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ABSTRACT
The uniform electron gas (UEG) is a cornerstone of density-functional theory (DFT) and the foundation of the local-density approximation,
one of the most successful approximations in DFT. In this work, we extend the concept of UEG by introducing excited-state UEGs, systems
characterized by a gap at the Fermi surface created by the excitation of electrons near the Fermi level. We report closed-form expressions
of the reduced kinetic and exchange energies of these excited-state UEGs as functions of the density and the gap. In addition, we derive the
leading term of the correlation energy in the high-density limit. By incorporating an additional variable representing the degree of excitation
into the UEG paradigm, the present work introduces a new framework for constructing local and semi-local state-specific functionals for
excited states.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0263799

I. INTRODUCTION

The development of state-specific functionals for excited
states1–16 marks a pivotal advancement in density-functional the-
ory (DFT).17–19 While the local-density approximation (LDA)20–24

often serves as the foundational starting point for constructing
functionals,25–29 a critical question remains: can we design local
and/or semi-local functionals—one that depends solely on local vari-
ables such as the electron density—tailored for electronic excited
states?

A significant challenge lies in the lack of an established
paradigm to construct excited-state uniform electron gases (UEGs).
While the ground-state UEG,30–34 also known as the homogeneous
electron gas or jellium model, is well-understood and serves as the
foundation of most existing local approximations, their excited-state
counterparts are far less straightforward. By modifying the UEG
paradigm to account for electronic excitations, we aim to create a
framework capable of describing excited states in a state-specific
manner.1–16 To achieve this, we propose introducing an additional
local variable that quantifies the “degree of excitation” of the sys-
tem. This variable would encode information about the nature and
extent of electronic excitations, allowing the functional to adapt to
the specifics of the excited states.

To address this, we propose a model for excited-state UEGs
constructed by introducing a gap at the Fermi surface through exci-
tations of the electrons near the Fermi level. These excited-state
UEGs can be viewed as a generalization of the “jellium with a gap”

model, where unoccupied states are rigidly shifted.35–40 In such sys-
tems, while only the correlation functional is affected,35–37,39,41–45

both exchange and correlation functionals are influenced by the
emergence of a gap in excited-state UEGs. This provides a promis-
ing foundation for extending the LDA to incorporate excited states.
A related, albeit distinct, approach was explored by Harbola and col-
laborators, who focused on constructing LDA exchange functionals
for excited states.46–50 However, their strategy clearly lacks general-
ity and is restricted to exchange. Alternative schemes have also been
explored.51–54

Our approach builds on the recent work of Gould and Pit-
talis, who proposed incorporating excited-state information via the
so-called constant occupation factor ensemble (cofe) UEGs.11 Here,
we move beyond the ensemble framework to focus on a pure-state
formalism. We believe that this shift offers greater flexibility to cap-
ture the unique features of state-specific electronic excitations. By
embedding excitation-specific information into the functional, we
hope to achieve a more accurate description of excited-state ener-
getics and properties, paving the way for broader applications in
quantum chemistry and materials science. Atomic units are used
throughout.

II. GROUND-STATE UEG
The reduced (i.e., per electron) energy of the UEG is expressed

as30,31,33,34
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ϵ(ρ, ζ) = ts(ρ, ζ) + ϵx(ρ, ζ) + ϵc(ρ, ζ), (1)

where ts, ϵx, and ϵc are the kinetic, exchange, and correlation energy
components, respectively, ρ = ρ

↑
+ ρ
↓

is the (uniform) electron den-
sity, ρσ is the density of the spin-σ electrons (σ = ↑ or ↓), and the
spin polarization is ζ = (ρ

↑
− ρ
↓
)/ρ. The Hartree contribution does

not appear in the above-mentioned equation as it is exactly canceled
by the uniform positively charged background.

