Two Electrons on a Hypersphere: A Quasiexactly Solvable Model

Pierre-François Loos and Peter M. W. Gill*
Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia

(Received 5 July 2009; published 18 September 2009)

Abstract

We show that the exact wave function for two electrons, interacting through a Coulomb potential but constrained to remain on the surface of a \mathcal{D}-sphere ($\mathcal{D} \geq 1$), is a polynomial in the interelectronic distance u for a countably infinite set of values of the radius R. A selection of these radii and the associated energies are reported for ground and excited states on the singlet and triplet manifolds. We conclude that the $\mathcal{D}=3$ model bears the greatest similarity to normal physical systems.

DOI: 10.1103/PhysRevLett.103.123008
PACS numbers: 31.15.ac, 31.15.ve, 31.15.vj

Quantum mechanical models for which it is possible to solve explicitly for a finite portion of the energy spectrum are said to be quasiexactly solvable [1]. They have ongoing value and are useful both for illuminating more complicated systems and for testing and developing theoretical approaches, such as density-functional theory (DFT) [2-4] and explicitly correlated methods [5-8]. One of the most famous two-body models is the Hooke's law atom, which consists of a pair of electrons repelling Coulombically but trapped in a harmonic external potential with force constant k. This system was first considered nearly 50 years ago by Kestner and Sinanoglu [9], solved analytically in 1989 for one particular k value [10], and later for a countably infinite set of k values [11].

A related system consists of two electrons trapped on the surface of a sphere of radius R. This has been used by Berry and collaborators [12-15] to understand both weakly and strongly correlated systems and to suggest an "alternating" version of Hund's rule [16]. Seidl utilized this system to develop new correlation functionals [17] within the adiabatic connection in DFT [18]. We will use the term "spherium" to describe this system.

In recent work [19], we examined various schemes and described a method for obtaining near-exact estimates of the ${ }^{1} S$ ground state energy of spherium for any given R. Because the corresponding Hartree-Fock (HF) energies are also known exactly [19], this is now one of the most complete theoretical models for understanding electron correlation effects.

In this Letter, we consider \mathcal{D}-spherium, the generalization in which the two electrons are trapped on a \mathcal{D}-sphere of radius R. We adopt the convention that a \mathcal{D}-sphere is the surface of a $(\mathcal{D}+1)$-dimensional ball. (Thus, for example, the Berry system is a 2 -spherium.) We show that the Schrödinger equation for the ${ }^{1} S$ and the ${ }^{3} P$ states can be solved exactly for a countably infinite set of R values and that the resulting wave functions are polynomials in the interelectronic distance $u=\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|$. Other spin and angular momentum states can be addressed in the same way using the ansatz derived by Breit [20].

The electronic Hamiltonian, in atomic units, is

$$
\begin{equation*}
\hat{H}=-\frac{\nabla_{1}^{2}}{2}-\frac{\nabla_{2}^{2}}{2}+\frac{1}{u} \tag{1}
\end{equation*}
$$

and, because each electron moves on a \mathcal{D}-sphere, it is natural to adopt hyperspherical coordinates [21,22].

For ${ }^{1} S$ states, it can be then shown [19] that the wave function $S(u)$ satisfies the Schrödinger equation

$$
\begin{equation*}
\left[\frac{u^{2}}{4 R^{2}}-1\right] \frac{d^{2} S}{d u^{2}}+\left[\frac{(2 \mathcal{D}-1) u}{4 R^{2}}-\frac{\mathcal{D}-1}{u}\right] \frac{d S}{d u}+\frac{S}{u}=E S \tag{2}
\end{equation*}
$$

By introducing the dimensionless variable $x=u / 2 R$, this becomes a Heun equation [23] with singular points at $x=$ $-1,0,+1$. Based on our previous work [19] and the known solutions of the Heun equation [24], we seek wave functions of the form

$$
\begin{equation*}
S(u)=\sum_{k=0}^{\infty} s_{k} u^{k} \tag{3}
\end{equation*}
$$

and substitution into (2) yields the recurrence relation

$$
\begin{equation*}
s_{k+2}=\frac{s_{k+1}+\left[k(k+2 \mathcal{D}-2) \frac{1}{4 R^{2}}-E\right] s_{k}}{(k+2)(k+\mathcal{D})} \tag{4}
\end{equation*}
$$

with the starting values

$$
\left\{s_{0}, s_{1}\right\}= \begin{cases}\{0,1\} & \mathcal{D}=1 \tag{5}\\ \{1,1 /(\mathcal{D}-1)\} & \mathcal{D} \geq 2\end{cases}
$$

