Two Electrons on a Hypersphere: A Quasiexactly Solvable Model

Pierre-François Loos and Peter M. W. Gill*

Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory 0200, Australia (Received 5 July 2009; published 18 September 2009)

We show that the exact wave function for two electrons, interacting through a Coulomb potential but constrained to remain on the surface of a \mathcal{D} -sphere ($\mathcal{D} \ge 1$), is a polynomial in the interelectronic distance *u* for a countably infinite set of values of the radius *R*. A selection of these radii and the associated energies are reported for ground and excited states on the singlet and triplet manifolds. We conclude that the $\mathcal{D} = 3$ model bears the greatest similarity to normal physical systems.

DOI: 10.1103/PhysRevLett.103.123008

PACS numbers: 31.15.ac, 31.15.ve, 31.15.vj

Quantum mechanical models for which it is possible to solve explicitly for a finite portion of the energy spectrum are said to be quasiexactly solvable [1]. They have ongoing value and are useful both for illuminating more complicated systems and for testing and developing theoretical approaches, such as density-functional theory (DFT) [2–4] and explicitly correlated methods [5–8]. One of the most famous two-body models is the Hooke's law atom, which consists of a pair of electrons repelling Coulombically but trapped in a harmonic external potential with force constant k. This system was first considered nearly 50 years ago by Kestner and Sinanoglu [9], solved analytically in 1989 for one particular k value [10], and later for a countably infinite set of k values [11].

A related system consists of two electrons trapped on the surface of a sphere of radius R. This has been used by Berry and collaborators [12–15] to understand both weakly and strongly correlated systems and to suggest an "alternating" version of Hund's rule [16]. Seidl utilized this system to develop new correlation functionals [17] within the adiabatic connection in DFT [18]. We will use the term "spherium" to describe this system.

In recent work [19], we examined various schemes and described a method for obtaining near-exact estimates of the ${}^{1}S$ ground state energy of spherium for any given *R*. Because the corresponding Hartree-Fock (HF) energies are also known exactly [19], this is now one of the most complete theoretical models for understanding electron correlation effects.

In this Letter, we consider \mathcal{D} -spherium, the generalization in which the two electrons are trapped on a \mathcal{D} -sphere of radius R. We adopt the convention that a \mathcal{D} -sphere is the surface of a $(\mathcal{D} + 1)$ -dimensional ball. (Thus, for example, the Berry system is a 2-spherium.) We show that the Schrödinger equation for the ¹S and the ³P states can be solved exactly for a countably infinite set of Rvalues and that the resulting wave functions are polynomials in the interelectronic distance $u = |\mathbf{r}_1 - \mathbf{r}_2|$. Other spin and angular momentum states can be addressed in the same way using the ansatz derived by Breit [20]. The electronic Hamiltonian, in atomic units, is

$$\hat{H} = -\frac{\nabla_1^2}{2} - \frac{\nabla_2^2}{2} + \frac{1}{u},\tag{1}$$

and, because each electron moves on a \mathcal{D} -sphere, it is natural to adopt hyperspherical coordinates [21,22].

For ¹S states, it can be then shown [19] that the wave function S(u) satisfies the Schrödinger equation

$$\left[\frac{u^2}{4R^2} - 1\right]\frac{d^2S}{du^2} + \left[\frac{(2\mathcal{D} - 1)u}{4R^2} - \frac{\mathcal{D} - 1}{u}\right]\frac{dS}{du} + \frac{S}{u} = ES.$$
(2)

By introducing the dimensionless variable x = u/2R, this becomes a Heun equation [23] with singular points at x = -1, 0, +1. Based on our previous work [19] and the known solutions of the Heun equation [24], we seek wave functions of the form

$$S(u) = \sum_{k=0}^{\infty} s_k u^k, \tag{3}$$

and substitution into (2) yields the recurrence relation

$$s_{k+2} = \frac{s_{k+1} + [k(k+2\mathcal{D}-2)\frac{1}{4R^2} - E]s_k}{(k+2)(k+\mathcal{D})}$$
(4)

with the starting values

$$\{s_0, s_1\} = \begin{cases} \{0, 1\} & \mathcal{D} = 1, \\ \{1, 1/(\mathcal{D} - 1)\} & \mathcal{D} \ge 2. \end{cases}$$
(5)

Thus, the Kato cusp conditions [25] are

$$S(0) = 0, \qquad \frac{S''(0)}{S'(0)} = 1$$
 (6)

for electrons on a circle ($\mathcal{D} = 1$) and

$$\frac{S'(0)}{S(0)} = \frac{1}{\mathcal{D} - 1} \tag{7}$$

in higher dimensions. We note that the "normal" Kato value of 1/2 arises for $\mathcal{D} = 3$, suggesting that this may the

© 2009 The American Physical Society

most appropriate model for atomic or molecular systems. We will return to this point below.

