

where D is the dimensionality of the sphere. Three years

ago, we discovered that H has polynomial eigenfunctions,

but only for particular values of R. (This is analogous to the

discovery that hookium1 has closed-form wavefunctions,

but only for particular harmonic force constants [62, 63].)

We showed that there exist b(n ? 1)/2c nth-degree

polynomials of this type and that the associated energies

and radii satisfy

4R2
n;mEn;m ¼ nðnþ 2D� 2Þ ð9Þ

where the index m ¼ 1; . . .; bðnþ 1Þ=2c:
For 0-spherium (i.e. D ¼ 2), by introducing x = u/(2R)

and using Eq. (9), we obtain the Sturm-Liouville equation

d

dx

xð1� x2Þ
2

dW
dx

� �
þ nðnþ 2Þx

2
W ¼ RW ð10Þ

The eigenradii R can then be found by diagonalization in a

polynomial basis which is orthogonal on [0,1]. The shifted

Legendre polynomials are ideal for this [64].

For 0-glomium (i.e. D ¼ 3), proceeding similarly yields

d

dx

xð1� x2Þ
2

wðxÞ dW
dx

� �
þ nðnþ 4Þx

2
wðxÞW ¼ RwðxÞW

ð11Þ

where the weight function wðxÞ ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2
p

: The

eigenradii are found by diagonalization in a basis which is

orthogonal with respect to w(x) on [0,1].

An exact energy can be partitioned into its kinetic part

ET ¼ ð�1=4ÞhWjr2
1 þr2

2jWi ð12Þ

and its two-electron part

Eee ¼ ð1=2ÞhWju�1jWi ð13Þ

and the resulting reduced energies (i.e. the energy per

electron) of the ground states of 0-spherium and 0-glomi-

um, for the first two eigenradii, are shown in the left half of

Table 4.

3 Single-determinant methods

3.1 Hartree–Fock theory [65, 66]

In the Hartree-Fock (HF) partition, the reduced energy2 of

an n-electron system is

E ¼ TS þ EV þ EJ þ EK þ EC ð14Þ

where the five contributions are the non-interacting-kinetic,

external, Hartree, exchange and correlation energies,

respectively. The first four of these are defined by

TS ¼ �
1

2n

Xn

i

Z
w�i ðrÞr2wiðrÞdr ð15Þ

EV ¼ þ
1

n

Z
qðrÞvðrÞdr ð16Þ

EJ ¼ þ
1

2n

ZZ
qðr1Þr�1

12 qðr2Þdr1dr2 ð17Þ

EK ¼ �
1

2n

Xn

i;j

ZZ
w�i ðr1Þwjðr1Þr�1

12 w�j ðr2Þwiðr2Þdr1dr2

ð18Þ

where wi(r) is an occupied orbital, q(r) is the electron

density, and v(r) is the external potential. The correlation

energy EC is defined so that Eq. (14) is exact.

Table 3 The lowest free-particle orbitals on a glome (i.e. a 3-sphere)

Name l m n p Ylmn(v, h, /)

1s 0 0 0 2-1/2

2s 1 0 0 21=2 cos v

2p0 1 1 0 21=2 sin v cos h

2p?1 1 1 ?1 sin v sin h expðþi/Þ
2p-1 1 1 –1 sin v sin h expð�i/Þ
3s 2 0 0 2�1=2ð4 cos2 v� 1Þ
3p0 2 1 0 121=2 sin v cos v cos h

3p?1 2 1 ?1 61=2 sin v cos v sin h expðþi/Þ
3p-1 2 1 –1 61=2 sin v cos v sin h expð�i/Þ
3d0 2 2 0 sin2 vð3 cos2 h� 1Þ
3d?1 2 2 ?1 61=2 sin2 v sin h cos h expðþi/Þ
3d-1 2 2 –1 61=2 sin2 v sin h cos h expð�i/Þ
3d?2 2 2 ?2 ð3=2Þ1=2

sin2 v sin2 h expðþ2i/Þ
3d-2 2 2 –2 ð3=2Þ1=2

sin2 v sin2 h expð�2i/Þ

1 The hookium atom consists of two electrons that repel Coulom-

bically but are bound to the origin by a harmonic potential [61]. 2 Henceforth, all energies will be reduced energies.
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3.2 Kohn–Sham density functional theory [67]

In the Kohn–Sham (KS) partition, the energy is

EKS ¼ TS þ EV þ EJ þ EX þ EKS
C ð19Þ

where the last two terms, which are sometimes combined,

are the KS exchange and correlation energies. The corre-

lation energy EC
KS is defined so that Eq. (19) is exact.

