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Ground state of two electrons on concentric spheres
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We extend our analysis of two electrons on a sphere [Phys. Rev. A 79, 062517 (2009); Phys. Rev. Lett.
103, 123008 (2009)] to electrons on concentric spheres with different radii. The strengths and weaknesses of
several electronic structure models are analyzed, ranging from the mean-field approximation (restricted and
unrestricted Hartree-Fock solutions) to configuration interaction expansion, leading to near-exact wave functions
and energies. The Møller-Plesset energy corrections (up to third-order) and the asymptotic expansion for the
large-sphere regime are also considered. We also study the position intracules derived from approximate and
exact wave functions. We find evidence for the existence of a long-range Coulomb hole in the large-sphere regime
and infer that unrestricted Hartree-Fock theory overlocalizes the electrons.
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I. INTRODUCTION

In recent work, we have reported near-exact [1] and exact
[2] solutions of the singlet ground state of two electrons,
interacting via a Coulomb potential, but trapped on the surface
of a sphere. This model was first used by Berry and co-workers
in the 1980s to provide insight into angular correlation
in two-electron systems [3–5]. It has proven useful for
understanding the electronic polarity of nanoclusters and for
explaining the giant polarizability of Na14F13 and spontaneous
dipole formation on niobium clusters [6]. Within the adiabatic
connection in density functional theory (DFT) [7–9], Seidl
et al. carefully studied this system [10,11] in order to test the
ISI (interaction-strength interpolation) model [12], deriving
values of the energy by numerical integration. Furthermore, it
has been shown that this kind of spherical constraint applied
to the Moshinsky atom [13] leads to a solvable Schrödinger
equation [14].

Berry and collaborators also considered an extension in
which each particle is confined to a different, concentric
sphere [15] and used this model to simulate the rovibrational
spectra of the water molecule in both the ground [16] and
excited states [17]. More recently, the model has been applied
to quantum-mechanical calculations of large-amplitude light-
atom dynamics in polyatomic hydrides [18,19].

It seems timely therefore to generalize our earlier studies
[1,2] to the case of two electrons located on the surface of
two concentric spheres of different radii. To be consistent
with our previous work [1,2], we focus on the singlet
ground state, which allows us to confine our attention to the
symmetric spatial part of the wave function and ignore the spin
coordinates. However, when the two radii are not equal, the
spin coordinates are irrelevant, and one can easily generalize
the present results to the triplet state by antisymmetrizing the
spatial wave function.

Symmetric and asymmetric Hartree-Fock (HF) solutions
are discussed in Sec. III and the strengths and weaknesses of
Møller-Plesset (MP) perturbation theory [20] are discussed in
Sec. IV. We consider asymptotic solutions for the large-sphere
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regime in Sec. V and, in Sec. VI, we study the convergence
behavior of the variational configuration interaction (CI)
scheme. Finally, by investigating the shape of the position
intracule and the corresponding Coulomb hole (Sec. VII), we
report the existence of a secondary Coulomb hole, shedding
light on long-range correlation effects in two-electron systems.
Atomic units are used throughout.

II. HAMILTONIAN

Our model consists of two concentric spheres of radii R1 !
R2, each bearing one electron. The position of the ith electron
is defined by the spherical angles (θi ,φi), the interelectronic
angle θ by

cos θ = cos θ1 cos θ2 + sin θ1 sin θ2 cos(φ1 − φ2), (1)

and the interelectronic distance by u = |r1 − r2|, where

R2 − R1 ! u ! R2 + R1. (2)

The Hamiltonian of the system Ĥ is simply

Ĥ = T̂ + u−1, (3)

where T̂ = T̂1 + T̂2 = −(∇2
1 + ∇2

2 )/2 is the kinetic energy
operator and u−1 is the Coulomb operator. It is sometimes
convenient to recast Ĥ in terms of the interelectronic angle θ .
Introducing the dimensionless parameter 0 < λ ≡ R1/R2 ! 1
and using (1), one finds

Ĥ = − (1 + λ2)
2R2

1 sin θ
d

dθ

(
sin θ

d

dθ

)
+ 1

R2
√

1 + λ2 − 2λ cos θ
,

(4)

which shows the different scaling behavior of the kinetic and
electrostatic terms.

