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ABSTRACT
The accurate prediction of ionization potentials (IPs) is central to understanding molecular reactivity, redox behavior, and spectroscopic
properties. While vertical IPs can be accessed directly from electronic excitations at fixed nuclear geometries, the computation of adiabatic
IPs requires nuclear gradients of the ionized states, posing a major theoretical and computational challenge, especially within correlated
frameworks. Among the most promising approaches for IP calculations is the many-body Green’s function GW method, which provides
a balanced compromise between accuracy and computational efficiency. Furthermore, it is applicable to both finite and extended systems.
Recent work has established formal connections between GW and coupled-cluster doubles (CCD) theory, leading to the first derivation of
analytic GW nuclear gradients via a unitary CCD framework. In this work, we present an alternative, fully analytic formulation of GW nuclear
gradients based on a modified version of the traditional equation-of-motion CCD formalism, enabling the inclusion of missing correlation
effects in the traditional CCD methods.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0309945

I. INTRODUCTION

The ionization potential (IP) of a molecule, defined as the
minimum energy required to remove an electron from a neutral
species in its ground state, is a fundamental property that governs
its reactivity, redox behavior, and spectroscopic signatures. Two
main types of IPs are commonly distinguished: the vertical ioniza-
tion potential (VIP) and the adiabatic ionization potential (AIP).
These differ in whether or not nuclear relaxation of the ionic state is
considered.

The VIP refers to the energy required to remove an electron
without allowing the nuclei to move. In other words, the ionized
state is constrained to the equilibrium geometry of the neutral
molecule. This vertical transition approximates the Franck–Condon
principle and is representative of ultrafast ionization events, where
the nuclei remain effectively frozen during the electronic transition.

Experimentally, VIPs manifest as sharp, intense peaks in photoelec-
tron spectroscopy (PES), particularly when probed using ultraviolet
or x-ray photons for valence and core levels, respectively.

In contrast, the AIP accounts for full nuclear relaxation in both
the neutral and ionized states. It represents the true thermodynamic
threshold for ionization, corresponding to the energy difference
between the neutral ground state and the fully relaxed ionic ground
state. As such, AIPs are directly linked to gas-phase thermochem-
istry and redox potentials. In PES experiments, AIPs appear as the
onset of a given ionization band, while the corresponding VIP aligns
with the maximum of the corresponding band. High-resolution PES,
and in particular threshold photoelectron spectroscopy (TPES), are
capable of resolving this onset with sufficient precision to extract
both AIP and VIP from a single measurement.1

The energy difference between VIP and AIP, known as the
relaxation energy, provides insight into the structural reorganization
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of the molecule upon ionization. A large relaxation energy indicates
a significant geometric change, whereas a small value suggests that
the neutral and ionic states share similar geometries. The simultane-
ous analysis of AIP and VIP in high-resolution PES thus enables a
detailed understanding of the interplay between electronic structure
and nuclear dynamics during ionization.

From a theoretical standpoint, the evaluation of VIPs is rel-
atively straightforward. It requires knowledge of the ground-state
equilibrium geometry and the ability to compute total energies of
the neutral and cationic species at this fixed geometry. This can
be achieved using standard electronic structure methods or, more
efficiently, by computing excitation energies corresponding to elec-
tron removal (i.e., ionization) from the reference neutral ground
state.

In contrast, the calculation of AIPs is more demanding as it
involves geometry optimization of the ionized species. This requires
access to nuclear gradients of the ionized state, i.e., the first deriva-
tives of the cationic energy with respect to the nuclear coordinates.
Unlike ground-state gradients, which are routinely available in
most quantum chemistry packages,2–5 analytic gradients for charged
excited states are significantly more challenging to derive and imple-
ment,6 especially within correlated or many-body frameworks.7–10

Nonetheless, these gradients are essential to perform geometry opti-
mization, typically using a Newton–Raphson procedure, until a
stationary point corresponding to the relaxed ionic minimum is
reached.

While various computational approaches exist for access-
ing charged excitations, ranging from state-specific (e.g., ΔSCF)
to equation-of-motion/linear-response formalisms,11,12 one par-
ticularly promising method is the GW approximation13–17 from
many-body Green’s function theory.18,19 The GW formalism pro-
vides a robust framework to compute IPs20–33 and electron affini-
ties (EAs)20–22,34–37 by approximating Hedin’s equations.13,38 It
gained popularity due to its favorable balance between accuracy
and computational cost. Its results often rival those of high-
level wavefunction-based approaches, while remaining applicable
to much larger molecular systems28,33,39–55 and, importantly, peri-
odic materials.18,19 Although traditionally limited to finite systems,
equation-of-motion coupled-cluster (EOM-CC) has very recently
been extended to periodic systems as well, using both Gaussian and
plane-wave basis sets.56,57

Recently, based on the established theoretical connections58–60

between GW and coupled-cluster doubles (CCD) theory,61–66 Tölle
derived and implemented the first fully analytic GW nuclear
gradients67 (also see Refs. 68–73). His work has subsequently
been extended to the first fully analytic Bethe–Salpeter equation
(BSE)74,75 nuclear gradients,76–83 effectively generalizing the present
formalism to neutral (optical) excited states.84,85 These pioneer-
ing results exploit theoretical connections between GW and the
unitary CCD (UCCD)86–92 framework.60 However, this approach
necessitates the numerical evaluation of an infinite series of nested
(anti)commutators, which is a non-standard numerical technique in
traditional CCD implementations.

It would be, therefore, desirable to reformulate the GW nuclear
gradients to leverage the well-established traditional EOM-CCD
framework, as well as its extension to analytic properties. Unfortu-
nately, a direct application of the traditional EOM-CCD formalism
to GW is hindered by the missing correlation effects, as analyzed

in detail in Refs. 60 and 93. In this work, we demonstrate how
this obstacle can be overcome by introducing a modified ver-
sion of the traditional EOM-CCD formalism, which we refer to as
IP/EA-EOM-λ-direct-ring CCD. This approach allows (i) for the
inclusion of missing correlation effects and (ii) the derivation of ana-
lytic GW nuclear gradients within a more standard CC Lagrangian
framework.

II. THEORY
A. The GW approximation

Similar to other Green’s function approaches, the GW one-
body Green’s function G is expressed using the recursive Dyson
equation,

G = G0 +G0ΣG. (1)

The mean-field reference one-body Green’s function, G0, which,
for the current study, corresponds to the Hartree–Fock (HF)
approximation, is given by

G0(x1x2;ω) =∑
i

ϕ∗i (x1)ϕi(x2)
ω − ϵHF

i
+∑

a

ϕ∗a (x1)ϕa(x2)
ω − ϵHF

a
, (2)

where ϕp(x) and ϵHF
p are the canonical HF orbitals and their cor-

responding energies, respectively. Similarly, the exact one-body
Green’s function is expressed as

G(x1x2;ω) =∑
I

ψ∗I (x1)ψI(x2)
ω − ϵI

+∑
A

ψ∗A(x1)ψA(x2)
ω − ϵA

, (3)

where ψI(x) and ψA(x) are the so-called Dyson orbitals. The exact
Green’s function has poles at the energy differences associated with
the electron-detached (hole states) and electron-attached (particle
states) processes, namely, ϵI = EN

0 − EN−1
I and ϵA = EN+1

A − EN
0 , where

EN
0 is the ground-state energy of the neutral N-electron system

and EN−1
I and EN+1

A are the energies of the corresponding (N − 1)-
and (N + 1)-electron states, respectively. Within the quasiparti-
cle approximation, where only ionized and electron-attached states
with a dominant single-particle character are retained, the Green’s
function reduces to the quasiparticle form

G(x1x2;ω) =∑
i

ψ∗i (x1)ψi(x2)
ω − ϵi

+∑
a

ψ∗a (x1)ψa(x2)
ω − ϵa

, (4)

where εi and εa denote the hole and particle quasiparticle energies,
respectively. In the following, the standard convention is used for the
orbital indices, with i, j, k, . . . denoting hole states, a, b, c, . . . denot-
ing particle states, and p, q, r, . . . indicating either occupied or virtual
orbitals.