Many formulae have been proposed for EX and EC
KS, but

the most famous are those explicitly designed to be exact

for D-jellium. In the case of exchange, one finds

EX ¼ XD

Z
q1=Ddr ð20Þ

where Dirac [5] determined the coefficient X3 in 1930 and

Glasser [68] found the general formula for XD in 1983. The

correlation functional is not known exactly, but accurate

Quantum Monte Carlo calculations on jellium in 2D

[20–23, 25, 26, 28, 29] and 3D [19, 24, 27] have been fitted

[26, 69] to functions of the form

Ejell
C ¼

Z
CDðqÞdr ð21Þ

By construction, Eq. (21) yields the correct energy when

applied to the uniform electron gas in jellium. But what

happens when we apply it to a uniform electron gas on a

sphere?

4 The non-uniqueness problem

The deeply disturbing aspect of jellium-based DFT mod-

els—and the launching-pad for the remainder of this

paper—is the countercultural claim, that

The uniform electron gas with density q is not unique.

Though it may seem heretical to someone who has

worked with jellium for many years, or to someone who

suspects that the claim violates the Hohenberg–Kohn the-

orem, we claim that two D-dimensional uniform electron

gases with the same density parameter q may have dif-

ferent energies. To illustrate this, we now show that density

functionals [5, 26, 69] which are exact for jellium are

wrong for 0-spherium and 0-glomium.

4.1 Illustrations from exactly solvable systems

The energy contributions for 0-spherium and 0-glomium

are easy to find. There is no external potential, so EV = 0.

The density q(r) is constant, so the Kohn–Sham orbital

wðrÞ ¼
ffiffiffiffiffiffiffiffiffi
qðrÞ

p
is constant, and TS = 0. The Hartree energy

is the self-repulsion of a uniform spherical shell of charge

of radius R and one finds [50]

EJ ¼
CðD� 1Þ

CðD� 1=2Þ
CðD=2þ 1=2Þ

CðD=2Þ
1

R
ð22Þ

The exchange energy is predicted [57] by Eq. (20) to be

EX ¼ �
2D

ðD2 � 1ÞpR

D!

2

� �1=D

ð23Þ

and the correlation energy predicted by Eq. (21) is simply

Ejell
C ¼ CDð2=VÞ ð24Þ

Applying these formulae to the exactly solvable states of

0-spherium and 0-glomium considered in Sect. 2.3 yields the

results in the right half of Table 4. In all cases, the KS-DFT

energies are too high by 10 – 20%, indicating that the

correlation functional that is exact for the uniform elec-

tron gas in jellium grossly underestimates the correlation

energy of the uniform electron gases in 0-spherium and

0-glomium.

4.2 Limitations of the one-electron density parameter q

The results in Table 4 demonstrate conclusively that not all

uniform electron gases with the density q are equivalent.

The simplest example of this is the ground state of two

electrons on a 2-sphere with R ¼
ffiffiffi
3
p

=2: The exact wave-

function, reduced energy and density of this system are

W ¼ 1þ u ð25Þ
E ¼ 1=2 ð26Þ
qðrÞ ¼ 2=ð3pÞ ð27Þ

but, when fed this uniform density, the exchange-correla-

tion functional that is exact for two-dimensional jellium

grossly overestimates the energy, yielding EKS = 0.562.

Table 4 Exact and Kohn–

Sham reduced energies of the

ground states of 0-spherium and

0-glomium for various

eigenradii R

2R Exact Jellium-based Kohn–Sham DFT Error

ET Eee E TS EV EJ -EX -EC
jell EKS EKS - E

0-spherium
ffiffiffi
3
p

0.051982 0.448018 1/2 0 0 1.154701 0.490070 0.1028 0.562 0.062
ffiffiffiffiffi
28
p

0.018594 0.124263 1/7 0 0 0.377964 0.160413 0.0593 0.158 0.015

0-glomium
ffiffiffiffiffi
10
p

0.014213 0.235787 1/4 0 0 0.536845 0.217762 0.0437 0.275 0.025
ffiffiffiffiffi
66
p

0.007772 0.083137 1/11 0 0 0.208967 0.084764 0.0270 0.097 0.006
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This discovery has worrying chemical implications.

Contrary to the widespread belief that the LDA (e.g. the

S-VWN functional) is accurate when applied to regions of

a molecule where q(r) is almost uniform (such as near

bond midpoints), our results reveal that it actually performs

rather poorly.