Both the kinetic and exchange energies can be written as
ts(ρ, ζ) = ts(ρ)Υs(ζ) and ϵx(ρ, ζ) = ϵx(ρ)Υx(ζ), respectively, where
ts(ρ) ≡ ts(ρ, ζ = 0) and ϵx(ρ) ≡ ϵx(ρ, ζ = 0) are spin-unpolarized
(or paramagnetic) quantities, while the kinetic and exchange spin
scaling functions are

Υs(ζ) =
ts(ρ, ζ)
ts(ρ)

= (1 − ζ)5/3 + (1 + ζ)5/3

2
, (2a)

Υx(ζ) =
ϵx(ρ, ζ)
ϵx(ρ)

= (1 − ζ)4/3 + (1 + ζ)4/3

2
. (2b)

The kinetic and exchange energies can also be spin-resolved as
follows:

ts(ρ, ζ) = ts↑(ρ↑) + ts↓(ρ↓), (3a)

ϵx(ρ, ζ) = ϵx↑(ρ↑) + ϵx↓(ρ↓). (3b)

The spin-resolved correlation energy has an additional compo-
nent and reads

ϵc(ρ, ζ) = ϵc↑↑(ρ↑) + ϵc↓↓(ρ↓) + ϵc↑↓(ρ↑, ρ↓). (4)

In the usual ground-state spin-polarized (or ferromagnetic) UEG,
the reduced kinetic energy is

tsσ(ρσ) =
1
ρσ
∫

kFσ

0

k2

2
k2

2π2 dk = CFρ2/3
σ , (5)

where CF = − 3
10(6π2)2/3 ≈ 4.5578 is the Thomas–Fermi

coefficient,20,21 and the uniform spin-density is

ρσ = ∫
kFσ

0

k2

2π2 dk = k3
Fσ

6π2 , (6)

where kFσ is the Fermi wave vector associated with the spin-σ
channel. The exchange energy is given by the well-known Dirac
formula,22,55 which reads

ϵxσ(ρσ) =
1
2∬

ρx(r1, r2)
r12

dr1dr2

= Cxρ1/3
σ , (7)

where r12 = ∣r1 − r2∣ is the interelectronic distance and
Cx = − 3

4(
6
π )

1/3 ≈ −0.930 526 is the Dirac coefficient. In Eq. (7),
ρx(r1, r2) = −∣ρ1(r1, r2)∣2/ρ(r1) is the Fermi hole fulfilling
the normalization condition ∬ ρx(r1, r2)dr1dr2 = −1 and
ρ1(r1, r2) = jkFσ (r12) is the one-electron reduced density matrix with
jkFσ (r12) = 1/(2π2)[sin (kFσr12) − kFσr12 cos (kFσr12)]/(r3

12).

Concerning the correlation part, one usually relies on per-
turbative expansions in the high- and low-density limits.31,33 As
a function of the Wigner–Seitz radius rs = ( 3

4πρ)
1/3, the small-rs

(or high-density) expansion of the correlation energy appears to
be33,56–66

ϵc(rs, ζ) = λ0(ζ) ln rs + ϵ0(ζ) + λ1(ζ)rs ln rs + ϵ1(ζ)rs + ⋅ ⋅ ⋅ , (8)

where, as first proposed by Gell–Mann and Brueckner,57 one must
rely on resummation techniques to avoid divergences. This explains
the appearance of unusual ln rs terms in the high-density per-
turbative expansion, highlighting the nonanalytic nature of the
correlation energy (see below).

The large-rs (or low-density) expansion reads33,67–69

ϵxc(rs, ζ) = η0

rs
+ η1

r 3/2
s
+ η2(ζ)

r 2
s
+ ⋅ ⋅ ⋅ . (9)

The first two terms, η0 and η1, are assumed to be strictly indepen-
dent of the spin polarization due to the short-range nature of spin
interactions. In this strong-coupling (or strictly correlated) regime,
the potential energy dominates over the kinetic energy, causing the
electrons to localize at lattice points that minimize their (classi-
cal) Coulomb repulsion. These minimum-energy configurations are
known as Wigner crystals.70

