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We prove that, in the large-dimension limit, the high-density correlation energy Ec of two opposite-spin

electrons confined in a D-dimensional space and interacting via a Coulomb potential is given by

Ec !"1=ð8D2Þ for any radial confining potential VðrÞ. This result explains the observed similarity of

Ec in a variety of two-electron systems in three-dimensional space.
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Understanding and calculating the electronic correlation
energy is one of the most important and difficult problems
in molecular physics. In this pursuit, the study of high-
density correlation energy using perturbation theory has
been particularly profitable, shedding light on the physi-
cally relevant density regime and providing exact results
for key systems, such as the uniform electron gas [1] and
two-electron systems [2]. The former is the cornerstone of
the most popular density functional paradigm (the local
density approximation) in solid-state physics [3]; the latter
provide important test cases in the development of new
explicitly correlated methods [4,5] for electronic structure
calculations [6]. Atomic units are used throughout.

The high-density correlation energy of the heliumlike
ions is obtained by expanding both the exact [7] and
Hartree-Fock (HF) [8] energies as a series in 1=Z, yielding

EðZ;D; VÞ ¼ Eð0ÞðD;VÞZ2 þ Eð1ÞðD;VÞZþ Eð2ÞðD;VÞ

þ Eð3ÞðD;VÞ
Z

þ . . . ; (1)

EHFðZ;D; VÞ ¼ Eð0ÞðD;VÞZ2 þ Eð1ÞðD;VÞZþ Eð2Þ
HFðD;VÞ

þ Eð3Þ
HFðD;VÞ

Z
þ . . . ; (2)

where Z is the nuclear charge, D is the dimension of the
space, and V is the external Coulomb potential. Equations
(1) and (2) share the same zeroth- and first-order energies
because the exact and the HF treatment have the same
zeroth-order Hamiltonian. Thus, in the high-density
(large-Z) limit, the correlation energy is

Eð2Þ
c ðD;VÞ ¼ lim

Z!1
EcðZ;D; VÞ

¼ lim
Z!1

½EðZ;D; VÞ " EHFðZ;D; VÞ(

¼ Eð2ÞðD;VÞ " Eð2Þ
HFðD;VÞ: (3)

Despite intensive study [9,10], the coefficient Eð2ÞðD;VÞ
has not yet been reported in closed form. However, the
accurate numerical estimate

Eð2Þ ¼ "0:157 666 429 469 14 (4)

has been determined for the important D ¼ 3 case [10].
Combining (4) with the exact result [8]

Eð2Þ
HF ¼

9

32
ln
3

4
" 13

432
(5)

yields a value of

Eð2Þ
c ¼ "0:046 663 253 999 48 (6)

for the heliumlike ions in three-dimensional space.
In the large-D limit, the quantum world reduces to a

simpler semiclassical one [11] and problems that defy
solution in D ¼ 3 sometimes become exactly solvable. In
favorable cases, such solutions provide useful insight into
the D ¼ 3 case and this strategy has been successfully
applied in many fields of physics [12,13]. Indeed, just as
one learns something about interacting systems by study-
ing noninteracting ones and introducing the interaction
perturbatively, one learns something about D ¼ 3 by
studying the large-D case and introducing dimension
reduction perturbatively.
Singularity analysis [14] reveals that the energies of

two-electron atoms possess first- and second-order poles
at D ¼ 1, and that the Kato cusp [15,16] is directly re-
sponsible for the second-order pole. In our previous work
[17,18], we have expanded the correlation energy as a
series in 1=ðD" 1Þ but, although this is formally correct
if summed to infinite order, such expansions falsely imply
higher-order poles at D ¼ 1. For this reason, we now
follow Herschbach and Goodson [19,20], and expand
both the exact and HF energies as a series in 1=D.
Although various possibilities exist for this dimensional
expansion [14,21–23], it is convenient to write

Eð2ÞðD;VÞ ¼ Eð2;0ÞðVÞ
D2 þ Eð2;1ÞðVÞ

D3 þ . . . ; (7)

Eð2Þ
HFðD;VÞ ¼ Eð2;0Þ

HF ðVÞ
D2 þ Eð2;1Þ

HF ðVÞ
D3 þ . . . ; (8)

Eð2Þ
c ðD;VÞ ¼ Eð2;0Þ

c ðVÞ
D2 þ Eð2;1Þ

c ðVÞ
D3 þ . . . ; (9)
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where

Eð2;0Þ
c ðVÞ ¼ Eð2;0ÞðVÞ " Eð2;0Þ

HF ðVÞ; (10)

Eð2;1Þ
c ðVÞ ¼ Eð2;1ÞðVÞ " Eð2;1Þ

HF ðVÞ: (11)

Such double expansions of the correlation energy were
originally introduced for the heliumlike ions, and have lead
to accurate estimations of correlation [24,25] and atomic
energies [26,27] via interpolation and renormalization
techniques. Equations (7)–(9) apply equally to the 1S
ground state of any two-electron system confined by a
spherical potential VðrÞ.