The discovery also has counterintuitive implications at

a theoretical level. It implies that the years of effort that

have been expended in calculating the properties of jel-

lium do not provide us with a complete picture of

homogeneous electron gases. On the contrary, although

they inform us in detail about the infinite uniform electron

gas, they tell us very little about the properties of finite

electron gases.

In a nutshell, the results in Table 4 reveal that a UEG is

not completely characterized by its one-electron density

parameter q. Evidently, something else is required.

4.3 Virtues of two-electron density parameters

We know that it is possible for two uniform electron gases

to have the same density q but different reduced energies

E. But how can this be, given that the probability of finding

an electron in a given volume is identical in the two sys-

tems? The key insight is that the probability of finding two

electrons in that volume is different.

This is illustrated in Figs. 1 and 2, which compare the

probability distributions of the interelectronic distance

[52, 70, 71] in various two-dimensional uniform electron

gases. These reveal that, although similar for u & 0

(because of the Kato cusp condition [72]), the specific

Coulomb holes (i.e. the holes per unit volume [40]) in two

gases with the same one-electron density q can be strik-

ingly different. In each case, the jellium hole is both

deeper and wider than the corresponding spherium hole,

indicating that the jellium electrons exclude one another

more strongly, and one is much less likely to find two

electrons in a given small volume of jellium than in the

same volume of spherium.

We conclude from these comparisons that (at least) two

parameters are required to characterize a uniform electron

gas. Although the parameter choice is not unique, we

believe that the first should be a one-electron quantity, such

as the density q (or, equivalently, the Seitz radius rs) and

the second should be a two-electron quantity such as

g = h(r, r), where h is the pair correlation function defined

by

q2ðr1; r2Þ ¼
1

2
qðr1Þqðr2Þ 1þ hðr1; r2Þ½ � ð28Þ

and q2 is the diagonal part of the second-order spinless

density matrix [1].

5 Lessons from spherium and glomium

5.1 A modest proposal

The discovery that uniform electron gases are characterized

by two parameters (q and g) has many ramifications but

one of the most obvious is that the foundations of the

venerable Local Density Approximation need to be rebuilt.

The traditional LDA writes the correlation energy of a

molecular system as

EKS
C �

Z
CðqÞdr ð29Þ

thereby assuming that the contribution from each point r

depends only on the one-electron density q(r) at that point.

However, now that we know that the energy of a uniform

electron gas depends on q and g, it is natural to replace Eq.

(29) by the generalized expression

EKS
C �

Z
Cðq; gÞdr ð30Þ

In a sense, this two-parameter LDA represents a conver-

gence in the evolution of Density functional theory (which

Fig. 1 Specific Coulomb holes for 0-spherium (dashed) with R ¼ffiffiffi
3
p

=2 and 2D jellium (solid). Both are uniform gases with q = 2/(3p)

Fig. 2 Specific Coulomb holes for 0-spherium (dashed) with R ¼
ffiffiffi
7
p

and 2D jellium (solid). Both are uniform gases with q = 1/(14p)
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stresses the one-electron density) and intracule functional

theory (which focuses on the two-electron density).

How can we find the new density functional C(q, g)?

One could take an empirical approach but that is an

overused option within the DFT community [73] and we

feel that it is more satisfactory to derive it from the

uniform electron gas. As we show in Sect. 5.3, it turns

out that it is easy to compute the exact values of

TS, EV, EJ and EX for any L-spherium or L-glomium

atom and, therefore, if one knew the exact wavefunctions

and energies of L-spherium and L-glomium for a wide

range of L and R, one could extract the exact Kohn–

Sham correlation energies

EKS
C ¼ E � TS � EV � EJ � EX ð31Þ

and determine the exact dependence of these on q and g.

Accordingly, we propose to embark on a compre-

hensive study of L-spherium and L-glomium atoms, in

order eventually to liberate the LDA from jellium’s yoke

through a process of radical generalization. The results

of these spherium and glomium calculations will gener-

alize the known properties of jellium, because we have

shown that the energies of L-spherium and L-glomium

approach those of 2D jellium and 3D jellium, as L

becomes large.

In the remaining sections, we will confine our attention

to the (two-dimensional) L-spherium atoms. However,

exactly the same approach can and will be used to address

the (three-dimensional) L-glomium atoms in the future.