The dynamical self-energy Σ describes correlation effects
beyond the mean-field approximation. In GW, the self-energy
is constructed using the dynamically screened Coulomb interac-
tion computed at the random-phase approximation (RPA) level of
theory94–100 and is given by

Σpq(ω) =∑
iμ

(pi∣μ)(μ∣qi)
ω − ϵi +Ωμ

+∑
aμ

(ap∣μ)(μ∣aq)
ω − ϵa −Ωμ

. (5)

J. Chem. Phys. 164, 044122 (2026); doi: 10.1063/5.0309945 164, 044122-2

Published under an exclusive license by AIP Publishing

 27 January 2026 13:48:20

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

The quasiparticle energies and the effective two-electron integrals,

(pq∣μ) =∑
ia
[⟨pa∣qi⟩xa

i,μ + ⟨pi∣qa⟩yi
a,μ], (6a)

(μ∣pq) =∑
ia
[⟨qi∣pa⟩xa∗

i,μ + ⟨qa∣pi⟩yi∗
a,μ], (6b)

are required to construct the elements of the self-energy. The index
μ enumerates the solutions to the RPA problem where xa

i,μ and yi
a,μ

are the elements of the eigenvector solutions corresponding to the
excitation energy Ωμ (see Sec. II B 1). The two-electron integrals
⟨pq∣rs⟩ are given in Dirac notation, i.e., ⟨12∣12⟩.

By substituting Eqs. (2) and (5) into Eq. (1), one finds that the
quasiparticle energies εp and corresponding Dyson orbitals ψp(x)
are obtained as the eigenvalues and eigenvectors of the following
non-linear, frequency-dependent Fock-like operator,

[F̂ + Σ(ω = ϵp)]ψp(x) = ϵpψp(x). (7)

Here, F̂ is the usual Fock operator, including Hartree and exchange
contributions, and the self-energy accounts for correlation effects.
Although the so-called quasiparticle equation defined in Eq. (7)
acts as the working equation for GW, its non-linear and dynamical
nature makes it difficult to solve. In practice, it is solved iteratively
due to the dependence of the self-energy on the quasiparticle ener-
gies [see Eq. (5)]. A hierarchy of approximations has been developed
to address this issue, each defined by how the self-energy is con-
structed and updated at each iteration, leading to various levels
of self-consistency (e.g., evGW101–105 and qsGW50,106–112). Further
details can be found in Ref. 17. The widely used G0W0 approx-
imation corresponds to a single-shot calculation in which both
the Green’s function and the screened interaction are fixed.113–119

When combined with the diagonal approximation, the G0W0 quasi-
particle energies are commonly obtained by solving the following
one-dimensional, nonlinear equation for each state p:

ϵp = ϵHF
p + Σpp(ω = ϵp). (8)

Green’s function approaches are designed to describe proper-
ties of the many-body electronic state. In the case of G0W0, the
quasiparticle energies, associated with IPs in the hole space and EAs
in the particle space, are improved relative to the mean-field refer-
ence. However, the total energy of the reference state is not uniquely
defined. Various functionals have been proposed to calculate the
correlation energy, including the Klein functional,120 which is based
on G, the Luttinger–Ward functional,121–123 which is based on Σ,
and the Galitskii-Migdal functional.124,125 These expressions yield
identical results only when a fully self-consistent Green’s function
(beyond the quasiparticle approximation) is used.126–134 In other
words, for non-self-consistent schemes, such as G0W0, they gener-
ally differ. Consequently, the total energy for the electron-detached
or electron-attached state is also not uniquely defined within the
G0W0 approximation. In the present work, the correlation energy of
the ground state is evaluated at the RPA level (see Sec. II B), which
can be shown to be equivalent to the Klein functional.

By analogy with the extended Koopmans’ theorem (EKT), in
which the total energy of a charged state is approximated as

EEKT
p = EHF

0 ∓ ϵHF
p , (9)

where EHF
0 is the HF energy of the reference state, we define the

G0W0 total energy as

EG0W0
p = EG0W0

0 ∓ ϵG0W0
p , (10)

where EG0W0
0 consists of the mean-field HF energy and the RPA

correlation energy, that is,

EG0W0
0 = EHF

0 + ERPA
c . (11)

Furthermore, Eq. (8) is not well-suited for deriving analytic
derivatives. Unlike in standard Lagrangian formulations for non-
variational ansätze, the identification of wavefunction parameters
is obscured by the frequency dependence of the self-energy. In
this work, we derive a Lagrangian formulation that correctly repro-
duces the electronic energy of the charged states at the G0W0 level
[see Eq. (10)]. This formulation exploits the connection between
the RPA and a particular approximation to the CC expansion,
as discussed in Sec. II B. Through this connection, an exact
block-diagonalization of the RPA matrix is achieved. In Sec. II C,
this block-diagonalization is used to reformulate the nonlinear,
frequency-dependent G0W0 problem into an EOM-CC problem.
The resulting formalism not only provides a clear definition of the
electron-detached (or-attached) energies but also enables a standard
Lagrangian construction for computing analytic derivatives.

B. Connection between RPA and drCCD
1. RPA

The RPA equations can be cast as a linear eigenvalue problem,
HRPA ⋅ R = R ⋅ E, which takes the form of Casida’s equations,135

( A B
−B∗ −A∗

) ⋅ (X Y∗

Y X∗
) = (X Y∗

Y X∗
) ⋅ (Ω 0

0 −Ω), (12)

where the elements of matrices A and B are given by

Aia,jb = ⟨Φa
i ∣Ĥ∣Φb

j ⟩, (13a)

Bia,jb = ⟨Φab
ij ∣Ĥ∣Φ0⟩. (13b)

The determinants ∣Φ0⟩, ∣Φa
i ⟩, and ∣Φab

ij ⟩ are the reference, singly,
and doubly excited determinants constructed within the mean-field
orbital space. The matrices X and Y are associated with single excita-
tions and de-excitations, respectively, and gather the elements of the
eigenvectors, xa

i,μ and yi
a,μ, previously defined in Sec. II A. The diag-

onal matrix Ω contains the positive excitation energy eigenvalues
Ωμ.

