
 
 

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713395160
http://dx.doi.org/10.1080/00268976.2010.508472
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Molecular Physics
Vol. 108, Nos. 19–20, 10–20 October 2010, 2527–2532

INVITED ARTICLE

Excited states of spherium

Pierre-François Loos and Peter M.W. Gill*

Research School of Chemistry, Australian National University, Australian Capital Territory 0200, Canberra, Australia

(Received 21 April 2010; final version received 8 July 2010)

We report analytic solutions of a recently discovered quasi-exactly solvable model consisting of two electrons,
interacting via a Coulomb potential, but restricted to remain on the surface of a D-dimensional sphere.
Polynomial solutions are found for the ground state, and for some higher (L! 3) states. Kato cusp conditions
and interdimensional degeneracies are discussed.
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1. Introduction

A quasi-exactly solvable model is one for which
it is possible to solve the Schrödinger equation exactly
for a finite portion of the energy spectrum [1]. In
quantum chemistry, a famous example of this is the
Hooke’s law atom [2–5], which consists of a pair of
electrons, repelling Coulombically but trapped in a
harmonic external potential. This model and others
[6–12] have been used extensively to test various
approximations [13–20] within density functional
theory (DFT) [21–23] and explicitly correlated meth-
ods [24–28].

We have recently discovered [29] that a pair
electrons, repelling Coulombically but constrained to
remain on the surface of a D-sphere of radius R
[17,30–37] is also quasi-exactly solvable and we have
called this system D-spherium. (We adopt the conven-
tion that a D-sphere is the surface of a
(Dþ 1)-dimensional ball.) We have shown that the
Schrödinger equation for the 1S and the 3P states of
D-spherium can be solved exactly for a countably
infinite set of R values and that the resulting wave
functions are polynomials in the interelectronic dis-
tance 0! u# jr1$ r2j ! 2R.

In this article, we extend our earlier results [29] to
higher angular momentum (up to L¼ 3) states of
D-spherium (D& 2) for both the singlet and triplet
manifolds. The D¼ 1 case is anomalous and, for
brevity, is not discussed here. We use atomic units
throughout.

2. Wave function

The Hamiltonian of D-spherium is

Ĥ ¼ $ 1

2
r2
1 þ r2

2

! "
þ 1

u
, ð1Þ

where the two first terms represent the kinetic contri-
bution of each electron, and u$1 is the Coulomb
operator.

Following Breit [38], we write the total wave
function as the product

Fðfs1, s2g, fX1,X2g, uÞ ¼ Xðs1, s2Þ!ðX1,X2ÞCðuÞ, ð2Þ

where !, ! and C are the spin, angular and
interparticle wave functions, respectively, and si and
Xi are the spin and hyperspherical coordinates [39] of
the ith electron. The singlet and triplet wave functions
are given by the familiar [40] forms

1Xðs1, s2Þ ¼
1

21=2
"ðs1Þ#ðs2Þ $ #ðs1Þ"ðs2Þ½ *, ð3Þ

3Xðs1, s2Þ ¼

"ðs1Þ"ðs2Þ,
1

21=2
"ðs1Þ#ðs2Þ þ #ðs1Þ"ðs2Þ½ *,

#ðs1Þ#ðs2Þ:

8
>><

>>:
ð4Þ

The angular part is associated with an energy

E! ¼ L
R2

, ð5Þ

L ¼ ‘1ð‘1 þD$ 1Þ
2

þ ‘2ð‘2 þD$ 1Þ
2

, ð6Þ
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where ‘1 and ‘2 are the angular momentum quantum
numbers of the corresponding one-electron configura-
tion (s¼ 0, p¼ 1, d¼ 2, f¼ 3, . . .). The functions !,
which are dependent on the nature of the state
considered [38,41], are gathered in Table 1, where
$i2 [0,%] and &i2 [0, 2%] are the (D$ 1)th and Dth
hyperspherical angles of the electron i. The corre-
sponding one-electron configurations are also
reported. In Table 1, the suffixes e (even) and o
(odd) are related to the parity of the states, which is
given by ð$1Þ‘1þ‘2 . Hence, we label the states with the
notation 1,3Le,o, where L¼S, P, D, F, . . .

3. Polynomial solutions

Substituting the ansatz (2) into the Hamiltonian
(1) yields the Schrödinger equation

u2

4R2
$ 1

# $
d2C
du2

þ 'u

4R2
$ 1

(u

# $
dC
du

þC
u
¼ EC, ð7Þ

where the parameters ' and ( are tabulated for each
state in Table 1.