III. HARTREE-FOCK APPROXIMATION

A. Symmetric solution

For R1 = R2 = R, the restricted Hartree-Fock (HF) wave
function and energy take [1] the simple forms

$HF = 1
4πR2

, EHF = 1
R

. (5)
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For R1 < R2, the electrons occupy different orbitals and
an unrestricted HF treatment is required. However, the high
symmetry of the system implies that there is a solution in
which each orbital is constant over its sphere, and the resulting
wave function and energy are

$SHF = 1
4πR1R2

, ESHF = 1
R2

. (6)

We call this the symmetric Hartree-Fock (SHF) solution,
because the orbitals are spherically symmetric and we note
that the SHF energy depends only on the radius of the larger
sphere.

B. Asymmetric solution

For certain values of R1 and R2, a second, lower-energy
HF solution arises [21–23], in which the two electrons tend
to localize on opposite sides of the spheres. We call this
the asymmetric Hartree-Fock (AHF) solution for the orbitals
possess cylindrical, not spherical, symmetry.

To obtain the AHF wave function

$AHF(θ1,θ2) = &1(θ1)&2(θ2), (7)

we expand the orbitals as

&1(θ1) =
∞∑

'=0

c'&'(θ1), &2(θ2) =
∞∑

'=0

d'&'(θ2), (8)

in the basis of zonal harmonics [24],

&'(θi) = Y'(θi)/Ri ≡ Y'0(θi ,φi)/Ri. (9)

The Fock matrix elements for the two orbitals are

F '1'2
1 = '1('1 + 1)

2R2
1

δ'1,'2 +
∞∑

'3,'4=0

d'3d'4G
'3'4
'1'2

, (10)

F '1'2
2 = '1('1 + 1)

2R2
2

δ'1,'2 +
∞∑

'3,'4=0

c'3c'4G
'3'4
'1'2

, (11)

where δ'1,'2 is the Kronecker symbol and

G
'3'4
'1'2

= (−1)'3+'4

R2

∑

'

4π
2'+ 1

λ'〈'1'2'〉〈'3'4'〉 (12)

are the two-electron integrals expressed in terms of the Wigner
3j symbols [25]

〈'1'2'3〉 =
√

(2'1 + 1)(2'2 + 1)(2'3 + 1)
4π

(
'1 '2 '3

0 0 0

)2

.

(13)

The summation in (12) runs from max(|'1 − '2|,|'3 − '4|) to
min('1 + '2,'3 + '4) because of selection rules [25].

The AHF energy is

EAHF = 1
2

∞∑

'=0

[
c2
'

'('+ 1)
2R2

1

+ d2
'

'('+ 1)
2R2

2

]

+ 1
2

∞∑

'1,'2=0

(
c'1c'2F

'1'2
1 + d'1d'2F

'1'2
2

)
. (14)
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FIG. 1. Frontier between the symmetric Hartree-Fock (SHF) and
asymmetric Hartree-Fock (AHF) solutions with respect to R1 and R2.

For all of the radii considered, truncating the expansions in (8)
at ' = 15 yields EAHF with an accuracy of 10−12.

The asymptotic limits of the HF energies satisfy

lim
R2→∞

R2E
SHF = 1, (15)

lim
R1,R2→∞

(R1 + R2)EAHF = 1, (16)

and the limiting AHF energy corresponds to the Coulomb
interaction between two electrons that are fully localized on
opposite side of their respective spheres. Such systems are
known as Wigner molecules [26] and have been observed in a
variety of similar systems [27–30].

The creation of localized orbitals leads to decreased
Coulombic repulsion but increased kinetic energy, and an
asymmetric solution therefore exists only when the former
outweighs the latter. By considering an orbital basis consisting
of only Y0 and Y1, it can be shown that this occurs only when
R1 > Rcrit and R2 < R2

1/R
crit, where Rcrit = 3/2. Figure 1

illustrates this graphically.
Figure 2 shows the SHF, AHF, and exact energies as

functions of R2 for several values of R1. The difference
EAHF − Eexact decreases as R1 = R2 increases, indicating that
the AHF energy is asymptotically correct.