For the purposes of the GW approximation, the so-called
direct version of RPA is considered. This approximation only affects
the two-electron part of the normal-ordered Hamiltonian ĤN = F̂N
+ V̂N, with F̂N = ∑pq fpq{a†

paq} being the normal-ordered Fock oper-
ator. In particular, the exchange contribution in the fluctuation
potential,

V̂N =
1
4∑pqrs

⟨pq∣∣rs⟩{a†
pa†

qasar}

= 1
4∑pqrs

(⟨pq∣rs⟩ − ⟨pq∣sr⟩){a†
pa†

qasar}, (14)
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is neglected. In this form, only the direct (Coulomb) component
of the electron–electron interaction is retained, while the exchange
term is omitted, consistent with the assumptions underlying the
GW and direct RPA formalisms. Operators a†

p and ap are the
usual fermionic creators and annihilators, respectively, and the curly
braces denote normal ordering with respect to the Fermi vacuum.
Under this approximation, the matrix elements defined in Eq. (13)
reduce to

Aia,jb = (ϵHF
a − ϵHF

i )δijδab + ⟨aj∣ib⟩, (15a)

Bia,jb = ⟨ab∣ij⟩, (15b)

and the direct RPA correlation energy is given by the plasmon (or
trace) formula,98,136–138

ERPA
c = 1

2

⎡⎢⎢⎢⎢⎣
∑
μ
Ωμ − Tr (A)

⎤⎥⎥⎥⎥⎦
. (16)

In the remainder of this article, we will drop the term “direct” when
referring to RPA, as it is always implied.

2. drCCD
It has been previously shown that RPA is equivalent to the

direct-ring (dr) CCD (drCCD) truncation.93,139–144 This approach
constitutes an approximation to standard CCD, where the cluster
operator includes all double excitations,

T̂2 =
1
4∑ijab

tab
ij a†

aa†
bajai. (17)

Within the “ring” approximation, only those terms of the similarity-
transformed Hamiltonian that correspond to loop (ring) diagrams
are retained. It is well known that the ring approximation comes at
the cost of breaking the fundamental antisymmetry of the electronic
wavefunction.140 A bosonic character is introduced to a fundamen-
tally fermionic system and certain contractions among individual
fermionic particle operators are ignored. As a result, the wavefunc-
tion fails to remain fully antisymmetric under electron exchange. In
addition, only the direct Coulomb contribution of the fluctuation
potential contributes, that is, excluding exchange. A modified set of
rules for computing the drCCD Hamiltonian,

H̃CCD = e−T̂ 2 ĤNeT̂ 2 ≈ H̃dr (18)

using diagrammatic techniques is presented in supplementary
material, Sec. I.

The drCCD amplitude equations are given by projections of the
drCCD Hamiltonian onto doubly excited determinants,

⟨Φab
ij ∣H̃dr∣Φ0⟩ != 0

B + A ⋅ t + t ⋅ A∗ + t ⋅ B∗ ⋅ t = 0,
(19)

with a formal scaling of O(M6), where M denotes the system size.
The matrix t collects the drCCD amplitudes tia,jb = tab

ij . Within a
standard CCD treatment, the correlation energy is given by

ECCD
c = ⟨Φ0∣H̃CCD∣Φ0⟩ =

1
4∑ijab

tab
ij ⟨ij∣∣ab⟩

= 1
2∑ijab

tab
ij ⟨ij∣ab⟩, (20)

where the antisymmetric form of the CCD amplitudes (tab
ij = −tab

ji

= tba
ji ) has been exploited. Applying the direct treatment within

drCCD (where the amplitudes are not antisymmetric) is equiva-
lent to using the last line of Eq. (20) for the correlation energy
expression,140

EdrCCD
c = ⟨Φ0∣H̃dr∣Φ0⟩ =

1
2∑ijab

tab
ij ⟨ij∣ab⟩ = 1

2
Tr (B∗ ⋅ t). (21)

Thus, an effective factor of 2 arises in the calculation of the
expectation values of the drCCD Hamiltonian.

It can be further shown140 that the drCCD correlation energy
coincides with the RPA correlation energy,

EdrCCD
c = ERPA

c . (22)

The latter becomes apparent when the term ∑μΩμ in Eq. (16) is
rewritten as the trace of a block-diagonal RPA matrix, as seen in
Eq. (40).

In order to obtain analytic derivatives of the RPA correla-
tion energy, which is part of the total G0W0 electronic energy [see
Eq. (10)], the method of Lagrange multipliers is employed.145,146

Using the established connection to the drCCD approximation,147

the corresponding Lagrangian is defined as

LdrCCD
c = ⟨Φ0∣(1 + Λ̂2)H̃dr∣Φ0⟩, (23)

with the λ-amplitude equations obtained by enforcing the following
stationarity conditions:

∂LdrCCD
c

∂tab
ij

= ⟨Φ0∣(1 + Λ̂2)
∂H̃dr

∂tab
ij
∣Φ0⟩ != 0. (24)

The de-excitation operator Λ̂2 is given by

Λ̂2 =
1
4∑abij

λij
aba†

i a†
j abaa. (25)

The λ Lagrange multipliers can also be viewed as wavefunction para-
meters of the CC bra state within the bivariational formulation of
CC.148–150 Equation (24) can then be recast in matrix form as

B∗ + λ ⋅ (A + A∗ + B∗ ⋅ t + t ⋅ B∗) = 0, (26)

exhibiting a formal scaling of O(M6). The λ amplitude equations
are linear in λ, which collects the elements of the λ amplitudes
as λia,jb = λij

ab. A diagrammatic derivation accompanied by working
equations can be found in supplementary material, Sec. II.
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3. Block diagonalization of the RPA Hamiltonian
Previously, it has been shown that the exact correspondence

between G0W0 and EOM-CC requires the block diagonalization of
the RPA matrix,60

U† ⋅HRPA ⋅U = (
Ã 0
0 −Ã∗

). (27)

This can be achieved either through a Bogoliubov transforma-
tion or through an alternative unitary transformation, e.g., a uni-
tary drCCD (drUCCD) treatment.60 In contrast, the similarity-
transformed drCCD Hamiltonian is not equivalent to a unitary
transformation even if it manages to reproduce the correlation
energy ERPA

c . The differences stem from the fact that the similarity
transformation only treats the excitation part of Eq. (12) and does
not fully account for both forward- and backward-time-ordered
bubble diagrams present in GW, as first discussed in Ref. 58.

More precisely, the drCCD Hamiltonian corresponds to the
following treatment of the RPA matrix:

H̄RPA =M−1 ⋅HRPA ⋅M, (28)

with

M = (1 t
0 1
), M−1 = (1 −t

0 1
). (29)

This transformation leads to a new eigenvalue equation of the form
H̄RPA ⋅ R̄ = R̄ ⋅ E with

H̄RPA = (
A + t ⋅ B∗ B + A ⋅ t + t ⋅ A∗ + t ⋅ B∗ ⋅ t
−B∗ −B∗ ⋅ t − A∗

)

= (A + t ⋅ B∗ 0
−B∗ −B∗ ⋅ t − A∗

) (30)

and

R̄ =M−1 ⋅ R = (X − t ⋅ Y Y∗ − t ⋅ X∗

Y X∗
) = (X̄ 0

Y X∗
), (31)

where X̄ = X − t ⋅ Y . The upper right block of H̄RPA vanishes as it
represents the drCCD amplitude equations given by Eq. (19). In
addition, it can be shown that

t = Y∗ ⋅ X−1∗. (32)

We note that the formulation presented here to connect RPA
to drCCD differs from those found in the literature by a com-
plex conjugation.93,140,142 In particular, other studies introduce the
following parameterization:

T = Y ⋅ X−1 (33)

as a first step to block-diagonalize the RPA matrix. The resulting
matrix T corresponds to the deexcitation operator T̂†

2 rather than the
excitation operator T̂2 [see Eq. (17)]. Numerical differences between
the common derivations Eqs. (32) and (33) arise only when complex

orbitals are employed, as the two formulations differ only in a com-
plex conjugation. This is the case, for example, in the presence of a
magnetic field as used in Ref. 151. Formally, however, the current
derivation is consistent in defining T̂2 as an excitation operator and
not as a de-excitation operator.