For the heliumlike ions, it is known [19,20,28] that

Eð2;0Þ
c ðVÞ ¼ " 1

8
; Eð2;1Þ

c ðVÞ ¼ " 163

384
; (12)

and we have recently found [17] that Eð2;0Þ
c ðVÞ takes the

same value in hookium (two electrons in a parabolic well
[29–32]), spherium (two electrons on a sphere [33–36]),
and ballium (two electrons in a ball [18,37,38]). In con-

trast, we found that Eð2;1Þ
c ðVÞ is V dependent. The fact that

the term Eð2;0Þ
c is invariant, while Eð2;1Þ

c varies with the
confinement potential allowed us to explain why the
high-density correlation energy of the previous two-
electron systems are similar, but not identical, for D ¼ 3
[17,18]. On this basis, we conjectured [17] that

Eð2Þ
c ðD;VÞ ! " 1

8D2 "
CðVÞ
D3 (13)

holds for any spherical confining potential, where the
coefficient CðVÞ varies slowly with VðrÞ.

In this Letter, we prove that Eð2;0Þ
c is indeed universal,

and that, in the large-D limit, the high-density correlation
energy of the 1S ground state of two electrons is given by
(13) for any confining potential of the form

VðrÞ ¼ sgnðmÞrmvðrÞ; (14)

where vðrÞ possesses a Maclaurin series expansion

vðrÞ ¼ v0 þ v1rþ v2r
2 þ . . . : (15)

In order to prove the conjecture (13), we start with the
conventional Schrödinger equation

Ĥ!D ¼ ED!D; (16)

and the general Hamiltonian

Ĥ ¼ " 1

2
ðr2

1 þr2
2Þ þ Zmþ2½Vðr1Þ þ Vðr2Þ( þ

1

r12
;

(17)

where Z is the confinement strength and r12 ¼ jr1 " r2j is
the interelectronic distance. After the Jacobian-weighted
transformation

"D ¼ J 1=2!D; (18)

J ¼ rD"1
1 rD"1

2 sinD"2!; (19)

where ! is the interelectronic angle, the Schrödinger equa-
tion (16) becomes

ðT̂ þ#Ûþ Zmþ2V̂ þ Ŵ Þ"D ¼ ED"D; (20)

in which, for states with zero total angular momentum, the
kinetic, centrifugal, external, and Coulomb operators are,
respectively

" 2T̂ ¼
!
@2

@r21
þ @2

@r22

"
þ

!
1

r21
þ 1

r21

"!
@2

@!2
þ 1

4

"
; (21)

Û ¼ 1

2sin2!

!
1

r21
þ 1

r21

"
; (22)

V̂ ¼ Vðr1Þ þ Vðr2Þ; (23)

Ŵ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22 " 2r1r2 cos!

q ; (24)

and

# ¼ ðD" 2ÞðD" 4Þ
4

: (25)

We now need to recast the Schrödinger equation so that
perturbation theory can be applied. To achieve this, we
successively introduce the scaled quantities

r ! #

"Z
r; Z ! Z

"
; (26)

where " ¼ #mþ1=mþ2, and introduce the scaled energy

E D ¼ "2Z2

#
ED: (27)

The Schrödinger equation then takes the simple form
!
1

#
T̂ þ Ûþ V̂ þ 1

Z
Ŵ

"
"D ¼ ED"D; (28)

and it is clear that perturbation theory can now be used to
expand the energy both in terms of Z and #.
In the D ¼ 1 limit, the kinetic term vanishes and clas-

sical electrostatics cause the electrons to settle into a fixed
(‘‘Lewis’’) structure [19] that minimizes the effective po-
tential

X̂ ¼ Ûþ V̂ þ 1

Z
Ŵ : (29)

The minimization conditions are

@X̂ðr1; r2; !Þ
@r1

¼ @X̂ðr1; r2; !Þ
@r2

¼ 0; (30)

@X̂ðr1; r2; !Þ
@!