Thus, the Kato cusp conditions [25] are

$$
\begin{equation*}
S(0)=0, \quad \frac{S^{\prime \prime}(0)}{S^{\prime}(0)}=1 \tag{6}
\end{equation*}
$$

for electrons on a circle $(\mathcal{D}=1)$ and

$$
\begin{equation*}
\frac{S^{\prime}(0)}{S(0)}=\frac{1}{\mathcal{D}-1} \tag{7}
\end{equation*}
$$

in higher dimensions. We note that the "normal" Kato value of $1 / 2$ arises for $\mathcal{D}=3$, suggesting that this may the
most appropriate model for atomic or molecular systems. We will return to this point below.

The wave function (3) reduces to the polynomial

$$
\begin{equation*}
S_{n, m}(u)=\sum_{k=0}^{n} s_{k} u^{k} \tag{8}
\end{equation*}
$$

(where m is the number of roots between 0 and $2 R$) if, and only if, $s_{n+1}=s_{n+2}=0$. Thus, the energy $E_{n, m}$ is a root of the polynomial equation $s_{n+1}=0$ [where $\operatorname{deg} s_{n+1}=$ $\lfloor(n+1) / 2\rfloor]$, and the corresponding radius $R_{n, m}$ is found from (4) which yields

$$
\begin{equation*}
R_{n, m}^{2} E_{n, m}=\frac{n}{2}\left(\frac{n}{2}+\mathcal{D}-1\right) \tag{9}
\end{equation*}
$$

$S_{n, m}(u)$ is the exact wave function of the m th excited state of ${ }^{1} S$ symmetry for the radius $R_{n, m}$.

If we write the ${ }^{3} P$ state wave function as [20]

$$
\begin{equation*}
{ }^{3} \Psi=\left(\cos \theta_{1}-\cos \theta_{2}\right) T(u) \tag{10}
\end{equation*}
$$

where θ_{1} and θ_{2} are the \mathcal{D} th hyperspherical angles of the two electrons $[21,22]$, the symmetric part satisfies the Schrödinger equation
$\left[\frac{u^{2}}{4 R^{2}}-1\right] \frac{d^{2} T}{d u^{2}}+\left[\frac{(2 \mathcal{D}+1) u}{4 R^{2}}-\frac{\mathcal{D}+1}{u}\right] \frac{d T}{d u}+\frac{T}{u}=E T$,
and the antisymmetric part provides an additional kinetic energy contribution $\mathcal{D} /\left(2 R^{2}\right)$.

Substituting the power series expansion

$$
\begin{equation*}
T(u)=\sum_{k=0}^{\infty} t_{k} u^{k} \tag{12}
\end{equation*}
$$

into (11) yields the recurrence relation

$$
\begin{equation*}
t_{k+2}=\frac{t_{k+1}+\left[k(k+2 \mathcal{D}) \frac{1}{4 R^{2}}-E\right] t_{k}}{(k+2)(k+\mathcal{D}+2)} \tag{13}
\end{equation*}
$$

with the starting values

$$
\begin{equation*}
\left\{t_{0}, t_{1}\right\}=\{1,1 /(\mathcal{D}+1)\} \tag{14}
\end{equation*}
$$

yielding the cusp condition

$$
\begin{equation*}
\frac{T^{\prime}(0)}{T(0)}=\frac{1}{\mathcal{D}+1} \tag{15}
\end{equation*}
$$

The wave function (12) reduces to the polynomial

$$
\begin{equation*}
T_{n, m}(u)=\sum_{k=0}^{n} t_{k} u^{k} \tag{16}
\end{equation*}
$$

when the energy $E_{n, m}$ is a root of $t_{n+1}=0$, and the corresponding radius $R_{n, m}$ is found from (13) which yields

$$
\begin{equation*}
R_{n, m}^{2} E_{n, m}=\frac{n}{2}\left(\frac{n}{2}+\mathcal{D}\right) . \tag{17}
\end{equation*}
$$

$T_{n, m}(u)$ is the exact wave function of the m th excited state of ${ }^{3} P$ symmetry for the radius $R_{n, m}$.