The wave function (3) reduces to the polynomial

$$S_{n,m}(u) = \sum_{k=0}^{n} s_k u^k \tag{8}$$

(where *m* is the number of roots between 0 and 2*R*) if, and only if, $s_{n+1} = s_{n+2} = 0$. Thus, the energy $E_{n,m}$ is a root of the polynomial equation $s_{n+1} = 0$ [where deg $s_{n+1} = \lfloor (n+1)/2 \rfloor$], and the corresponding radius $R_{n,m}$ is found from (4) which yields

$$R_{n,m}^2 E_{n,m} = \frac{n}{2} \left(\frac{n}{2} + \mathcal{D} - 1 \right).$$
(9)

 $S_{n,m}(u)$ is the exact wave function of the *m*th excited state of ¹S symmetry for the radius $R_{n,m}$.

If we write the ${}^{3}P$ state wave function as [20]

$${}^{3}\Psi = (\cos\theta_1 - \cos\theta_2)T(u), \tag{10}$$

where θ_1 and θ_2 are the \mathcal{D} th hyperspherical angles of the two electrons [21,22], the symmetric part satisfies the Schrödinger equation

$$\left[\frac{u^2}{4R^2} - 1\right]\frac{d^2T}{du^2} + \left[\frac{(2D+1)u}{4R^2} - \frac{D+1}{u}\right]\frac{dT}{du} + \frac{T}{u} = ET,$$
(11)

and the antisymmetric part provides an additional kinetic energy contribution $\mathcal{D}/(2R^2)$.

Substituting the power series expansion

$$T(u) = \sum_{k=0}^{\infty} t_k u^k \tag{12}$$

into (11) yields the recurrence relation

$$t_{k+2} = \frac{t_{k+1} + [k(k+2\mathcal{D})\frac{1}{4R^2} - E]t_k}{(k+2)(k+\mathcal{D}+2)}$$
(13)

with the starting values

$$\{t_0, t_1\} = \{1, 1/(\mathcal{D} + 1)\}$$
(14)

yielding the cusp condition

$$\frac{T'(0)}{T(0)} = \frac{1}{\mathcal{D}+1}.$$
 (15)

The wave function (12) reduces to the polynomial

$$T_{n,m}(u) = \sum_{k=0}^{n} t_k u^k$$
(16)

when the energy $E_{n,m}$ is a root of $t_{n+1} = 0$, and the corresponding radius $R_{n,m}$ is found from (13) which yields

$$R_{n,m}^{2}E_{n,m} = \frac{n}{2}\left(\frac{n}{2} + \mathcal{D}\right).$$
 (17)

 $T_{n,m}(u)$ is the exact wave function of the *m*th excited state of ³*P* symmetry for the radius $R_{n,m}$.

It is illuminating to begin by examining the simplest ${}^{1}S$ and ${}^{3}P$ polynomial solutions. Except in the $\mathcal{D} = 1$ case, the first ${}^{1}S$ solution has

$$R_{1,0} = \sqrt{\frac{(2\mathcal{D}-1)(2\mathcal{D}-2)}{8}}, \qquad E_{1,0} = \frac{1}{\mathcal{D}-1}, \quad (18)$$

and the first ${}^{3}P$ solution has

$$R_{1,0} = \sqrt{\frac{(2\mathcal{D}+1)(2\mathcal{D}+2)}{8}}, \qquad E_{1,0} = \frac{1}{\mathcal{D}+1}.$$
 (19)

These are tabulated for $\mathcal{D} = 1, 2, 3, 4$, together with the associated wave functions, in Table I.