In order to account for the contributions necessary to repli-
cate the block diagonal structure of Eq. (28), a second similarity
transformation is introduced,

M̄ = (1 0
λ 1
), M̄−1 = ( 1 0

−λ 1
). (34)

The transformed problem reads H̃RPA ⋅ R̃ = R̃ ⋅ E, with

H̃RPA = M̄−1 ⋅ H̄RPA ⋅ M̄

= ( A + t ⋅ B∗ 0
−[B∗ + λ ⋅ (A + A∗ + B∗ ⋅ t + t ⋅ B∗)] −B∗ ⋅ t − A∗

)

(35)

and

R̃ = M̄−1 ⋅ R̄ = ( X̄ 0
−λ ⋅ X̄ + Y X∗

). (36)

The lower left block of Eq. (35) vanishes as it is simply the neg-
ative of the λ-amplitude equations given by Eq. (26). Accord-
ingly, it can be shown that the λ amplitudes are connected to the
RPA parameters using λ = Y ⋅ X̄ −1. The final form for the doubly
similarity-transformed RPA matrix in a block-diagonal form is given
by

H̃RPA = (
A + t ⋅ B∗ 0

0 −(A∗ + B∗ ⋅ t)), (37a)

R̃ = (X̄ 0
0 X∗

). (37b)

We note that the matrix A is Hermitian (A∗ = A⊺, where the super-
script ⊺ denotes the transpose of the matrix) and the matrices B and t
are symmetric (B = B⊺ and t = t⊺). The de-excitation block can thus
be rewritten as

A∗ + B∗ ⋅ t = (A + t ⋅ B∗)⊺. (38)

As a result, the similarity-transformed RPA problem can be recast in
the form of an expectation value,

(X∗ 0
0 X̄

)
⊺

⋅ (A + t ⋅ B∗ 0
0 −(A + t ⋅ B∗)⊺) ⋅ (

X̄ 0
0 X∗

) = (Ω 0
0 −Ω),

(39)
which can be further simplified to

X† ⋅ (A + t ⋅ B∗) ⋅ X̄ = Ω. (40)

This equation demonstrates that X̄ is the right eigenvector of the
transformed RPA problem corresponding to the left eigenvector X†,
where the superscript † denotes the Hermitian conjugate.
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This block-diagonalization reduces the dimensionality of the
original RPA problem by eliminating the coupling between excita-
tions and de-excitations. In addition, it establishes an exact relation-
ship between the original RPA eigenvectors, X and Y , the left and
right eigenvectors, X and X̄ of the resulting non-Hermitian matrix,
and the drCCD parameters, t and λ.

It should be noted that the second similarity transformation
is only needed to fully block diagonalize the RPA matrix, but the
RPA problem can be represented in a reduced dimensionality using
only the drCCD amplitudes [see Eqs. (30) and (31)]. In particu-
lar, Eq. (40) can be alternatively derived using an excitation-energy
EOM-CC treatment.93,144 An EOM-singles (EOM-S) ansatz is used
on the drCCD Hamiltonian, which yields the following right and left
eigenvalue problems:

⟨Φa
i ∣[H̃dr, R̂1,μ]∣Φ0⟩ = Ωμ⟨Φa

i ∣R̂1,μ∣Φ0⟩, (41a)

⟨Φ0∣L̂1,μ(H̃dr − EdrCCD
c )∣Φa

i ⟩ = ⟨Φ0∣L̂1,μ∣Φa
i ⟩Ωμ. (41b)

These can be rewritten in matrix form as

(A + t ⋅ B∗) ⋅ R1 = R1 ⋅Ω, (42a)

L1 ⋅ (A + t ⋅ B∗) = Ω ⋅ L1. (42b)

In this way, the right-EOM operator, R̂1,μ = ∑ia ra
i,μa†

aai, can be iden-
tified to the matrix X̄, and the left-EOM operator, L̂1,μ = ∑ia lia,μa†

i aa,
to the matrix X†. Note that the parameterization in Eq. (32) directly
influences the identification of the EOM eigenvectors to the RPA
parameters. Previous formulations in the literature93,144 are unclear
whether T̂†

2 is used instead of T̂2. This hinders the correct identifi-
cation of left and right eigenvectors, and numerical differences are
not limited to a complex conjugation. In particular, the right-EOM
vector is associated with X instead of X̄ and the other way around
for the left-EOM vector, when T̂†

2 is employed.

C. G 0W 0 through the EOM-CC lens
As we shall discuss in detail in a forthcoming publication, the

double similarity transformation described in Sec. II B 3 corresponds
to the direct-ring approximation of an extended coupled-cluster
doubles (ECCD) treatment,152–155

H̃ECCD = eΛ̂ 2 e−T̂ 2 ĤNeT̂ 2 e−Λ̂ 2. (43)

The resulting approximated Hamiltonian, referred to here as the
λ−drCCD transformation, is given by

H̃ECCD ≈ H̃λ−dr = H̃dr + [Λ̂2, H̃dr], (44)

where the second similarity-transformation truncates exactly after
the first-order commutator within the direct-ring approxima-
tion. The λ-direct-ring transformation includes all de-excitations
(i.e., backward time-ordered bubble diagrams) that are missing
in the standard drCCD similarity transformation compared to a
unitary transformation, as discussed in Sec. II B 3.

1. The IP/EA-EOM-λ-drCCD expectation value
It has been shown that the quasiparticle equation [see Eq. (8)]

can be recast as an eigenvalue problem resulting from an IP/EA
equation-of-motion (IP/EA-EOM) approach acting on a block-
diagonalized Hamiltonian, as mentioned in Sec. II B 3.59,156 Here,
we make use of H̃λ−dr, as defined in Eq. (44). In particular, the
excitation space is chosen as the singles and doubles IP excitations
(i.e., 1h and 2h1p, respectively) and EA de-excitations (i.e., 1p and
2p1h, respectively),

R̂ IP/EA =∑
I

RIP/EA
I ĉIP/EA

I =∑
I

RIP
I ĉIP

I +∑
I

REA
I (ĉ EA

I )
†

= RIP
1 ĉIP

1 + RIP
2 ĉIP

2 + REA
1 (ĉ EA

1 )
† + REA

2 (ĉ EA
2 )

†

=∑
i

riai +∑
ijb

rb
jia

†
bajai +∑

a
raaa +∑

ajb
r j

baa†
j abaa. (45)

Here, the collective operator ĉIP/EA
I correspond to either the IP exci-

tation operator, ĉIP
I , or EA de-excitation operator, (ĉ EA

I )
†
. They

create the determinants involved in the IP/EA-EOM formalism
when acting on the reference determinant, ĉI ∣Φ0⟩ = ∣ΦI⟩, with