It is illuminating to begin by examining the simplest ${ }^{1} S$ and ${ }^{3} P$ polynomial solutions. Except in the $\mathcal{D}=1$ case, the first ${ }^{1} S$ solution has

$$
\begin{equation*}
R_{1,0}=\sqrt{\frac{(2 \mathcal{D}-1)(2 \mathcal{D}-2)}{8}}, \quad E_{1,0}=\frac{1}{\mathcal{D}-1} \tag{18}
\end{equation*}
$$

and the first ${ }^{3} P$ solution has

$$
\begin{equation*}
R_{1,0}=\sqrt{\frac{(2 \mathcal{D}+1)(2 \mathcal{D}+2)}{8}}, \quad E_{1,0}=\frac{1}{\mathcal{D}+1} \tag{19}
\end{equation*}
$$

These are tabulated for $\mathcal{D}=1,2,3,4$, together with the associated wave functions, in Table I.

In the $\mathcal{D}=1$ case (i.e., two electrons on a circle), the first singlet and triplet solutions have $E_{2,0}=2 / 3$ and $E_{1,0}=1 / 2$, respectively, for the same value of the radius ($\sqrt{6} / 2 \approx 1.2247$). The corresponding wave functions are related by $S_{2,0}=u T_{1,0}$. Unlike $T_{1,0}$, the singlet wave function $S_{2,0}$ vanishes at $u=0$ and exhibits a second-order cusp condition, as shown in (6).

For the 2 -spherium ($\mathcal{D}=2$ case), we know from our previous work [19] that the HF energy of the lowest ${ }^{1} S$ state is $E_{\mathrm{HF}}=1 / R$. It follows that the exact correlation energy for $R=\sqrt{3} / 2$ is $E_{\text {corr }}=1-2 / \sqrt{3} \approx-0.1547$, which is much larger than the limiting correlation energies of the heliumlike ions (-0.0467) [26] or Hooke's law atoms (-0.0497) [27]. This confirms our view that electron correlation on the surface of a sphere is qualitatively different from that in three-dimensional physical space.

The 3 -spherium ($\mathcal{D}=3$ case), in contrast, possesses the same singlet and triplet cusp conditions-Eqs. (7) and (15) -as those for electrons moving in three-dimensional physical space. Indeed, the wave functions in Table I

$$
\begin{array}{rr}
S_{1,0}(u)=1+u / 2 & (R=\sqrt{5 / 2}) \\
T_{1,0}(u)=1+u / 4 & (R=\sqrt{7}) \tag{21}
\end{array}
$$

have precisely the form of the ansatz used in Kutzelnigg's

TABLE I. Radius R, energy E, and wave function $S(u)$ or $T(u)$ of the first ${ }^{1} S$ and ${ }^{3} P$ polynomial solutions for two electrons on a \mathcal{D}-sphere.

State	\mathcal{D}	$2 R$	E	$S(u)$ or $T(u)$
${ }^{1} S$	1	$\sqrt{6}$	$2 / 3$	$u(1+u / 2)$
	2	$\sqrt{3}$	1	$1+u$
	3	$\sqrt{10}$	$1 / 2$	$1+u / 2$
	4	$\sqrt{21}$	$1 / 3$	$1+u / 3$
	${ }^{3} P$	1	$\sqrt{6}$	$1 / 2$
	2	$\sqrt{15}$	$1 / 3$	$1+u / 2$
	3	$\sqrt{28}$	$1 / 4$	$1+u / 3$
	4	$\sqrt{45}$	$1 / 5$	$1+u / 4$

TABLE II. Radii $R_{n, m}$ and energies $E_{n, m}$ for ${ }^{1} S$ states of two electrons on a \mathcal{D}-sphere $(\mathcal{D}=1,2,3)$.