By introducing the dimensionless variable x¼ u/2R,
Equation (7) can be recast as a Heun’s differential
equation [42] with singular points at x¼$1, 0, þ1.
Following the known solutions of this equation [43],
we seek wave functions of the form

CðuÞ ¼
X1

k¼0

ak u
k, ð8Þ

and substitution into (7) yields the three-step recur-
rence relation

akþ2 ¼
(

ðkþ 2Þ ðkþ 1Þ( þ 1½ *

+
%
akþ1 þ

kðkþ '$ 1Þ
4R2

$ E

& '
ak

(
, ð9Þ

with the starting values a0¼ 1 and a1¼ (.

If the series (8) terminates at a certain k¼ n,
we obtain the exact wave function

Cn,mðuÞ ¼
Xn

k¼0

ak u
k, ð10Þ

for a particular radius Rn,m and energy En,m. This is an
nth degree polynomial with m nodes between 0 and 2R
(0!m!b(nþ 1)/2c) and requires that anþ1 and anþ2

vanish. If anþ1¼ 0, the relation

R2
n,mEn,m ¼ n

2

n

2
þ '$ 1

2

# $
ð11Þ

ensures that anþ2¼ 0. For a given n, the energies are
thus determined by finding the roots of the equation
anþ1¼ 0, which is a polynomial in E, of degree
b(nþ 1)/2c.

For the 1De state, we have not been able to obtain
polynomial solutions because the Hamiltonian (1) is
not separable using the ansatz (2) and the wave
function satisfies exchange coupled equations [44].
This applies also to some other states of higher angular
momentum.

4. Results and discussion

Numerical values of the energies and radii for the 1P o

and 3P e states are reported in Tables 2 and 3. Tables
containing results for the 1S e and 3P o states can be
found in [29]. Numerical values of the energies and
radii for the higher angular momentum states can be
determined using the interdimensional degeneracies
(see Section 4.5).

For any given state, as n increases, the radius
increases and the energy decreases. The opposite
behaviour is observed with respect to m.
Furthermore, as R (or, equivalently, n) increases, the
electrons tend to localize on opposite sides of the
sphere due to the dominance of the Coulomb interac-
tion as the density decreases [34,35]. Such Wigner
crystallization [45] has also been observed in other
systems [5,10,46].

Table 1. Ground state and excited states of D-spherium.

State Configuration !(:1, :2) ' ($1 L ) Transformation

1Se s2 1 2D$ 1 D$ 1 0 0 3P e

3Po sp cos $1$ cos $2 2Dþ 1 Dþ 1 D/2 1 1Do

1P o sp cos $1þ cos $2 2Dþ 1 D$ 1 D/2 0 3Do

3P e p2 sin $1 sin $2 sin (&1$&2) 2Dþ 3 Dþ 1 D 1
3D e sd !3P o , !1P o 2Dþ 3 Dþ 1 Dþ 1 1 1F e

1Do pd !3P o , !3P e 2Dþ 5 Dþ 3 3D/2þ 1 2
3Do pd !1P o , !3P e 2Dþ 5 Dþ 1 3D/2þ 1 1
1F e pf !3P e , !3D e 2Dþ 7 Dþ 3 2Dþ 3 2
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The energies of the S, P and D states (m¼ 0) for
3-spherium are plotted in Figure 1 (the quasi-exact
solutions are indicated by markers), while density plots
of 2-spherium (n¼ 1 and m¼ 0) are represented on
Figure 2.

4.1. Natural/unnatural parity

In attempting to explain Hund’s rules [47] and the
‘alternating’ rule [48,49] (see also [50,51]), Morgan and

Kutzelnigg [52–54] have proposed that the
two-electron atomic states be classified thus: a
two-electron state, composed of one-electron spatial
orbitals with individual parities ð$1Þ‘1 and ð$1Þ‘2 and
hence with overall parities ð$1Þ‘1þ‘2 , is said to have
natural parity if its parity is ($1)L. [. . .] If the parity of
the two-electron state is $($1)L, the state is said to be of
unnatural parity. [54].

After introducing spin, three classes emerge.
In a three-dimensional space, the states with a cusp

Table 2. Radii Rn,m and energies En,m for 1P o states of two electrons on a D-sphere (D¼2, 3, 4).