In the $\mathcal{D} = 1$ case (i.e., two electrons on a circle), the first singlet and triplet solutions have $E_{2,0} = 2/3$ and $E_{1,0} = 1/2$, respectively, for the same value of the radius $(\sqrt{6}/2 \approx 1.2247)$. The corresponding wave functions are related by $S_{2,0} = uT_{1,0}$. Unlike $T_{1,0}$, the singlet wave function $S_{2,0}$ vanishes at u = 0 and exhibits a second-order cusp condition, as shown in (6).

For the 2-spherium ($\mathcal{D} = 2$ case), we know from our previous work [19] that the HF energy of the lowest ¹S state is $E_{\rm HF} = 1/R$. It follows that the exact correlation energy for $R = \sqrt{3}/2$ is $E_{\rm corr} = 1 - 2/\sqrt{3} \approx -0.1547$, which is much larger than the limiting correlation energies of the heliumlike ions (-0.0467) [26] or Hooke's law atoms (-0.0497) [27]. This confirms our view that electron correlation on the surface of a sphere is qualitatively different from that in three-dimensional physical space.

The 3-spherium ($\mathcal{D} = 3$ case), in contrast, possesses the same singlet and triplet cusp conditions—Eqs. (7) and (15) —as those for electrons moving in three-dimensional physical space. Indeed, the wave functions in Table I

$$S_{1,0}(u) = 1 + u/2$$
 $(R = \sqrt{5/2}),$ (20)

$$T_{1,0}(u) = 1 + u/4$$
 $(R = \sqrt{7})$ (21)

have precisely the form of the ansatz used in Kutzelnigg's

TABLE I. Radius *R*, energy *E*, and wave function S(u) or T(u) of the first ¹S and ³P polynomial solutions for two electrons on a \mathcal{D} -sphere.

State	\mathcal{D}	2 <i>R</i>	Е	S(u) or $T(u)$
¹ <i>S</i>	1	$\sqrt{6}$	2/3	u(1 + u/2)
	2	$\sqrt{3}$	1	1 + u
	3	$\sqrt{10}$	1/2	1 + u/2
	4	$\sqrt{21}$	1/3	1 + u/3
^{3}P	1	$\sqrt{6}$	1/2	1 + u/2
	2	$\sqrt{15}$	1/3	1 + u/3
	3	$\sqrt{28}$	1/4	1 + u/4
	4	$\sqrt{45}$	1/5	1 + u/5

TABLE II. Radii $R_{n,m}$ and energies $E_{n,m}$ for ¹S states of two electrons on a \mathcal{D} -sphere ($\mathcal{D} = 1, 2, 3$).

	$\mathcal{D} = 1$				$\mathcal{D}=2$				$\mathcal{D}=3$			
n/m	0	1	2	3	0	1	2	3	0	1	2	3
						Radius						
1					0.8660				1.5811			
2	1.2247				2.6458				4.0620			
3	3.3912				5.4312	1.4150			7.5154	2.2404		
4	6.5439	1.9178			9.2211	3.7379			11.961	5.3320		
5	10.693	4.7071			14.012	7.0848	1.9256		17.404	9.3775	2.8554	
6	15.841	8.4583	2.5522		19.804	11.448	4.7683		23.846	14.410	6.5350	
7	21.989	13.199	5.9404		26.597	16.817	8.6593	2.4123	31.287	20.439	11.158	3.4415
8	29.136	18.936	10.277	3.1515	34.389	23.190	13.583	5.7566	39.728	27.466	16.768	7.6903
						Energy						
1					1.0000				0.5000			
2	0.6667				0.2857				0.1818			
3	0.1957				0.1271	1.8729			0.0930	1.0459		
4	0.0934	1.0875			0.0706	0.4294			0.0559	0.2814		
5	0.0547	0.2821			0.0446	0.1743	2.3597		0.0371	0.1279	1.3798	
6	0.0359	0.1258	1.3817		0.0306	0.0916	0.5278		0.0264	0.0722	0.3512	
7	0.0253	0.0703	0.3471		0.0223	0.0557	0.2100	2.7065	0.0197	0.0461	0.1546	1.6253
8	0.0188	0.0446	0.1515	1.6110	0.0169	0.0372	0.1084	0.6035	0.0152	0.0318	0.0854	0.4058

increasingly popular R12 methods [5,6]. Moreover, it can be shown [28] that, as $R \rightarrow 0$, the correlation energy $E_{\rm corr}$ approaches -0.0476, which nestles between the corresponding values for the heliumlike ions (-0.0467) [26] and the Hooke's law atom (-0.0497) [27]. Again, this suggests that the $\mathcal{D} = 3$ model ("electrons on a hypersphere") bears more similarity to common physical systems than the $\mathcal{D} = 2$ model ("electrons on a sphere"). Numerical values of the energies and radii, for polynomial wave functions in $\mathcal{D} = 1, 2, 3$, are reported in Tables II (for ¹S states) and III (for ³P states).