¼ 0; (31)

and the stability condition impliesm>"2. Assuming that
the two electrons are equivalent [39], the resulting exact
density and energy are
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j"1j2 ¼ #ðr1 " r1Þ#ðr2 " r1Þ#ð!" !1Þ; (32)

E 1 ¼ X̂ðr1; r1; !1Þ; (33)

where # is the Dirac delta function. Substituting Taylor
expansions of r1 and !1 into (30) and (31) yields

r1 ¼ $þ $2

mþ 2

!
1

2
ffiffiffi
2

p "#
mþ 1

m

v1

v0

"
1

Z
þ . . . ; (34)

cos!1 ¼ " $

4
ffiffiffi
2

p 1

Z
þ . . . ; (35)

where $"ðmþ2Þ ¼ sgnðmÞmv0. The m ¼ 0 case requires
special attention, and is found by taking the m ! 0 limit.

For the HF energy, things are simpler. The HF wave
function is independent of !, so the only angular depen-
dence comes from the Jacobian (19). Moreover, because

lim
D!1

sinD"2!R
%
0 sinD"2!d!

¼ #
!
!" %

2

"
; (36)

it follows [20] that !HF1 ¼ %=2. Solving (30), one finds that
rHF1 and r1 are equal to second order in 1=Z. Thus, in the
large-D limit, the HF density and energy are

j"HF
1 j2 ¼ #ðr1 " rHF1 Þ#ðr2 " rHF1 Þ#

!
!" %

2

"
; (37)

E HF
1 ¼ X̂

!
rHF1 ; rHF1 ;

%

2

"
; (38)

and correlation effects originate entirely from the fact that
!1 is slightly greater than %=2 for finite Z.

Expanding (33) and (38) in terms of Z and D yields

Eð2;0ÞðVÞ ¼ " 1

8
" 1

2ðmþ 2Þ ; (39)

Eð2;0Þ
HF ðVÞ ¼ " 1

2ðmþ 2Þ ; (40)

thus showing that both Eð2;0Þ and Eð2;0Þ
HF depend on the

leading power m of the external potential but not on vðrÞ.
Subtracting these energies yields

Eð2;0Þ
c ðVÞ ¼ " 1

8
; (41)

and completes the proof that, in the high-density limit, the

leading coefficient Eð2;0Þ
c of the large-D expansion of the

correlation energy is universal; i.e., it does not depend on
the external potential VðrÞ.

What is the origin of the constant in Eq. (41)? It comes
directly from the leading coefficient (1=4

ffiffiffi
2

p
) in the 1=Z

expansion of !1 [Eq. (35)] and, because that is determined
via Eq. (31), it is independent of the external potential
VðrÞ. This reveals that Eq. (41) applies to a pair of electrons
in any radial external potential, but not to anisotropic
external potentials.

Detailed analysis of Eð2;0Þ
c shows that it results from

contributions of þ1=8 and "1=4 from the centrifugal

potential Û and the Coulomb operator Ŵ , respectively.

The external potential V̂ , which contributes identically in
the exact and HF treatments, does not contribute to the
correlation energy. Kato has made a similar argument [15]
to explain the behavior of the wave function as r12 ! 0. In
a D-dimensional space, the Kato cusp condition is [16]

@!D

@r12

$$$$$$$$r12¼0
¼ 1

D" 1
!Dðr12 ¼ 0Þ; (42)

and arises from the cancellation of the singularities in the
Coulomb operator and theD-dependent angular part of the
kinetic operator [6]. These observations suggest a connec-
tion between the result (41) and the Kato cusp (42). For
large but finite D, the discovery that the Kato cusp plays a
key role in the large-Z limit would not be surprising for, in
this limit, the only relevant information is the behavior (42)
of the wave function near r12 ¼ 0.