{∣ΦI⟩} = {∣Φi⟩, ∣Φa⟩, ∣Φba
j ⟩, ∣Φb

ji⟩}. (46)

In addition, the index pair bj in the doubles amplitudes rb
ji and r j

ba
follows the ring approximation, whereas the remaining index does
not. As a result, these indices are formally nonequivalent, in contrast
to the standard EOM-CC formulation. The resulting right and left
non-Hermitian eigenvalue problems read

⟨Φ0∣[ĉIP/EA,†
I , [H̃λ−dr, R̂ IP/EA]]

+

∣Φ0⟩

= ϵIP/EA⟨Φ0∣[ĉIP/EA,†
I , R̂ IP/EA]

+

∣Φ0⟩ (47)

and

⟨Φ0∣[L̂ IP/EA, [H̃λ−dr, ĉIP/EA
I ]]

+
∣Φ0⟩

= ϵIP/EA⟨Φ0∣[L̂ IP/EA, ĉIP/EA
I ]

+
∣Φ0⟩. (48)

The anticommutator is represented by [⋅, ⋅]
+

and the eigenvalues by
{εIP/EA}. Finding one root of the eigenvalue problems formally scales
as O(M5).

The total energy of the electron-attached or-detached state is
expressed as the sum of the HF reference energy and the correla-
tion energy at the drCCD level, augmented by the corresponding
quasiparticle energy,

EIP/EA
p = EHF

0 + EdrCCD
c ± ϵIP/EA. (49)

This result follows naturally from the EOM-CC formalism and
coincides exactly with the definition given in Eq. (10).

The eigenvalues can also be expressed in an expectation-value
form, as follows:

ϵIP/EA = ⟨Φ0∣[L̂ IP/EA, [H̃λ−dr, R̂ IP/EA]]
+
∣Φ0⟩. (50)
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By enforcing a decoupling in the 1h and 1p spaces, the EOM vector
for the collective IP and EA singles block reduces to having only one
non-zero component,

R̂IP/EA
1,p ≈∑

q
rqaqδpq = rpap. (51)

This treatment corresponds to the diagonal approximation of
G0W0. The index p explicitly enumerates the solution for clarity.
Within this approximation, the G0W0 quasiparticle energies exactly
correspond to the IP/EA-EOM eigenvalues as ϵIP/EA

p = −ϵG0W0
p .

It is again noted that the use of H̃dr instead of H̃λ−dr would
not reproduce the G0W0 quasiparticle energies, as it omits certain
contributions from the de-excitation space.60 These missing terms
are recovered through the second similarity transformation involv-
ing the de-excitation operator Λ̂2, which effectively eliminates the
remaining off-diagonal block of the RPA matrix.

Details regarding the working equations can be found in
supplementary material Sec. III. In addition, exact relations between
the G0W0 and IP/EOM-λ − drCCD parameters can be found in the
supplementary material, Sec. IV as well.

2. The Lagrangian treatment of G 0W 0

To derive an analytic expression for the derivatives of the
IP/EA-EOM eigenvalues, we introduce the following Lagrangian:

LIP/EA = ±⟨Φ0∣[L̂ IP/EA, [H̃λ−dr, R̂ IP/EA]]
+
∣Φ0⟩

∓ ϵIP/EA(⟨Φ0∣[L̂ IP/EA, R̂ IP/EA]
+
∣Φ0⟩ − 1)

+ ⟨Φ0∣(1 + Ẑ2)H̃dr∣Φ0⟩ + ⟨Φ0∣(1 + Λ̂2)[H̃dr, Ξ̂2]∣Φ0⟩,
(52)

which, by construction, reproduces the total correlation energy of
the electron-detached or-attached state,

EIP/EA
c = EdrCCD

c ± ϵIP/EA (53)

from Eq. (49). The reference correlation energy contribution is con-
tained in the third term of the Lagrangian. Regarding the sign of the
first term in the Lagrangian, the EOM expectation value is derived
as an excitation and, as such, is added for the IP case. For the EA
case, on the other hand, the expectation value corresponds to a
de-excitation and must be subtracted.

The Lagrange multipliers introduced in Eq. (52) are as follows:
(i) the EOM eigenvalue εIP/EA enforces the biorthonormality condi-
tion between the left- and right-EOM vectors in the second term; (ii)
the de-excitation operator,

Ẑ2 =
1
4∑ijab

ζ ij
aba†

i a†
j abaa (54)

includes the drCCD-amplitude equations for T̂2 [see Eq. (19)] in the
third term; and (iii) the excitation operator,

Ξ̂2 =
1
4∑ijab

ξab
ij a†

aa†
bajai (55)

includes the λ-amplitude equations for Λ̂2 [see Eq. (24)] in the fourth
term.

Enforcing the stationarity conditions on the Lagrangian [see
Eq. (52)] results in the following set of equations.

1. Stationarity with respect to the Lagrange multipliers ζ ij
ab,

∂LIP/EA

∂ζ ij
ab

!= 0 (56)

reproduces the pseudo-linear drCCD amplitude equations
[see Eq. (19)].

2. Stationarity with respect to the Lagrange multipliers ξab
ij ,

∂LIP/EA

∂ξij
ab

!= 0 (57)

reproduces the linear drCCD λ-amplitude equations [see
Eq. (24)].

3. Stationarity with respect to the left-EOM amplitudes lI ,

∂LIP/EA

∂lI
!= 0 (58)

reproduces the right eigenvalue problem [see Eq. (47)].
4. Stationarity with respect to the right-EOM amplitudes rI ,

∂LIP/EA

∂rI

!= 0 (59)

reproduces the left eigenvalue problem [Eq. (48)].
5. Stationarity with respect to the Lagrange multiplier εIP/EA,

∂LIP/EA

∂ϵIP/EA
!= 0 (60)

reproduces the biorthonormality condition,

⟨Φ0∣[L̂ IP/EA, R̂ IP/EA]
+
∣Φ0⟩ = 1. (61)

6. Stationarity with respect to the λ-amplitudes,

∂LIP/EA

∂λij
ab

!= 0 (62)

yields the inhomogeneous linear ξ amplitude equations,

∓ ⟨Φ0∣

⎡
⎢
⎢
⎢
⎢
⎣

L̂ IP/EA,
⎡
⎢
⎢
⎢
⎢
⎣

∂H̃λ−dr

∂λij
ab

, R̂ IP/EA
⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦+

∣Φ0⟩ = ⟨Φab
ij ∣[H̃dr, Ξ̂2]∣Φ0⟩. (63)

7. Stationarity with respect to the drCCD amplitudes,

∂LIP/EA

∂tab
ij

!= 0 (64)

yields the inhomogeneous linear ζ amplitude equations,

∓ ⟨Φ0∣

⎡
⎢
⎢
⎢
⎢
⎣

L̂ IP/EA,
⎡
⎢
⎢
⎢
⎢
⎣

∂H̃λ−dr

∂tab
ij

, R̂ IP/EA
⎤
⎥
⎥
⎥
⎥
⎦

⎤
⎥
⎥
⎥
⎥
⎦+

∣Φ0⟩

− ⟨Φ0∣(1 + Λ̂2)

⎡
⎢
⎢
⎢
⎢
⎣

∂H̃dr

∂tab
ij

, Ξ̂2

⎤
⎥
⎥
⎥
⎥
⎦

∣Φ0⟩ = ⟨Φ0∣(1 + Ẑ2)
∂H̃dr

∂tab
ij
∣Φ0⟩. (65)
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Since Eq. (65) includes contributions from the ξ amplitudes,
the set of linear equations in Eq. (63) has to be solved first
and is thus decoupled. The diagrammatic representation and
the derivation of working equations are presented in the
supplementary material, Sec. III.