IV. EXPANSION FOR SMALL SPHERES

A. First-order wave function

In Møller-Plesset (MP) perturbation theory [20], the total
Hamiltonian is partitioned into a zeroth-order Hamiltonian,
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FIG. 2. R2E
SHF (dotted), R2E

AHF (dashed), and R2E
exact (solid)

as a function of R2 for R1 = 2,5,10,15.
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Ĥ0 = T̂ , and a perturbative correction, V̂ = u−1. The unper-
turbed orbitals are spherical harmonics on each sphere and,
therefore, from Sec. III A, we have E(0) = 0 and E(1) = R−1

2 .
The 'th excited eigenfunction and eigenvalue of Ĥ0 with S

symmetry are [1,25,31]

$'(θ ) =
√

2'+ 1
4πR1R2

P'(cos θ ), (17)

E' = '('+ 1)
(

1
2R2

1

+ 1
2R2

2

)
. (18)

In intermediate normalization, the first-order correction to the
wave function is

$(1) =
∞∑

'=1

〈$0|u−1|$l〉
E0 − E'

$'(θ ) = − 1
2πR1

λ2

1 + λ2
Z(cos θ,λ),

(19)

where it can be shown that

Z(x,λ) =
∞∑

'=1

λ'

'('+ 1)
P'(x)

= 1 + log 2 − log(1 − λx +
√

1 − 2λx + λ2)

+ log(1 − x) − log(λ− x +
√

1 − 2λx + λ2)
λ

.

(20)

This yields the normalized first-order wave function

$MP1(u) = $0 +$(1)

√
1 +

[ 2λR1
1+λ2

]2 ∑∞
'=1

λ2'

'2('+1)2(2'+1)

. (21)

B. Second-order energy

Using (19), one finds that the second-order energy,

E(2) = 〈$0|u−1|$(1)〉

= 2(1 − λ)2 ln(1 − λ) + 2(1 + λ)2 ln(1 + λ) − 6λ2

1 + λ2

= − λ4

1 + λ2
2F1(1,2,5,λ) + 2F1(1,2,5, − λ)

6

= −λ
4

3
+ 4λ6

15
+ O(λ8), (22)

(where 2F1 is the Gauss hypergeometric function [24])
depends only on the ratio of the radii.

When the radii are equal, E(2) takes the value

lim
λ→1

E(2) = 4 ln 2 − 3, (23)

which has been discussed by Seidl and Gori-Giorgi [10,11]
and us [1,32]. When the radii are very different (i.e., λ ≈ 0),
the HF treatment is accurate and the second-order energy is

E(2) ∼ C4/R
4
2, (24)

where C4 = −R4
1/3. Although (24) can be identified as

the dispersion energy, it does not exhibit the usual R−6

behavior. Analogous results have also been reported for other
systems [33].
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FIG. 3. MP2 (dashed), MP3 (dotted), and exact (solid) correlation
energies (relative to SHF) as a function of R2 for R1 = 0.1,0.5,1.

C. Third-order energy

Using (19), one finds the third-order energy

E(3) = 〈$(1)|u−1 − E(1)|$(1)〉

= 4λR2

(1 + λ2)2
[24λ3 + 2λ(1 − λ2)Li2(λ2)

− 10λ(1 − λ)2 ln(1 − λ) − (1 − λ)3 ln2(1 − λ)

− 10λ(1 + λ)2 ln(1 + λ) + (1 + λ)3 ln2(1 + λ)]

= R2

[
2λ8

9
− 12λ10

35
+ O(λ12)

]
, (25)

where Li2 is the dilogarithm function [34].
When the radii are equal, E(3) takes the value

lim
λ→1

E(3) = 8R2(3 − 5 ln 2 + ln2 2) (26)

that we have given previously [1]. When the radii are very
different and R2 is not too large, E(3) is tiny and E(2) is a good
approximation to the total correlation energy.