D¼ 2 D¼ 3 D¼ 4

n/m 0 1 2 3 0 1 2 3 0 1 2 3

Radius 1 1.118 1.871 2.598
2 3.162 4.637 6.083
3 6.226 1.656 8.376 2.520 10.52 3.303
4 10.30 4.232 13.11 5.888 15.93 7.440
5 15.38 7.847 2.159 18.84 10.21 3.127 22.32 12.49 3.966
6 21.46 12.49 5.246 25.57 15.53 7.077 29.72 18.51 8.732
7 28.54 18.14 9.397 2.639 33.30 21.84 11.97 3.707 38.11 25.51 14.39 4.599
8 36.63 24.80 14.59 6.222 42.03 29.15 17.86 8.220 47.49 33.49 21.01 9.976

Energy 1 1.000 0.5000 0.3333
2 0.3000 0.1860 0.1351
3 0.1355 1.914 0.09622 1.063 0.07460 0.7562
4 0.07541 0.4467 0.05820 0.2884 0.04731 0.2168
5 0.04757 0.1827 2.414 0.03874 0.1319 1.406 0.03260 0.1041 1.033
6 0.03257 0.09620 0.5450 0.02753 0.07468 0.3594 0.02378 0.06129 0.2754
7 0.02363 0.05851 0.2180 2.764 0.02051 0.04771 0.1587 1.656 0.01808 0.04035 0.1267 1.241
8 0.01789 0.03903 0.1127 0.6200 0.01585 0.03295 0.08781 0.4144 0.01419 0.02853 0.07252 0.3215

Table 3. Radii Rn,m and energies En,m for 3P e states of two electrons on a D-sphere (D¼2, 3, 4).

D¼ 2 D¼ 3 D¼ 4

n/m 0 1 2 3 0 1 2 3 0 1 2 3

Radius 1 2.291 3.000 3.708
2 5.477 6.892 8.307
3 9.616 3.006 11.72 3.748 13.84 4.478
4 14.73 6.851 17.52 8.334 20.32 9.797
5 20.84 11.62 3.676 24.30 13.82 4.453 27.78 16.01 5.208
6 27.94 17.35 8.156 32.07 20.26 9.708 36.22 23.15 11.22
7 36.04 24.05 13.54 4.315 40.83 27.66 15.84 5.128 45.65 31.25 18.10 5.909
8 45.13 31.75 19.86 9.412 50.58 36.04 22.90 11.03 56.07 40.32 25.89 12.60

Energy 1 0.3333 0.2500 0.2000
2 0.1333 0.1053 0.08696
3 0.07300 0.7472 0.06002 0.5874 0.05093 0.4862
4 0.04607 0.2131 0.03908 0.1728 0.03390 0.1459
5 0.03166 0.1019 1.018 0.02752 0.08503 0.8196 0.02429 0.07315 0.6913
6 0.02306 0.05983 0.2706 0.02042 0.05117 0.2228 0.01829 0.04477 0.1906
7 0.01752 0.03932 0.1242 1.222 0.01575 0.03432 0.1046 0.9983 0.01428 0.03046 0.09079 0.8522
8 0.01375 0.02778 0.07096 0.3161 0.01251 0.02464 0.06102 0.2629 0.01145 0.02215 0.05370 0.2269
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value of 1/2 [55,56] are known as the natural parity
singlet states, those with a cusp value of 1/4 [57] are the
natural and unnatural parity triplet states, and those with
a cusp value of 1/6 [52], are the unnatural parity singlet
states.

In previous work [29], we have observed that the
1S e ground state and the first excited 3P o state
of 3-spherium possess the same singlet (1/2) and

triplet (1/4) cusp conditions as those for electrons
moving in three-dimensional physical space and we
have therefore argued that 3-spherium may be the most
appropriate model for studying ‘real’ atomic or
molecular systems. This is supported by the similarity
of the correlation energy Ec of 3-spherium to that in
other two-electron systems. Indeed, it can be shown
[36] that, as R! 0, Ec approaches $0.0476, which is
close to the corresponding values for the helium-like
ions ($0.0467) [58], the Hooke’s law atom ($0.0497)
[59], and two electrons in a ball ($0.0552) [46].

Most of the higher angular momentum states of
3-spherium, possess the ‘normal’ cusp values of 1/2 and
1/4. However, the unnatural 1Do and 1F e states have
the cusp value of 1/6.

4.2. First-order cusp condition

The wave function, radius and energy of the lowest
states are given by

C1,0ðuÞ ¼ 1þ (u, R2
1,0 ¼

'

4(
, E1,0 ¼ (, ð12Þ

which are closely related to the Kato cusp
condition [56]

C0ð0Þ
Cð0Þ

¼ (: ð13Þ

We now generalize the Morgan–Kutzelnigg classi-
fication [53] to a D-dimensional space. Writing the
interparticle wave function as

CðuÞ ¼ 1þ u

2)þD$ 1
þOðu2Þ, ð14Þ

we have

) ¼ 0 for natural parity singlet states,

) ¼ 1 for triplet states,

) ¼ 2 for unnatural parity singlet states.