Compared to the drUCCD approach employed in Ref. 67, the
λ–drCCD formulation avoids the need for a numerical truncation of
the otherwise non-terminating Baker–Campbell–Hausdorff (BCH)
expansion inherent to the unitary CC framework, while retaining
the same O(M6) formal scaling. This advantage, however, comes at
the cost of introducing additional sets of wavefunction parameters,
namely, the left-EOM vector, the λ amplitudes, and the ξ amplitudes.

After recasting Eq. (52) as a function of the contributions of the
one- and two-electron reduced density matrices,

LIP/EA =∑
pq
γpq fpq +

1
2∑pqrs

Γpqrs⟨pq∣rs⟩, (66)

and a subsequent Hermitization, i.e.,

L̄ IP/EA = LIP/EA + (LIP/EA)∗
2

, (67)

to derive Hermitian reduced densities,

γ̄pq =
γpq + γ∗qp

2
, Γ̄pqrs =

Γpqrs + Γ∗rspq

2
, (68)

the z-vector method can be applied to account for the orbital
relaxation.2 The resulting Lagrangian is

LIP/EA
rel = L̄ IP/EA +∑

pq
wpq( fpq − δpqϵp) +∑

pq
Ipq(Spq − δpq). (69)

The Lagrange multipliers wpq and Ipq are introduced for the diag-
onal form of the Fock matrix and the orbital orthonormality
Spq = ⟨ϕp∣ϕq⟩ = δpq, respectively. They can be assumed Hermitian
with no loss of generality. The diagonal approximation that results
in the decoupling of the singles–singles block in the EOM prob-
lem implies that the method is not invariant under rotations within
the occupied–occupied and virtual–virtual orbital subspaces. As a
consequence, the wpq amplitudes acquire non-zero components in
these blocks, even in the absence of a frozen-core approximation.
Working equations for the evaluation of wpq and Ipq are provided in
Ref. 157.

Incorporating the wpq contributions in the one-body reduced
density matrix, γrel

pq = γ̄pq + wpq, yields a final expression for the
derivative of the energy with respect to a parameter κ that depends
only on the partial derivatives of the mean-field Fock matrix
elements, the two-electron integrals, and the overlap integrals,

dEIP/EA

dκ
= ∂LIP/EA

∂κ
=∑

pq
γrel

pq
∂ fpq

∂κ
+∑

pq
Ipq

∂Spq

∂κ

+ 1
2∑pqrs

Γ̄pqrs
∂⟨pq∣rs⟩

∂κ
. (70)

Different choices for the parameter κ lead to expressing first-order
properties as analytic first-order derivatives of the energy. In the case

of κ being nuclear displacements, geometrical gradients are derived
to use in a geometry optimization calculation.

While the present derivation makes use of HF orbitals in com-
bination with the underlying Fock matrix throughout, this can be
generalized to a Kohn–Sham (KS) scheme with only minor mod-
ifications. The Fock operator at the HF level is built using the
KS orbitals for the construction of the ring-similarity transformed
Hamiltonian Eq. (18) and the λ-direct-ring Hamiltonian Eq. (44).
The main modification concerns the orbital-relaxation terms in
Eq. (69) where the KS Fock matrix has to be used in place of
the standard Fock matrix. The modified contributions within the
z-vector equations concern the calculation of the derivative of the
KS Fock matrix f KS

pq with respect to orbital rotations. Further details
on the z-vector approach in the case of KS orbitals can be found in
Ref. 158. Generalizations to other GW variants could be formulated
in the current setting, but are beyond the scope of this work.

III. COMPUTATIONAL DETAILS
For the purpose of the current work, the drCCD approximation

(energy and fully analytic properties) and the G0W0 approxima-
tion through the IP/EA-EOM-λ-drCCD formulation (energy and
fully analytic properties) were implemented in the QCUMBRE pro-
gram package.159 The integrals and the SCF solution are provided
by the MINT module160 of the CFOUR program package.161,162 The
geometry optimizer of CFOUR was also used to get the equilibrium
geometries.

The verification of the RPA and G0W0 energies was achieved
through comparison with the QUACK program package.163 Ana-
lytic one-electron properties were tested in the case of dipole
moments against numerical derivatives with finite electric-field cal-
culations. Accordingly, analytic geometric gradients were tested
against numerical differentiation by finite displacements of the
nuclear coordinates, as well as the implementation reported in
Ref. 67.

The implemented method was applied on the GW20 set23,25,164

(composed by the 20 smallest systems of the GW100 set20), where
the He, Ne, and Ar atomic systems were excluded. The results were
generated in different levels of theory for comparison and bench-
marking purposes. In particular, the optimal geometry of the neutral
system was calculated at the ground-state ADC(2), CC2, G0W0,
CCSD, and CC3 levels of theory. For the purposes of the cur-
rent study, only closed-shell configurations were targeted, even if
for some systems a triplet state may be lower in energy. To tar-
get the lowest electronic state of the cationic systems, calculations
were performed at the excited-state ADC(2), EOM-CC2, G0W0,
EOM-CCSD, and EOM-CC3 levels of theory. The methods are
presented in ascending computational cost. Formally, ADC(2) and
CC2 scale as O(M5), G0W0 and CCSD as O(M6), and CC3 as
O(M7), where M denotes the system size. This formal scaling may
be reduced by using an auxiliary basis or a Cholesky decomposi-
tion of the two-electron integrals for some of these approaches. For
EOM-CCSD, the corresponding IP-EOM-CC implementation was
used, while excitations in continuum orbitals were probed to target
the respective cationic states in the case of ADC(2), EOM-CC2, and
EOM-CC3.165 All electrons were included for the calculation of cor-
relation effects using the aug-cc-pVTZ basis set.166–169 The scheme
to generate G0W0 quasiparticle energies, as described in the previous
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TABLE I. Vertical and adiabatic ionization potentials (in eV) using the aug-cc-pVTZ basis set. The IRREP of the HOMO is reported. For the vertical IPs, the optimal geometry of
the neutral molecule at the respective level of theory has been used. For the adiabatic IPs, the energy of the ionized state at the optimal geometry calculated at the respective
level of theory has been subtracted from the optimal energy of the neutral molecule at the respective level of theory. The MAE and MSE are reported with respect to the
IP-EOM-CC3 results.