5.2 Basis sets and integrals

The Hamiltonian for L-spherium is

H ¼ � 1

2

Xn

i¼1

r2
i þ

Xn

i\j

1

rij
ð32Þ

and the natural basis functions for HF and correlated

calculations on this are the spherical harmonics Ylm(h, /)

introduced in Sect. 2. These functions are orthonormal [64]
�
Ylm

��Yl0m0
	
¼ dl;l0 dm;m0 ð33Þ

and are eigenfunctions of the Laplacian, so that
�
Ylm

��r2
��Yl0m0

	
¼ �lðlþ 1Þdl;l0 dm;m0 ð34Þ

The required two-electron repulsion integrals can be found

using the standard methods of two-electron integral theory

[74]. For example, the spherical harmonic resolution of the

Coulomb operator [75–79]

r�1
12 ¼ R�1

X

lm

4p
2lþ 1

Y�lmðr1ÞYlmðr2Þ ð35Þ

yields the general formula

�
Yl1m1

Ya1b1

�� r�1
12

�� Yl2m2
Ya2b2

	

¼ R�1
X

lm

4p
2lþ 1

�
Yl1m1

Yl2m2
Ylm

	�
Ya1b1

Ya2b2
Ylm

	
ð36Þ

where the one-electron integrals over three spherical har-

monics involve Wigner 3j symbols [64] and the sum over

l and m is limited by the Clebsch–Gordan selection rules.

5.3 Hartree–Fock calculations

Unlike our calculations for electrons in a cube [80], the HF

calculations for our present systems are trivial. Because the

shells in L-spherium are filled, the restricted3 HF and KS

orbitals are identical and are simply the spherical har-

monics. These orbitals yield the reduced energy

contributions

TS ¼ þ
LðLþ 2Þ

4R2
ð37Þ

EV ¼ þ0 ð38Þ

EJ ¼ þ
ðLþ 1Þ2

R
ð39Þ

EK ¼ �
Lþ 1

2R
4F3

�L; �1=2; 1=2; Lþ 2

�L� 1=2; 2; Lþ 3=2
; 1

� �

ð40Þ

EX ¼ �
4ðLþ 1Þ

3pR
ð41Þ

where 4F3 is a balanced hypergeometric function [64] of

unit argument.4 It is encouraging to discover that Eq. (40)

approaches Eq. (41) in the large-L limit [57].

We have used Eqs. (37)–(40) to compute the exact HF

energies of L-spherium for a number of the eigenradii

discussed in Sect. 2.3. These, together with the TS, EJ and

EX values, and q values from Eq. (3), are shown in Table 5.

5.4 Orbital-based correlation methods

Although it is easy to find the HF energy of L-spherium, the

calculation of its exact energy is not a trivial matter. How

can this best be achieved? The fact that the occupied and

virtual orbitals are simple functions (spherical harmonics),

so the AO ? MO integral transformation is unnecessary,

suggests that orbital-based correlation methods may be

particularly effective. We now consider some of these.

3 We note that, in low-density cases, the RHF solutions are unstable

with respect to lower-energy, symmetry-broken UHF wavefunctions

[49]. However, we will not consider the latter in the present study.
4 This hypergeometric may be related to a Wigner 6j symbol [64].
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5.4.1 Configuration interaction [81]

This was the original scheme for proceeding beyond the

HF approximation. It has fallen out of favor with many

quantum chemists, because its size-inconsistency and size-

inextensivity seriously hamper its efficacy for computing

the energetics of chemical reactions. Nevertheless, for

calculations of the energy of L-spherium, its variational

character, systematic improvability and lack of conver-

gence issues make it an attractive option.

5.4.2 Møller-Plesset perturbation theory [82]

In an earlier paper [49], we showed that the MP2, MP3,

MP4 and MP5 energies of 0-spherium can be found in

closed form, for any value of R. However, although we

observed that the MP series seems to converge rapidly for

small R, its convergence was much less satisfactory

for R J 1; where q. 0:15. Unfortunately, this is useless

for our present purposes, because many of the L-spherium

systems in Table 5 have much larger radii and lower

densities than these values.

5.4.3 Coupled-cluster theory [83]

The coupled-cluster hierarchy (viz. CCSD, CCSDT,

CCSDTQ, . . .) probably converges much better than the

MPn series, and this should certainly be explored in the

future, but we suspect that it will nonetheless perform

poorly in the large-R, small-q systems where static corre-

lation dominates dynamic correlation [49, 84, 85] and the

single-configuration HF wavefunction is an inadequate

starting point.