The MP2 and MP3 correlation energies, defined by

EMPn =
n∑

m=2

E(m), (27)

are shown in Fig. 3. For R1 = 0.1, the MP2 and MP3 energies
are accurate for all R2. For larger R1, the discrepancy between
the MP and exact energies is noticeable for small R2, but
remains small for large R2.

The MP3 energy is usually better than the MP2 energy.
However, as we have shown previously [1], the MP expansion
appears to diverge when the radii are similar and not small
[10,12].

V. EXPANSION FOR LARGE SPHERES

A. Harmonic approximation

In the large-sphere (LS) regime, the electrons reduce
their Coulomb repulsion by localizing on opposite sides of
their spheres, oscillating around their equilibrium positions
with angular frequency ω (zero-point oscillations). The same
phenomenon has been observed by Seidl and collaborators
[10,12,35–39].
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In this case, the supplementary angle ξ = π − θ becomes
the natural coordinate of the system. Using the Taylor
expansions, cot ξ = 1

ξ
+ O(ξ ) and

1
√

1 + λ2 + 2λ cos ξ
= 1

(1 + λ)
+ λ

2(1 + λ)3
ξ 2 + O(ξ 4),

(28)

the Hamiltonian (4) becomes

Ĥω = −1 + λ2

2R2
1

(
d2

dξ 2
+ ξ d

dξ

)

+ λ

(1 + λ)R1

[
1 + λξ 2

2(1 + λ)2

]
. (29)

The lowest eigenfunction of (29) is

$ω(ξ ) ∝ exp −1
2

√
λ2R1

(1 + λ)3(1 + λ2)
ξ 2, (30)

and the associated eigenvalue is

ELS0 = Ee−e + Eω = 1
R1 + R2

+ ω

2
. (31)

The first term of (31) represents the classical interaction of
two electrons separated by a distance R1 + R2, and the second
one is the energy associated with the zero-point oscillations of
angular frequency

ω = 2
√

(1 + λ2)/λ
(R1 + R2)3/2

. (32)

B. First anharmonic correction

The first anharmonic correction,

Ŵ = (1 + λ2)
6R2

1

ξ
d

dξ
− λ2(λ2 − 7λ+ 1)

24(1 + λ)5R1
ξ 4, (33)

arises from the next two terms of the Taylor expansion of cot ξ
and the Coulomb operator (28). Defining ELS1 = ELS0 + E (1),
the anharmonic correction energy is

E (1) = 4π2R2
1R

2
2

∫ ∞

0
$ω(ξ )Ŵ$ω(ξ )ξdξ

= − (1 − λ+ λ2)(1 + λ2)
4(R1 + R2)2

. (34)
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FIG. 4. ELS0 (dashed) and ELS1 (dotted) correlation energies
(relative to SHF) as a function of R2 for R1 = 3,5,10. The exact
correlation energy (solid) is also shown.

The LS0 and LS1 correlation energies are shown in Fig. 4
with respect to R2 for three values of R1. For the large values
of R1, both curves agree very well with the exact correlation
energies, while for the smaller values of the radius of the first
sphere, LS1 systematically improves the results compared to
LS0.

VI. CONFIGURATION INTERACTION

To obtain an accurate wave function, we expand it in the
Legendre basis

$CI
L (θ ) =

L∑

'=0

T'$'(θ ), (35)

where T' is the CI amplitude of the excited configuration $'.
The elements of the CI matrix are given by

〈
$'1

∣∣Ĥ
∣∣$'2

〉
=

[
'1('1 + 1)

2R2
1

+ '2('2 + 1)
2R2

2

]
δ'1,'2

+ 1
R2

'1+'2∑

'=|'1−'2|

√
4π

2'+ 1
λ'〈'1'2'〉, (36)

where 〈'1'2'〉 is given by (13).
In our earlier work on the R1 = R2 case [1], we found that

the CI expansion converges slowly with respect to L because
of the interelectronic cusp that arises wherever the electrons
meet [40]. We also showed that this problem can be overcome
by expanding the wave function as a polynomial in u.