ð15Þ

The labels of the D-spherium states are given in
Table 1.

4.3. Second-order cusp condition

The second solution is associated with

C2,0ðuÞ ¼ 1þ (uþ (2ð'þ 2Þ
2(ð'þ 2Þ þ 4'þ 6

u2, ð16Þ

R2
2,0 ¼

ð( þ 2Þð'þ 2Þ $ 1

2(
, ð17Þ

E2,0 ¼
(ð'þ 1Þ

ð( þ 2Þð'þ 2Þ $ 1
: ð18Þ

Figure 2. Density plots of the S, P and D states of
2-spherium. The squares of the wave functions when one
electron is fixed at the north pole are represented. The radii
are 31/2/2, 151/2/2, 51/2/2, 211/2/2, 211/2/2, 3(51/2)/2 and
3(31/2)/2 for the 1S e, 3P o, 1P o, 3P e, 3De, 1Do and 3Do

states, respectively.

20

15

10

R
2  

µ 
E

 (a
.u

.)

5

0
0 5 10

R (a.u.)

15 20

Figure 1. Energy of the S, P and D states of 3-spherium
(1S e53P o! 1P o53P e53De51Do! 3Do). The quasi-exact
solutions are shown by the markers.
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For D-spherium, the second-order cusp condition is

C00ð0Þ
Cð0Þ ¼ 1

2D
1

D$ 1
$ E

# $
: ð19Þ

Following (19), the classification (15) can be extended
to the second-order coalescence condition, where the
wave function (correct up to second-order in u) is

CðuÞ ¼ 1þ u

2)þD$ 1

þ u2

2ð2)þDÞ
1

2)þD$ 1
$ E

# $
þOðu3Þ: ð20Þ

Thus, we have, for D¼ 3,

C00ð0Þ
Cð0Þ ¼

1

6

1

2
$ E

# $
, for ) ¼ 0,

1

10

1

4
$ E

# $
, for ) ¼ 1,

1

14

1

6
$ E

# $
, for ) ¼ 2:

8
>>>>>>><

>>>>>>>:

ð21Þ

For the natural parity singlet states ()¼ 0), the
second-order cusp condition of 3-spherium is precisely
the second-order coalescence condition derived by
Tew [60], confirming that 3-spherium is an appropriate
model for normal physical systems.

4.4. Third-order cusp condition

The third-order cusp condition of 3-spherium is

C000ð0Þ
Cð0Þ

¼ 1

18

1

8
$ Eþ 15

16R2

# $
, ð22Þ

which is similar, but not strictly equivalent, to the one
derived by Tew [60], due to the R-dependence of (22).
The generalization to D dimensions is straightforward.

4.5. Interdimensional degeneracies

As shown in Table 1, many states of D-spherium have
the same Hamiltonian (7) as lower angular momentum
states of (Dþ 2)-spherium.

Using the transformation (D,L)! (Dþ 2,L$ 1)
(see Table 1), one can see that the Hamiltonian of the
3P e, 1Do, 3Do and 1F e states for a given value of D are
respectively identical to those for 1S e, 3P o, 1P o, and
3De states at Dþ 2. The transformation (D,L)!
(Dþ 2,L$ 1), preserves the parity of the states, but
‘flips’ the spin configuration, thereby increasing by one
unit the value of ). In D-spherium, we note that the
Hamiltonians of the 3P e and 3De states are identical.

Similar interdimensional degeneracies, first noticed
by van Vleck [61], have been observed for various
systems [44,62–65].

5. Conclusion

In this article, we have reported exact solutions of a
Coulomb correlation problem, consisting of two elec-
trons on a D-dimensional sphere. The Coulomb
problem can be solved exactly for an infinite set of
values of the radius R for both the ground and excited
states, on both the singlet and triplet manifolds.
The corresponding exact solutions are polynomials in
the interelectronic distance u.

The cusp conditions (up to third-order in
the interelectronic distance), which are related to the
behaviour of the wave function at the electron–electron
coalescence point, have been analysed and classified
according to the natural or unnatural parity of the
state considered.

Finally, we have shown seen that, as in other one-,
two- or three-electron systems, there exist interdimen-
sional degeneracies between some of the states of
D-spherium.
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