	$\mathcal{D}=1$				$\mathcal{D}=2$				$\mathcal{D}=3$			
n / m	0	1	2	3	0	1	2	3	0	1	2	3
Radius												
1					0.8660				1.5811			
2	1.2247				2.6458				4.0620			
3	3.3912				5.4312	1.4150			7.5154	2.2404		
4	6.5439	1.9178			9.2211	3.7379			11.961	5.3320		
5	10.693	4.7071			14.012	7.0848	1.9256		17.404	9.3775	2.8554	
6	15.841	8.4583	2.5522		19.804	11.448	4.7683		23.846	14.410	6.5350	
7	21.989	13.199	5.9404		26.597	16.817	8.6593	2.4123	31.287	20.439	11.158	3.4415
8	29.136	18.936	10.277	3.1515	34.389	23.190	13.583	5.7566	39.728	27.466	16.768	7.6903
Energy												
1					1.0000				0.5000			
2	0.6667				0.2857				0.1818			
3	0.1957				0.1271	1.8729			0.0930	1.0459		
4	0.0934	1.0875			0.0706	0.4294			0.0559	0.2814		
5	0.0547	0.2821			0.0446	0.1743	2.3597		0.0371	0.1279	1.3798	
6	0.0359	0.1258	1.3817		0.0306	0.0916	0.5278		0.0264	0.0722	0.3512	
7	0.0253	0.0703	0.3471		0.0223	0.0557	0.2100	2.7065	0.0197	0.0461	0.1546	1.6253
8	0.0188	0.0446	0.1515	1.6110	0.0169	0.0372	0.1084	0.6035	0.0152	0.0318	0.0854	0.4058

increasingly popular R12 methods [5,6]. Moreover, it can be shown [28] that, as $R \rightarrow 0$, the correlation energy $E_{\text {corr }}$ approaches -0.0476 , which nestles between the corresponding values for the heliumlike ions (-0.0467) [26] and the Hooke's law atom (-0.0497) [27]. Again, this suggests that the $\mathcal{D}=3$ model ("electrons on a hypersphere") bears more similarity to common physical systems than the $\mathcal{D}=2$ model ("electrons on a sphere").

Numerical values of the energies and radii, for polynomial wave functions in $\mathcal{D}=1,2,3$, are reported in Tables II (for ${ }^{1} S$ states) and III (for ${ }^{3} P$ states).

For fixed \mathcal{D}, the radii increase with n but decrease with m, and the energies behave in exactly the opposite way. As R (or, equivalently, n) increases, the electrons tend to localize on opposite sides of the sphere, a phenomenon known as Wigner crystallization [29], which has also been

TABLE III. Radii $R_{n, m}$ and energies $E_{n, m}$ for ${ }^{3} P$ states of two electrons on a \mathcal{D}-sphere ($\mathcal{D}=1,2,3$).

	$\mathcal{D}=1$				$\mathcal{D}=2$				$\mathcal{D}=3$			
n / m	0	1	2	3	0	1	2	3	0	1	2	3
Radius												
1	1.2247				1.9365				2.6458			
2	3.3912				4.7958				6.2048			
3	6.5439	1.9178			8.6227	2.6738			10.718	3.4111		
4	10.693	4.7071			13.435	6.2041			16.205	7.6748		
5	15.841	8.4583	2.5522		19.241	10.665	3.3588		22.678	12.852	4.1285	
6	21.989	13.199	5.9404		26.043	16.094	7.5340		30.142	18.979	9.0701	
7	29.136	18.936	10.277	3.1515	33.842	22.505	12.615	4.0095	38.600	26.077	14.897	4.8130
8	37.283	25.671	15.599	7.1177	42.640	29.907	18.650	8.8083	48.054	34.155	21.654	10.411
Energy												
1	0.5000				0.3333				0.2500			
2	0.1739				0.1304				0.1039			
3	0.0876	1.0196			0.0706	0.7343			0.0588	0.5801		
4	0.0525	0.2708			0.0443	0.2078			0.0381	0.1698		
5	0.0349	0.1223	1.3433		0.0304	0.0989	0.9972		0.0267	0.0832	0.8067	
6	0.0248	0.0689	0.3401		0.0221	0.0579	0.2643		0.0198	0.0500	0.2188	
7	0.0186	0.0439	0.1491	1.5858	0.0168	0.0380	0.1210	1.1974	0.0153	0.0335	0.1025	0.9821
8	0.0144	0.0303	0.0822	0.3948	0.0132	0.0268	0.0690	0.3093	0.0121	0.0240	0.0597	0.2583

observed in other systems [11,30]. As a result, for large R, the ground state energies of both the singlet and the triplet state approach $1 /(2 R)$. Analogous behavior is observed when $\mathcal{D} \rightarrow \infty[31,32]$.

In conclusion, we have shown that the system of two electrons, interacting via a Coulomb potential but constrained to remain on a \mathcal{D}-sphere, can be solved exactly for an infinite set of values of the radius R. We find that the 3 -spherium ($\mathcal{D}=3$ model), wherein the electrons are confined to a three-dimensional surface of a fourdimensional ball, has greater similarity to normal physical systems than the more familiar $\mathcal{D}=2$ case.