Here, however, we find (Table I) that the CI expansion
converges rapidly, provided that R2 is significantly greater
than R1. This is to be expected, because the fact that the
electrons are confined to different spheres means that they
can never meet and that the exact wave function is therefore
cuspless.

VII. INTRACULES AND HOLES

To study the relative positions of the electrons in space, we
have computed the position intracule

P(u) = 〈$|δ(|r1 − r2| − u)|$〉, (37)

the probability density for the interelectronic separation
u, from several of the wave functions $ above. Because
the SHF, MP1, LS, and CI wave functions depend only
on u (or, equivalently, on the interelectronic angle), their
position intracules are given by the simple Jacobian-weighted
density

P(u) = 8π2R1R2u |$(u)|2 . (38)

For R1 = R2, the MP2 intracule is also available [1].
The SHF intracule

PSHF(u) =
{ u

2R1R2
, R2 − R1 ! u ! R1 + R2,

0, otherwise,
(39)

052510-4



GROUND STATE OF TWO ELECTRONS ON CONCENTRIC . . . PHYSICAL REVIEW A 81, 052510 (2010)

TABLE I. Convergence of correlation energy with respect to the number L of terms in the CI wave function.

L R1 = 1 R2 = 1 R1 = 1 R2 = 1.1 R1 = 1 R2 = 1.5 R1 = 1 R2 = 2

1 −0.131 665 623 696 −0.102 135 552 400 −0.041 049 324 810 −0.015 832 811 848
2 −0.141 241 198 782 −0.108 514 851 797 −0.042 647 613 578 −0.016 238 558 022
3 −0.144 065 402 167 −0.110 102 786 034 −0.042 870 984 637 −0.016 271 251 778
4 −0.145 273 783 726 −0.110 674 429 216 −0.042 915 528 628 −0.016 274 960 819
5 −0.145 900 461 200 −0.110 923 205 726 −0.042 926 179 125 −0.016 275 462 730
10 −0.146 847 645 782 −0.111 180 386 287 −0.042 930 208 158 −0.016 275 553 424
15 −0.147 047 095 403 −0.111 201 118 465 −0.042 930 221 857 −0.016 275 553 441
20 −0.147 120 296 106 −0.111 204 056 487 −0.042 930 221 942 −0.016 275 553 441
25 −0.147 155 035 738 −0.111 204 595 556 −0.042 930 221 942 −0.016 275 553 441
30 −0.147 174 201 368 −0.111 204 710 528 −0.042 930 221 942 −0.016 275 553 441
35 −0.147 185 880 267 −0.111 204 737 604 −0.042 930 221 942 −0.016 275 553 441
40 −0.147 193 518 573 −0.111 204 744 445 −0.042 930 221 942 −0.016 275 553 441
45 −0.147 198 785 870 −0.111 204 746 267 −0.042 930 221 942 −0.016 275 553 441
50 −0.147 202 570 742 −0.111 204 746 773 −0.042 930 221 942 −0.016 275 553 441

Exact −0.147 218 934 944 −0.111 204 746 979 −0.042 930 221 942 −0.016 275 553 441
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FIG. 5. On the left: MP1 (dashed), MP2 (dotted), and exact (solid) holes for various R1 = R2. On the right: MP1 (dashed) and exact (solid)
holes for various R1 ! R2.
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FIG. 6. (Color online) MP1 holes for various R = R1 = R2

plotted on the surface of a sphere. The holes with respect to θ are also
represented.

grows linearly over the domain of allowed u values. The AHF
intracule is more complicated but is given by

PAHF(u) = PSHF(u)
∞∑

'1=0

c̃'1P'1 (x)
∞∑

'2=0

d̃'2P'2 (x), (40)

with c̃' =
√

2'+ 1c' and x = (R2
1 + R2

2 − u2)/(2R1R2).
We define the Coulomb hole [41]

+P(u) = P(u) − PHF(u) (41)

as the difference between the intracule from a correlated
wave function and that from the lowest HF wave function.