Vertical IPs Adiabatic IPs

System HOMO ADC(2) CC2 G0W0 CCSD CC3 ADC(2) CC2 G0W0 CCSD CC3

H2 σ+g 16.350 16.330 18.036 16.397 16.397 15.415 15.387 15.621 15.520 15.520
LiH σ+ 8.024 8.002 8.233 8.005 8.005 7.783 7.757 8.024 7.728 7.729
BH3 e′ 13.290 13.251 13.716 13.353 13.314 12.223 12.193 12.620 12.315 12.285
Li2 σ+g 5.178 5.155 5.348 5.235 5.235 5.073 5.057 5.240 5.121 5.121
CH4 t2 14.115 14.056 14.797 14.404 14.369 12.490 12.428 13.110 12.825 12.758
NH3 a′ 10.185 10.163 11.162 10.857 10.891 9.441 9.416 10.414 10.121 10.135
H2O b1 11.519 11.542 12.916 12.615 12.666 11.328 11.347 12.841 12.516 12.565
HF π 14.643 14.719 16.273 16.045 16.132 14.320 14.389 16.154 15.896 15.976
BN π 10.812 10.856 11.769 12.005 12.071 10.700 10.730 11.722 11.892 11.914
BeO π 8.237 7.784 9.976 10.041 9.744 7.472 6.982 9.768 9.897 8.755
LiF π 9.665 9.773 11.432 11.427 11.391a 8.785 b 10.965 10.980 10.892a

CO σ+ 14.000 13.766 14.721 14.179 13.866 13.990 13.762 14.685 14.159 13.860
N2 πu 17.108 16.999 17.267 17.314 16.851 16.899 16.771 16.963 17.051 16.461
BF σ+g 11.024 10.955 11.266 11.235 11.102 10.931 10.864 11.165 11.130 11.012
H2S b1 10.179 10.148 10.508 10.414 10.381 10.164 10.132 10.503 10.404 10.370
HCl π 12.408 12.389 12.789 12.704 12.664 12.373 12.355 12.772 12.680 12.641
F2 πg 14.124 14.156 16.122 15.562 15.756 14.101 14.149 15.854 15.397 15.591
MAE 0.635 0.652 0.359 0.107 0.667 0.603 0.307 0.163
MSE −0.587 −0.635 0.323 0.056 −0.594 −0.561 0.284 0.120

aPredictions at the IP-EOM-CC3 level for the LiF+ are non-consistent. For this reason, predictions at the CCSDT level were used. Further details can be found in the supplementary
material Sec. V.
bA geometry optimization for LiF+ at the IP-EOM-CC2 level was not possible due to the deteriorating quality of the reference CC2 wavefunction for interatomic distances near the
expected optimal geometry for the LiF+ cation. In addition, the LiF results have been excluded when calculating the MAE and MSE in all cases due to apparent qualitative differences
between the different levels of theory.

TABLE II. Interatomic distance (in Å) in the optimal geometry for the neutral Rneu and cationic Rcat linear molecules using the aug-cc-pVTZ basis set. The MAE and MSE are
reported with respect to the CC3 and IP-EOM-CC3 results.

Rneu Rcat

System ADC(2) CC2 G0W0
a CCSD CC3 ADC(2) CC2 G0W0 CCSD CC3

H2 0.7374 0.7377 0.7354 0.7430 0.7430 1.0627 1.0657 1.0578 1.0581 1.0581
LiH 1.5879 1.5883 1.5719 1.5924 1.5922 2.0544 2.0599 1.9661 2.1635 2.1633
Li2 2.7125 2.7117 2.6725 2.6623 2.6600 3.1636 3.1431 3.1278 3.1076 3.1030
HF 0.9201 0.9225 0.9097 0.9164 0.9196 1.0671 1.0753 0.9799 0.9989 1.0075
BN 1.3212 1.2972 1.2700 1.2713 1.2765 1.3691 1.3657 1.3058 1.3362 1.3489
BeO 1.3452 1.4101 1.3077 1.3200 1.3621 1.6012 1.6097 1.4026 1.3975 1.6061
LiF 1.5817 1.5880 1.5641 1.5722 1.5762b 2.7302 c 1.9711 1.9600 2.0344b

CO 1.1342 1.1442 1.1150 1.1241 1.1335 1.1203 1.1351 1.0923 1.1067 1.1234
N2 1.1097 1.1167 1.0830 1.0929 1.1007 1.1712 1.1853 1.1489 1.1560 1.1869
BF 1.2640 1.2699 1.2521 1.2629 1.2686 1.2109 1.2163 1.1994 1.2075 1.2160
HCl 1.2710 1.2717 1.2649 1.2728 1.2751 1.3212 1.3222 1.2979 1.3138 1.3156
F2 1.3977 1.4152 1.3641 1.3918 1.4137 1.3545 1.3872 1.2608 1.2997 1.3145
MAE 0.0137 0.0148 0.0196 0.0087 0.0853 0.0302 0.0597 0.0318
MSE 0.0051 0.0127 −0.0176 −0.0083 0.0624 0.0111 −0.0556 −0.0310

aRPA results are used for the neutral system at the G0W0 level of theory.
bPredictions at the IP-EOM-CC3 level for the LiF+ are non-consistent. For this reason, predictions at the CCSDT level were used. Further details can be found in the supplementary
material, Sec. V.
cA geometry optimization for LiF+ at the IP-EOM-CC2 level was not possible due to the deteriorating quality of the reference CC2 wavefunction for interatomic distances near the
expected optimal geometry for the LiF+ cation. In addition, the LiF results have been excluded when calculating the MAE and MSE in all cases due to apparent qualitative differences
between the different levels of theory.
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paragraphs, corresponds to an η parameter of 0 on top of canonical
restricted HF orbitals. In the following discussion, the RPA ground-
state energy for the neutral system calculated via the drCCD scheme
can be assumed when referring to G0W0 results.

All calculations were performed using the QCUMBRE159 and
CFOUR program packages.160–162 A double convergence criterion of
10−7Eh for the energy difference and 10−7 for the DIIS error was used
for the HF calculation. Accordingly, a 10−7 criterion was used for the
norm of the residual vector in the linear solver for the drCCD and
λ amplitudes and in the Davidson algorithm for the excited-state cal-
culations. For the geometry optimizations, a convergence criterion
of 10−6 Eha−1

0 was used for the gradient norm in the quasi-Newton
algorithm.

IV. RESULTS
In the following paragraphs, results regarding the closed-shell

states of the neutral systems and the corresponding lowest in energy
states of the cationic systems in the molecular subset of the GW20 set

are presented. Vertical IPs were calculated as the energy difference
between the ionized-state and ground-state energy at the geome-
try optimized for the neutral system at the corresponding level of
theory. Instead, for the calculation of the adiabatic IPs, the same
ground-state energy was used in combination with the ionized-state
energy calculated at the geometry optimized for the cationic sys-
tem at the corresponding level of theory. The IPs are collected in
Table I, where the irreducible representation (IRREP) of the high-
est occupied molecular orbital (HOMO) is also reported. In the
present calculation, the lowest-energy cationic state consistently cor-
responds to removing an electron from the HOMO. In Tables II and
III, the geometric parameters of the optimal geometries of the neu-
tral and the cationic systems are presented. Intermolecular distances
for diatomic molecules are reported in Table II. The point group
(PG) of the neutral and cationic systems in the case of polyatomic
molecules, accompanied by a description of the reported geometri-
cal parameters, can be found in Table III. In Tables I and II, the mean
absolute error (MAE) and mean signed error (MSE) have been cal-
culated with respect to the CC3 and IP-EOM-CC3 results. The only

TABLE III. Geometric parameters in the optimal geometry for the neutral and cationic polyatomic molecules using the aug-
cc-pVTZ basis set. Distances are given in Å and angles in ○. The point group (PG) of the molecular symmetry is reported in
the last column.