5.4.4 Explicitly correlated methods [86]

The CI, MP and CC approaches expand the exact wave-

function as a linear combination of determinants and it has

been known since the early days of quantum mechanics

that this ansatz struggles to describe the interelectronic

cusps [72]. The R12 methods overcome this deficiency by

explicitly including terms that are linear in rij in the

wavefunction and converge much more rapidly as the basis

set is enlarged but, unfortunately, they also require a

number of non-standard integrals. If these integrals are not

computed exactly, they are approximated by resolutions in

an auxiliary basis set. In either case, the computer imple-

mentation is complicated.

5.5 Other correlation methods

It is possible that the unusually high symmetry of L-

spherium makes it well suited to correlation methods that

are not based on the HF orbitals. We now consider two of

these.

Table 5 Reduced energies, densities and g values of L-spherium with the four smallest eigenradii R

L R Wavefunction-based energies Kohn–Sham energies Ingredients of the new model

EHF -EC E TS EJ -EX -EC
KS q g

0 R1 0.577350 0.077350 0.500000 0.000000 1.154701 0.490070 0.164630 0.212207 -0.896037

R2 0.188982 0.046125 0.142857 0.000000 0.377964 0.160413 0.074694 0.022736 -0.991159

R3 0.092061 0.028497 0.063564 0.000000 0.184122 0.078144 0.042414 0.005396 -0.999496

R4 0.054224 0.018941 0.035282 0.000000 0.108447 0.046026 0.027138 0.001872 -0.999976

1 R1 4.579572 1.000000 4.618802 0.980140 0.848826

R2 1.278833 0.107143 1.511858 0.320826 0.090946

R3 0.596204 0.025426 0.736488 0.156288 0.021582

R4 0.345007 0.008821 0.433789 0.092053 0.007487

2 R1 11.543198 2.666667 10.392305 1.470210 1.909859

R2 3.191241 0.285714 3.401680 0.481239 0.204628

R3 1.483203 0.067802 1.657098 0.234431 0.048560

R4 0.857188 0.023522 0.976025 0.138079 0.016846

3 R1 21.477457 5.000000 18.475209 1.960281 3.395305

R2 5.929228 0.535714 6.047432 0.641652 0.363783

R3 2.754531 0.127128 2.945952 0.312575 0.086328

R4 1.591634 0.044103 1.735156 0.184106 0.029949

R1 ¼ 1
2

ffiffiffi
3
p

; R2 ¼ 1
2

ffiffiffiffiffi
28
p

; R3 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
63þ 12

ffiffiffiffiffi
21
pp

; R4 ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
198þ 6

ffiffiffiffiffiffiffiffi
561
pp
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5.5.1 Iterative Complement Interaction (ICI) method [87,

88]

In this approach, the Schrödinger equation itself is used to

generate a large set of n-electron functions that are then lin-

early combined to approximate the true wavefunction. It has

been spectacularly successful in systems with a small number

of electrons but has not yet been applied to systems as large as

2- or 3-spherium (with 18 and 32 electrons, respectively).

5.5.2 Quantum Monte Carlo methods [89, 90]

Of the various methods in this family, Diffusion Monte

Carlo (DMC) usually yields the greatest accuracy. In this

approach, the Schrödinger equation is transformed into a

diffusion equation in imaginary time s and, in the limit as

s!1; the ground-state energy is approached. Unfortu-

nately, to be practically feasible, the method normally

requires that the wavefunction’s nodes be known and,

despite some recent progress [91], the node problem

remains unsolved. The quality of the trial wavefunction and

finite-size errors are other potential restrictions [92, 93].

5.6 Results and holes

The discovery [51] that the Schrödinger equation for

0-spherium (and 0-glomium) is exactly solvable for each of

its eigenradii is extremely helpful, for it allows us to

generate the exact energies E and resulting Kohn–Sham

correlation energies EC
KS for the first four atoms in Table 5,

without needing to perform any of the correlated calcula-

tions described above. However, these are the easiest cases,

the ‘‘low-hanging fruit’’ so to speak, and there remain large

gaps in the Table. We could have filled these gaps with

rough estimates of the exact energies but we prefer to leave

them empty, to emphasize that there is much to do in this

field and to challenge the correlation experts in the wave-

function and density functional communities to address

these beautifully simple systems.

Once this is done, the data in the final three columns of

Table 5 will provide the ingredients for the construction of

a new correlation density functional EC
KS(q, g) that will be

exact for all L-spherium atoms and for 2D jellium.

Finally, of course, an analogous strategy will yield a new

functional that is exact for all L-glomium atoms and for 3D

jellium. We will recommend that these functionals replace

the LDA correlation functionals that are now being used.

6 Concluding remark

All uniform electron gases are equal, but some are more

equal than others.
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