TABLE II. Minimum (ǔ), root (ū), and strength (S) of the MP1,
MP2, and exact Coulomb holes for R1 = R2 = R.

Minimum ǔsr

R MP1 MP2 Exact

0.1 0.062 0.063 0.063
0.2 0.127 0.130 0.129
0.5 0.337 0.353 0.347
1.0 0.746 0.810 0.757
1.5 1.228 1.413 1.211

Root ūsr

MP1 MP2 Exact

0.1 0.130 0.131 0.131
0.2 0.262 0.264 0.264
0.5 0.667 0.678 0.675
1.0 1.371 1.412 1.386
1.5 2.109 2.216 2.121

Strength Ssr

MP1 MP2 Exact

0.1 0.0245 0.0235 0.0235
0.2 0.048 0.045 0.045
0.5 0.116 0.096 0.099
1.0 0.211 0.145 0.164
1.5 0.476 0.235 0.210

2
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1.7

1.6
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0.2

0.1

0.1

5

100

10

1

u

2 R

0.2

0.1

u

FIG. 7. Holes based on the exact wave function for various (R =
5 10 100). The inset graph shows holes for radii just above the critical
value Rcrit = 3/2.

To quantify the correlation effects, it is useful to identify the
minimum ǔsr, the root ūsr, and the strength

Ssr =
∫ ūsr

0
|+P(u)|du (42)

of the short-range (sr) Coulomb hole. In certain cases, a
secondary long-range (lr) Coulomb hole appears [42]. Its
strength is given by

S lr =
∫ ∞

ūlr
|+P(u)|du, (43)

where ūlr is the long-range root.

A. Weakly correlated regime

In the weak interaction limit, the only HF solution is the
symmetric one (Sec. III A) and correlation effects are well-
described by the MP approximation (Sec. IV).

Figures 5(a), 5(c), and 5(e) show the Coulomb holes derived
from the MP1, MP2, and CI wave functions for three small
values of R = R1 = R2. For such radii, the MP-based and
exact position intracules are very similar and become identical
as R → 0. The holes are negative for small u and positive
for larger u, implying that correlation decreases the likelihood
of finding the two electrons close together and increases the
probability of their being far apart [41]. To illustrate the
spatial distributions of the electrons, we have plotted the MP1
Coulomb holes on the surface of a sphere (Fig. 6) for the three
same values of the R = R1 = R2.
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u

30 70 90

20 40 60 80 100
u

0.1

0.2

u

FIG. 8. Holes based on the exact wave function for R1 = 10 and
various R2 (from 10 to 90). The inset graph represents the transition
between the AHF and SHF solution (R2 = 200/3).
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TABLE III. Minimum (ǔ), maximum (û), root (ū), and strength
(S) of the exact Coulomb hole for various R.

Short-range Coulomb hole

R Minimum ǔsr Root ūsr Strength Ssr

1.6 1.115 2.104 0.0683
1.7 0.945 1.836 0.0148
1.8 0.787 1.511 0.0126
2 0.572 1.081 0.00295
5 – – –
10 – – –
100 – – –

Long-range Coulomb hole

Maximum ûlr Root ūlr Strength S lr

1.6 – – –
1.7 2.719 3.221 0.00334
1.8 2.606 3.151 0.0267
2 2.737 3.382 0.0653
5 7.398 8.697 0.161
10 15.90 17.95 0.158
100 184.62 192.31 0.134

The evolution of +P (u) with respect to the increase of R2
is shown in Figs. 5(b), 5(d), and 5(f). As R2 increases, the
difference between the MP1 and exact holes decreases and
they match perfectly as R2 → ∞.

Table II shows that the first-order correction reduces the
probability of small u values too much and that the second-
order correction partly corrects this, at least for small values of
R. As a consequence, the strength of the MP1 hole is always
larger than the true one, but exhibits the right asymptotic
behavior for small R.