The Eð2;1Þ and Eð2;1Þ
HF coefficients can be found by con-

sidering the Langmuir vibrations of the electrons around
their equilibrium positions [19,20]. The general expres-
sions depend on v0 and v1, but are not reported here.
However, for vðrÞ ¼ 1, which includes many of the most
common external potentials, we find

Eð2;1Þ
c ðVÞ ¼ " 85

128
" 9=32

ðmþ 2Þ3=2
þ 1=2

ðmþ 2Þ1=2

þ 1=16

ðmþ 2Þ1=2 þ 2
; (43)

showing that Eð2;1Þ
c , unlike Eð2;0Þ

c , is potential dependent. It
is singular at m ¼ "2, tends to "85=128 as m ! 1, and
reaches a maximum of "0:388 482 at m ) "0:344 223.
The latter value of m corresponds to the minimum of the
correlation energy in the large-D limit. Numerical values

of Eð2;1Þ
c are reported in Table I for various systems, and the

TABLE I. Eð2;0Þ, Eð2;0Þ
HF , Eð2;0Þ

c and Eð2;1Þ
c coefficients for various systems and vðrÞ ¼ 1.

System m "Eð2;0Þ "Eð2;0Þ
HF "Eð2;0Þ

c "Eð2;1Þ
c

Helium "1 5=8 1=2 1=8 0.424 479
Airium 1 7=24 1=6 1=8 0.412 767
Hookium 2 1=4 1=8 1=8 0.433 594
Quartium 4 5=24 1=12 1=8 0.465 028
Sextium 6 3=16 1=16 1=8 0.486 771
Ballium 1 1=8 0 1=8 0.664 063
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components of the correlation energy are shown graphi-
cally in Fig. 1.

In conclusion, we have proved that the leading term
Ec !"1=ð8D2Þ in the large-D expansion of the high-
density correlation energy of an electron pair is invariant
to the nature of the radial confining potential. Although
formally divergent [40], truncated 1=D expansions have
been found to be a powerful tool for the exploration of
correlation effects and, in the present study, they help to
explain the observation that, in finite-dimensional spaces
such asD ¼ 3, the correlation energy depends only weakly
on the confining potential.
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[23] D. Z. Goodson and M. López-Cabrera, Low-D Regime:
The One-Dimensional Limit, Dimensional Scaling in
Chemical Physics (Kluwer Academic Publishers,
Dordrecht, 1993), p. 115.

[24] J. G. Loeser and D. R. Herschbach, J. Chem. Phys. 86,
2114 (1987).

[25] J. G. Loeser and D. R. Herschbach, J. Chem. Phys. 86,
3512 (1987).

[26] J. G. Loeser, J. Chem. Phys. 86, 5635 (1987).
[27] S. Kais, S.M. Sung, and D. R. Herschbach, J. Chem. Phys.

99, 5184 (1993).
[28] L. D. Mlodinow and N. Papanicolaou, Ann. Phys. (N.Y.)

131, 1 (1981).
[29] N. R. Kestner and O. Sinanoglu, Phys. Rev. 128, 2687

(1962).
[30] R. J. White and W. Byers Brown, J. Chem. Phys. 53, 3869

(1970).
[31] S. Kais, D. R. Herschbach, and R.D. Levine, J. Chem.

Phys. 91, 7791 (1989).
[32] M. Taut, Phys. Rev. A 48, 3561 (1993).
[33] G. S. Ezra and R. S. Berry, Phys. Rev. A 25, 1513

(1982).
[34] M. Seidl, Phys. Rev. A 75, 062506 (2007).
[35] P.-F. Loos and P.M.W. Gill, Phys. Rev. A 79, 062517

(2009).
[36] P.-F. Loos and P.M.W. Gill, Phys. Rev. Lett. 103, 123008

(2009).
[37] D. C. Thompson and A. Alavi, Phys. Rev. B 66, 235118

(2002).
[38] D. C. Thompson and A. Alavi, J. Chem. Phys. 122,

124107 (2005).
[39] In the helium atom, for Z < Zcrit (Zcrit ) 1:228 and ZHF

crit )
0:8839), the configuration r1 ¼ r2 becomes a saddle point
between two minima corresponding to nonsymmetric con-
figurations [19,20]. This is irrelevant, however, in the
high-density regime.

[40] M.O. Elout, D. Z. Goodson, C. D. Elliston, S.-W. Huang,
A. V. Sergeev, and D.K. Watson, J. Math. Phys. (N.Y.) 39,
5112 (1998).

Ec
(2,0)

Ec
(2,1)

E(2,1)

E(2,0)

EHF
(2,0)EHF

(2,1)

−1 0 1 2 3 4 5 6
−1.0

−0.8

−0.6

−0.4

−0.2

0.0

m

C
oe

ff
ic

ie
nt

s

FIG. 1 (color online). Coefficients of the exact (dashed), HF
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