For fixed \mathcal{D} , the radii increase with *n* but decrease with *m*, and the energies behave in exactly the opposite way. As *R* (or, equivalently, *n*) increases, the electrons tend to localize on opposite sides of the sphere, a phenomenon known as Wigner crystallization [29], which has also been

TABLE III. Radii $R_{n,m}$ and energies $E_{n,m}$ for ³P states of two electrons on a \mathcal{D} -sphere ($\mathcal{D} = 1, 2, 3$).

	$\mathcal{D} = 1$				$\mathcal{D} = 2$				$\mathcal{D}=3$			
n/m	0	1	2	3	0	1	2	3	0	1	2	3
						Radius						
1	1.2247				1.9365				2.6458			
2	3.3912				4.7958				6.2048			
3	6.5439	1.9178			8.6227	2.6738			10.718	3.4111		
4	10.693	4.7071			13.435	6.2041			16.205	7.6748		
5	15.841	8.4583	2.5522		19.241	10.665	3.3588		22.678	12.852	4.1285	
6	21.989	13.199	5.9404		26.043	16.094	7.5340		30.142	18.979	9.0701	
7	29.136	18.936	10.277	3.1515	33.842	22.505	12.615	4.0095	38.600	26.077	14.897	4.8130
8	37.283	25.671	15.599	7.1177	42.640	29.907	18.650	8.8083	48.054	34.155	21.654	10.411
						Energy						
1	0.5000				0.3333				0.2500			
2	0.1739				0.1304				0.1039			
3	0.0876	1.0196			0.0706	0.7343			0.0588	0.5801		
4	0.0525	0.2708			0.0443	0.2078			0.0381	0.1698		
5	0.0349	0.1223	1.3433		0.0304	0.0989	0.9972		0.0267	0.0832	0.8067	
6	0.0248	0.0689	0.3401		0.0221	0.0579	0.2643		0.0198	0.0500	0.2188	
7	0.0186	0.0439	0.1491	1.5858	0.0168	0.0380	0.1210	1.1974	0.0153	0.0335	0.1025	0.9821
8	0.0144	0.0303	0.0822	0.3948	0.0132	0.0268	0.0690	0.3093	0.0121	0.0240	0.0597	0.2583

observed in other systems [11,30]. As a result, for large R, the ground state energies of both the singlet and the triplet state approach 1/(2R). Analogous behavior is observed when $\mathcal{D} \rightarrow \infty$ [31,32].

In conclusion, we have shown that the system of two electrons, interacting via a Coulomb potential but constrained to remain on a \mathcal{D} -sphere, can be solved exactly for an infinite set of values of the radius *R*. We find that the 3-spherium ($\mathcal{D} = 3$ model), wherein the electrons are confined to a three-dimensional surface of a four-dimensional ball, has greater similarity to normal physical systems than the more familiar $\mathcal{D} = 2$ case.

We believe that our results will be useful in the future development of correlation functionals within density-functional theory [33], intracule functional theory [34–39], and explicitly correlated methods [5–8]. They also shed new light on dimension-dependent correlation effects and may be used as an alternative system for studying quantum dots [40].

P. M. W. G. thanks the APAC Merit Allocation Scheme for a grant of supercomputer time and the Australian Research Council (Grant No. DP0664466) for funding.