B. Strongly correlated regime

In the strong interaction limit, the Coulomb repulsion dom-
inates the kinetic energy, an AHF solution exists (Sec. III B),
and the electrons oscillate around their equilibrium positions
(Sec. V).

For R >∼ 1.7, a secondary Coulomb hole appears in the
exact +P(u) (Fig. 7), revealing that correlation decreases
the probability of finding electrons at large separations. This
implies that the AHF wave function overlocalizes the electrons

FIG. 10. (Color online) LS holes for various R = R1 = R2

plotted on the surface of a sphere. The holes with respect to θ are also
represented.

on opposite sides of their spheres and that correlation then
delocalizes them slightly. Such secondary Coulomb holes
are not peculiar to our system; they have also recently been
observed in the He atom [42] and the H2 molecule [43].

For R >∼ 2, the primary Coulomb hole disappears com-
pletely, leaving only the secondary one (Table III and Fig. 7).
The secondary:primary strength ratio is larger than in the He
atom and the equilibrium H2 molecule (1–2%) and resembles
that in the H2 molecule at a bond length of 3 a.u. [43].

Figure 8 shows the evolution of the exact hole for R1 = 10
and R2 ranging from 10 to 100. The secondary hole vanishes
when R2 exceeds R2

1/R
crit and the AHF solution collapses to

the SHF one.
To compare the holes based on the LS wave function $ω

[Eq. (30)] and the exact one, we have plotted the difference
between the exact and the LS holes (++P(u) in Fig. 9). For
R = R1 = R2, the agreement between the two holes is fairly
good for large R [Fig. 9(a)]. For the smaller values of the
radius, it shows that the electronic zero-point oscillations tend
to overlocalize the electrons compared to the exact treatment.
However, the secondary Coulomb hole is less pronounced
but still present in the LS approximation. Moreover, one can
see that the LS treatment slightly increases the likelihood of
finding the two electrons close together.

Figure 9(b) reports the modification of++P(u) for a fixed
value of the first sphere radius (R1 = 10) and various R2
(10, 30, and 50). When R2 is increasing, the first minimum

R2 10
R2 30

R2 50

10 20 30 40 50 60
u

0.02

0.04

u

1

u

2 R

0.01

0.02

u

(a) R1 = R2 (b) R1 = 10

FIG. 9. At the top: difference between the exact and the LS holes (++P(u)) for various R1 = R2: 5 (solid), 10 (dashed), and 50 (dotted).
At the bottom: ++P(u) for R1 = 10 and various R2 (10, 30, and 50).
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disappears, and the main effect of the LS approximation is thus
to overlocalize the electrons on opposite side of the spheres.

The two-dimensional spatial distribution of the electrons is
depicted in Fig. 10, where we have represented the LS holes for
various R = R1 = R2 (5, 10, and 50) on the surface of a sphere.

VIII. CONCLUSION

We have performed a comprehensive study of the singlet
ground state of two electrons on the surface of spheres of
radius R1 and R2. Symmetric and asymmetric HF solutions
show that the symmetry-breaking process occurs only when
R1 > Rcrit = 3/2 and R2 < R2

1/R
crit. MP2 and MP3 energy

corrections reveal that MP theory is appropriate when both
radii are small (as previously known) and, also, when R2 ,
R1. To derive asymptotic solutions of this problem, we
have taken into account, in the harmonic and anharmonic
approximations, the zero-point oscillations of the electrons
around their equilibrium position. For any values of R2 > R1,
the near-exact wave function and energy can easily be obtained

by a CI expansion based on Legendre polynomials because
there is no cusp in the wave function.

A study of the position intracules and Coulomb holes
reveals that, as in the helium atom and hydrogen molecule,
there is a secondary Coulomb hole in the large-sphere regime.
Indeed, as R increases, the primary hole disappears and only
the secondary one remains. This reflects an overlocalization of
the electrons in the asymmetric Hartree-Fock solution.

Our results should be useful for the future development
of accurate correlation functionals within density-functional
theory [11,38,39,44] and intracule functional theory [45–50]
and, also, for understanding secondary Coulomb holes in more
complex systems [42,43].
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