We believe that our results will be useful in the future development of correlation functionals within densityfunctional theory [33], intracule functional theory [3439], and explicitly correlated methods [5-8]. They also shed new light on dimension-dependent correlation effects and may be used as an alternative system for studying quantum dots [40].
P. M. W. G. thanks the APAC Merit Allocation Scheme for a grant of supercomputer time and the Australian Research Council (Grant No. DP0664466) for funding.
*Corresponding author. peter.gill@anu.edu.au
[1] A. G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics (Institute of Physics, Bristol, 1994).
[2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[3] W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
[4] R. G. Parr and W. Yang, Density Functional Theory for Atoms and Molecules (Oxford University, New York, 1989).
[5] W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985).
[6] W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94, 1985 (1991).
[7] T.M. Henderson and R.J. Bartlett, Phys. Rev. A 70, 022512 (2004).
[8] D. Bokhan, S. Ten-no, and J. Noga, Phys. Chem. Chem. Phys. 10, 3320 (2008).
[9] N.R. Kestner and O. Sinanoglu, Phys. Rev. 128, 2687 (1962).
[10] S. Kais, D. R. Herschbach, and R. D. Levine, J. Chem. Phys. 91, 7791 (1989).
[11] M. Taut, Phys. Rev. A 48, 3561 (1993).
[12] G. S. Ezra and R. S. Berry, Phys. Rev. A 25, 1513 (1982).
[13] G. S. Ezra and R. S. Berry, Phys. Rev. A 28, 1989 (1983).
[14] P. C. Ojha and R. S. Berry, Phys. Rev. A 36, 1575 (1987).
[15] R. J. Hinde and R. S. Berry, Phys. Rev. A 42, 2259 (1990).
[16] J. W. Warner and R. S. Berry, Nature (London) 313, 160 (1985).
[17] M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. Lett. 84, 5070 (2000).
[18] M. Seidl, Phys. Rev. A 75, 062506 (2007).
[19] P.-F. Loos and P.M.W. Gill, Phys. Rev. A 79, 062517 (2009).
[20] G. Breit, Phys. Rev. 35, 569 (1930).
[21] J. D. Louck, J. Mol. Spectrosc. 4, 298 (1960).
[22] D. L. Knirk, Phys. Rev. Lett. 32, 651 (1974).
[23] Heun's Differential Equations, edited by A. Ronveaux (Oxford University, Oxford, 1995).
[24] A.D. Polyanin and V.F. Zaitsev, Handbook of Exact Solutions for Differential Equations (Chapman \& Hall/ CRC, London, 2003).
[25] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
[26] J. D. Baker, D. E. Freund, R. N. Hill, and J. D. Morgan III, Phys. Rev. A 41, 1247 (1990).
[27] P.M.W. Gill and D.P. O'Neill, J. Chem. Phys. 122, 094110 (2005).
[28] P.F. Loos, A. T. B. Gilbert, and P. M. W. Gill (to be published).
[29] E. Wigner, Phys. Rev. 46, 1002 (1934).
[30] D. C. Thompson and A. Alavi, Phys. Rev. B 69, 201302(R) (2004).
[31] L. G. Yaffe, Rev. Mod. Phys. 54, 407 (1982).
[32] D. Z. Goodson and D. R. Herschbach, J. Chem. Phys. 86, 4997 (1987).
[33] P. Gori-Giorgi, G. Vignale, and M. Seidl, J. Chem. Theory Comput. 5, 743 (2009).
[34] P. M. W. Gill, D. L. Crittenden, D.P. O'Neill, and N. A. Besley, Phys. Chem. Chem. Phys. 8, 15 (2006).
[35] E. E. Dumont, D. L. Crittenden, and P. M. W. Gill, Phys. Chem. Chem. Phys. 9, 5340 (2007).
[36] D. L. Crittenden and P. M. W. Gill, J. Chem. Phys. 127, 014101 (2007).
[37] D.L. Crittenden, E.E. Dumont, and P.M.W. Gill, J. Chem. Phys. 127, 141103 (2007).
[38] Y. A. Bernard, D. L. Crittenden, and P.M.W. Gill, Phys. Chem. Chem. Phys. 10, 3447 (2008).
[39] J. K. Pearson, D. L. Crittenden, and P. M. W. Gill, J. Chem. Phys. 130, 164110 (2009).
[40] T. M. Henderson, K. Runge, and R. J. Bartlett, Chem. Phys. Lett. 337, 138 (2001).