*Corresponding author.

peter.gill@anu.edu.au

- [1] A.G. Ushveridze, *Quasi-Exactly Solvable Models in Quantum Mechanics* (Institute of Physics, Bristol, 1994).
- [2] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
- [3] W. Kohn and L. Sham, Phys. Rev. 140, A1133 (1965).
- [4] R. G. Parr and W. Yang, *Density Functional Theory for Atoms and Molecules* (Oxford University, New York, 1989).
- [5] W. Kutzelnigg, Theor. Chim. Acta 68, 445 (1985).
- [6] W. Kutzelnigg and W. Klopper, J. Chem. Phys. 94, 1985 (1991).
- [7] T. M. Henderson and R. J. Bartlett, Phys. Rev. A **70**, 022512 (2004).
- [8] D. Bokhan, S. Ten-no, and J. Noga, Phys. Chem. Chem. Phys. 10, 3320 (2008).
- [9] N.R. Kestner and O. Sinanoglu, Phys. Rev. 128, 2687 (1962).
- [10] S. Kais, D.R. Herschbach, and R.D. Levine, J. Chem. Phys. 91, 7791 (1989).
- [11] M. Taut, Phys. Rev. A 48, 3561 (1993).

- [12] G. S. Ezra and R. S. Berry, Phys. Rev. A 25, 1513 (1982).
- [13] G.S. Ezra and R.S. Berry, Phys. Rev. A 28, 1989 (1983).
- [14] P.C. Ojha and R.S. Berry, Phys. Rev. A 36, 1575 (1987).
- [15] R.J. Hinde and R.S. Berry, Phys. Rev. A 42, 2259 (1990).
- [16] J. W. Warner and R. S. Berry, Nature (London) 313, 160 (1985).
- [17] M. Seidl, J. P. Perdew, and S. Kurth, Phys. Rev. Lett. 84, 5070 (2000).
- [18] M. Seidl, Phys. Rev. A 75, 062506 (2007).
- [19] P.-F. Loos and P. M. W. Gill, Phys. Rev. A 79, 062517 (2009).
- [20] G. Breit, Phys. Rev. 35, 569 (1930).
- [21] J.D. Louck, J. Mol. Spectrosc. 4, 298 (1960).
- [22] D.L. Knirk, Phys. Rev. Lett. **32**, 651 (1974).
- [23] *Heun's Differential Equations*, edited by A. Ronveaux (Oxford University, Oxford, 1995).
- [24] A.D. Polyanin and V.F. Zaitsev, Handbook of Exact Solutions for Differential Equations (Chapman & Hall/ CRC, London, 2003).
- [25] T. Kato, Commun. Pure Appl. Math. 10, 151 (1957).
- [26] J. D. Baker, D. E. Freund, R. N. Hill, and J. D. Morgan III, Phys. Rev. A 41, 1247 (1990).
- [27] P.M.W. Gill and D.P. O'Neill, J. Chem. Phys. **122**, 094110 (2005).
- [28] P.F. Loos, A.T.B. Gilbert, and P.M.W. Gill (to be published).
- [29] E. Wigner, Phys. Rev. 46, 1002 (1934).
- [30] D.C. Thompson and A. Alavi, Phys. Rev. B **69**, 201302(R) (2004).
- [31] L.G. Yaffe, Rev. Mod. Phys. 54, 407 (1982).
- [32] D. Z. Goodson and D. R. Herschbach, J. Chem. Phys. 86, 4997 (1987).
- [33] P. Gori-Giorgi, G. Vignale, and M. Seidl, J. Chem. Theory Comput. 5, 743 (2009).
- [34] P. M. W. Gill, D. L. Crittenden, D. P. O'Neill, and N. A. Besley, Phys. Chem. Chem. Phys. 8, 15 (2006).
- [35] E. E. Dumont, D. L. Crittenden, and P. M. W. Gill, Phys. Chem. Chem. Phys. 9, 5340 (2007).
- [36] D. L. Crittenden and P. M. W. Gill, J. Chem. Phys. **127**, 014101 (2007).
- [37] D.L. Crittenden, E.E. Dumont, and P.M.W. Gill, J. Chem. Phys. **127**, 141103 (2007).
- [38] Y. A. Bernard, D. L. Crittenden, and P. M. W. Gill, Phys. Chem. Chem. Phys. **10**, 3447 (2008).
- [39] J. K. Pearson, D. L. Crittenden, and P. M. W. Gill, J. Chem. Phys. 130, 164110 (2009).
- [40] T. M. Henderson, K. Runge, and R. J. Bartlett, Chem. Phys. Lett. 337, 138 (2001).