III. EXCITED-STATE UEGS
Our model for the excited states of the UEG is depicted in Fig. 1.

In an excited-state UEG, a gap of magnitude kFσΔσ opens at the
Fermi level for each spin manifold (with 0 ≤ Δσ ≤ 1). The electrons
in the energy levels from kFσ(1 − Δσ) to kFσ are excited to occupy the
energy levels from kFσ to kFσ(1 + κσΔσ). The parameter 0 ≤ κσ ≤ 1
is determined such that the spin-σ densities of the ground- and
excited-state UEGs are identical (see below). From this model, one
can easily recover the ground state by setting Δσ = 0. Note that the
excitation process is independent for each spin channel. A priori,
this model is designed to model spin-allowed transitions. Spin-
forbidden transitions, such as singlet–triplet excitations, may require
a generalization of the present model.

For the spin-σ electrons, the occupation is

fkσ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ k ≤ kFσ(1 − Δσ),
0 if kFσ(1 − Δσ) < k < kFσ ,

1 if kFσ ≤ k ≤ kFσ(1 + κσΔσ),
0 if k > kFσ(1 + κσΔσ).

(10)

The parameter κσ is necessary as the density of states increases with
k. (In other words, large values of k accommodate more electrons
than smaller values of k.)

Such an excited-state UEG has a uniform spin density,

ρσ = ∫
∞

0
fkσ

k2

2π2 dk

= ∫
kFσ(1−Δσ)

0

k2

2π 2 dk + ∫
kFσ(1+κσ Δσ)

kFσ

k2

2π 2 dk

= [1 − 3Δσ(1 − κσ) + 3Δ2
σ(1 + κ2

σ) − Δ3
σ(1 − κ3

σ)]
k3

Fσ

6π 2 . (11)
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FIG. 1. Schematic representation of ground- and excited-state UEGs. In a ground-
state UEG (left), all electronic levels are filled from k = 0 to the Fermi level at
k = kF↑ for the spin-up electrons and k = kF↓ for the spin-down electrons. In an
excited-state UEG (right), a gap of magnitude kFσ Δσ opens at the Fermi level
for each spin manifold with 0 ≤ Δσ ≤ 1. The electrons in the energy levels from
kFσ(1 − Δσ) to kFσ are excited to occupy the energy levels from kFσ to kFσ
(1 + κσ Δσ). The factor 0 ≤ κσ ≤ 1 is determined such that the spin-σ densities
of the ground- and excited-state UEGs are identical. The red lines indicate regions
where the infrared catastrophe may occur due to the vanishing gap between
occupied and unoccupied states.

If one matches the density of the ground-state UEG and the excited-
state UEG, one must set ρσ = k3

Fσ/(6π2), which yields

κσ =
(1 + 3Δσ − 3Δ2

σ + Δ3
σ)1/3 − 1

Δσ
(12)

and has the following limits:

lim
Δσ→0

κσ = 1, (13a)

lim
Δσ→1

κσ = 21/3 − 1 ≈ 0.259 921. (13b)

The evolution of κσ as a function of Δσ is represented in Fig. 2. Note
that because the excited-state density is equal to the ground-state
density, the Hartree contribution is properly canceled out by the
uniform positive background.

Let us now derive the reduced kinetic and exchange energies
for these excited-state UEGs. The reduced kinetic energy associated
with the spin-σ electrons is

tsσ(ρσ , Δσ) =
1
ρσ
∫
∞

0
fk

k2

2
k2

2π2 dk

= Ξs(Δσ)
3k2

Fσ

10
= Ξs(Δσ)CFρ2/3

σ , (14)

and the gap-dependent function

Ξs(Δσ) = (1 − Δσ)5 + (1 + Δσκσ)5 − 1 (15)

is depicted in Fig. 2 and has the following limiting values:

lim
Δσ→0

Ξs(Δσ) = 1, (16a)

FIG. 2. Left: κσ as a function of Δσ , as given by Eq. (12). Right: Ξs and Ξx as a
function of Δσ , as given by Eqs. (15) and (18), respectively.

lim
Δσ→1

Ξs(Δσ) = 25/3 − 1 ≈ 2.1748. (16b)