System ADC(2) CC2 G0W0
a CCSD CC3 Param. PG

BH3 1.1811 1.1814 1.1756 1.1840 1.1848 R D3h
b

BH3
+ 1.4140 1.4096 1.4420 1.4395 1.4365 R1 C2v

c

⋅ ⋅ ⋅ 1.1749 1.1765 1.1636 1.1776 1.1801 R2

⋅ ⋅ ⋅ 164.62 164.71 163.07 163.07 163.38 ω

CH4 1.0841 1.0846 1.0808 1.0863 1.0879 R T d
d

CH4
+ 1.1760 1.1781 1.1746 1.1782 1.1838 R1 C2v

e

⋅ ⋅ ⋅ 55.15 55.04 56.08 56.14 55.34 ω1

⋅ ⋅ ⋅ 1.0796 1.0812 1.0670 1.0783 1.0805 R2

⋅ ⋅ ⋅ 125.43 125.42 125.33 125.01 125.54 ω2

NH3 1.0095 1.0107 1.0024 1.0095 1.0122 R C3v
f

⋅ ⋅ ⋅ 111.80 111.94 111.49 111.90 112.15 ω

NH3
+ 1.0275 1.0293 1.0068 1.0187 1.0209 R D3h

g

H2O 0.9588 0.9607 0.9484 0.9561 0.9591 R C2v
h

⋅ ⋅ ⋅ 104.27 104.06 105.01 104.59 104.33 ω

H2O+ 1.0245 1.0285 0.9798 0.9972 1.0009 R C2v
h

⋅ ⋅ ⋅ 108.73 108.20 110.59 109.38 109.38 ω

H2S 1.3319 1.3326 1.3264 1.3351 1.3375 R C2v
i

⋅ ⋅ ⋅ 91.93 91.87 92.51 92.27 92.00 ω

H2S+ 1.3558 1.3575 1.3394 1.3550 1.3579 R C2v
i

⋅ ⋅ ⋅ 92.69 92.63 93.29 92.99 92.71 ω

aRPA results are used for the neutral system at the G0W0 level of theory.
bPlanar symmetric. R is the B–H distance.
cPlanar with one non-equivalent B–H bond. R1 is the nonequivalent B–H distance; R2 is the B–H distance of the equivalent H
atomic centers; and ω is the angle H–B–H angle between the equivalent H atomic centers.
dTetrahedral symmetric. R is the C–H distance.
eTwo pairs of equivalent H atomic centers. R1 is the C–H distance of the first pair; ω1 is the H–C–H angle of the first pair; R2 is
the C–H distance of the second pair; and ω2 is the H–C–H angle of the second pair.
fR is the N–H distance and ω is the angle of the N–H with respect to the C3 rotational axis.
gPlanar symmetric. R is the N–H distance.
hR is the O–H distance; ω is the H–O–H angle. The symmetry does not change between the neutral and cationic systems.
iR is the S–H distance; ω is the H–S–H angle. The symmetry does not change between the neutral and cationic systems.
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exception is LiF for which we employed CCSDT reference values.
This point is discussed in detail in the supplementary material, Secs.
V and VI.

Regarding the IPs (Table I), the relative performance of the
methods remain essentially consistent between vertical and adi-
abatic values. ADC(2) and CC2 yield comparable results, with
MAEs of ∼0.6–0.7 eV and negative MSEs of similar magnitude.
The G0W0 approximation performs noticeably better, producing
MAEs in the range of 0.3–0.4 eV and positive MSEs of compa-
rable size. Similar superior performance of G0W0 compared to
ADC(2) has also been observed in Ref. 67 without employing the
diagonal approximation as used in the current work. CCSD deliv-
ers the most accurate results, with small positive MSEs and MAEs
between 0.1 and 0.2 eV. The VIP of H2, however, is known to be
poorly described, likely due to the self-screening problem inherent
to the GW approximation.170–173 In contrast, the AIP appears largely
unaffected.

For the equilibrium geometries of the diatomic molecules
(Table II), ADC(2), CC2, and CCSD all outperform G0W0 (and
RPA for the neutral system). While the errors in the ground-state
bond lengths are generally small (0.01 to 0.02 Å), the deviations
in the equilibrium geometries of the corresponding cations are
larger by a factor of two to three for all methods. Consistent with
observations for neutral excited states,174,175 CCSD tends to under-
estimate bond lengths in the cationic states, whereas ADC(2) and
CC2 systematically overestimate them. Similarly, G0W0 exhibits a
systematic underestimation of cationic bond lengths, in contrast to
BSE@G0W0, which has been shown to overestimate bond-length
changes upon excitation in the case of neutral excitations.83 Anal-
ogous trends are observed for the larger polyatomic species in the
test set (Table III).

V. CONCLUSION
In this work, we have presented the implementation of

the ionization-potential and electron-affinity equation-of-motion
λ-direct-ring coupled-cluster doubles (IP/EA-EOM-λ-drCCD) for-
malism, enabling the computation of fully analytic G0W0 energies
and nuclear gradients within a standard CC Lagrangian framework.
The approach has been implemented in the QCUMBRE program
package and rigorously verified against numerical derivatives, as well
as existing analytic implementations of GW gradients.67

Benchmark calculations were performed on the molecular sub-
set of the GW20 test set. Both vertical and adiabatic IPs were
obtained at various levels of theory and compared to CC3 and
IP-EOM-CC3 reference data. The results confirm that the newly
implemented G0W0 formalism yields IPs with MAEs in the range
of 0.3–0.4 eV, thereby outperforming second-order methods, such
as ADC(2) and CC2. The equilibrium geometries of both neutral
and cationic species are accurately reproduced, with typical bond-
length deviations on the order of 0.01 Å for neutrals and slightly
larger discrepancies for cations. Systematic trends were observed
across methods: CCSD and G0W0 tend to underestimate bond
lengths in cationic states, whereas ADC(2) and CC2 systematically
overestimate them.

These results demonstrate that the IP/EA-EOM-λ-drCCD
formulation provides a new route for obtaining fully analytic
G0W0 properties, by leveraging the connection between Green’s

function and coupled-cluster theories. The achieved agreement with
high-level wavefunction benchmarks highlights the accuracy and
robustness of the approach, while its analytic nature opens the
door to geometry optimization and property evaluation for larger
and more complex systems. In future work, we plan to conduct a
more extensive benchmark study on a broader set of IPs and EAs,
in order to further assess the transferability and accuracy of the
present formulation across diverse chemical environments. Exten-
sions toward self-consistent GW variants and BSE within the same
analytic formulation are also under active development.

SUPPLEMENTARY MATERIAL

The supplementary material includes rules for the diagram-
matic derivation within the direct-ring approximation, a complete
diagrammatic derivation of the drCCD and EA/IP-EOM-λ-drCCD
working equations, and a guide connecting the G0W0 non-linear
equations to the EA/IP-EOM-λ-drCCD parameters. Finally, it gath-
ers additional calculations and potential energy curves for the LiF
molecule and its cation, as well as a limited comparison of the CC3
with the CCSDT predictions.
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