For the exchange, we have

ϵxσ(ρσ , Δσ) =
1
2∬

ρx(r1, r2)
∣r1 − r2∣

dr1dr2

= Ξx(Δσ)
3kFσ

4π
= Ξx(Δσ)Cxρ1/3

σ (17)

with the following gap-dependent Dirac coefficient (see Fig. 2):

Ξx(Δσ) = (1 − Δσ)4 + 4Δσκσ(1 + Δ2
σκ2

σ) + 8Δ2
σκ2 ln 2 − Δ4

σκ4
σ

+ 2Δ2
σκ2[(1 − Δσκσ

2
)

2
ln(1 − Δσκσ

2
) + 2(1 − Δ2

σκ2
σ

4
)

× ln(Δσκσ

2
) + (1 + Δσκσ

2
)

2
ln(1 + Δσκσ

2
)], (18)

which admits the following limiting values:

lim
Δσ→0

Ξx(Δσ) = 1, (19a)

lim
Δσ→1

Ξx(Δσ) ≈ 0.944 717. (19b)

In contrast to Ξs, Ξx exhibits non-monotonic behavior. Initially, it
decreases for small gap values, reaching a minimum of 0.865 535
at Δσ ≈ 0.328 476, before eventually increasing up to Δσ = 1. The
exchange hole of excited-state UEGs remains normalized and can
be easily derived using the following expression for the one-electron
reduced density matrix (see Fig. 3):

ρ1(r1, r2) = jkFσ(1+κσ Δσ)(r12) − jkFσ (r12) + jkFσ(1−Δσ)(r12). (20)

As readily seen in Eq. (20), the exchange hole of excited-state UEGs
is a simple combination of ground-state exchange holes with dif-
ferent values of the Fermi wave vector. Figure 3 evidences that the
Fermi hole becomes tighter as Δσ increases.

Now, let us study the reduced correlation energy of these
excited-state UEGs. Due to the long-range nature of the Coulomb
interaction and the neglect of the kinetic energy term, the low-
density limit is probably similar to the ground state (at least for the
leading order proportional to r−1

s ). This remains to be confirmed.
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FIG. 3. ρ1 as a function of r12, as given by Eq. (20), for kFσ = 10 and various
values of Δσ .

In Ref. 71, it has been shown that, in the low-density limit of any
finite system, any dependence on ensemble properties must vanish.
Consequently, all excited-state properties become degenerate at both
leading and subleading orders. Building on this, Ref. 11 presents a
collection of arguments suggesting that this result very likely extends
to the thermodynamic limit of UEGs. Therefore, the same thermo-
dynamic assumptions are expected to hold for excited UEGs, such
as the one considered in this work. From hereon, we focus on the
high-density limit and assume a non-polarized gas for the sake of
simplicity.

Rayleigh–Schrödinger perturbation theory tells us that the
second-order contribution can be decomposed as ϵ(2) = ϵ(2d) + ϵ(2x),
where, for the ground state, the exchange term, ϵ(2x), is known
to be finite57,62 and the direct term, ϵ(2d), has been first shown to
diverge logarithmically as λ0 ln rs for small rs by Macke56 with λ0 =
(1 − ln 2)/π2 ≈ 0.031 0907.

More explicitly, the direct component reads72

ϵ(2d) = − 3
16π5 ∫

dk
k4 ∫ dq∫

dp
k ⋅ (p − q + k) , (21)

where, in the case of the ground state, p < 1, q < 1, 1 < ∣p + k∣, and
1 < ∣q − k∣ in units of kF. The divergent behavior can be derived
by realizing that the main contribution to the integral comes from
the small momentum transfer (i.e., k ≈ 0) or, in other words,
from the excitations near the Fermi surface where the energy gap
between the occupied and vacant states vanishes (infrared catastro-
phe). This issue is particularly problematic in coupled-cluster the-
ory, where perturbative corrections systematically exhibit infrared
divergences.73,74

By assuming that p ≈ 1 and q ≈ 1 and neglecting the terms pro-
portional to k2, one can show that 1 − kx ≤ p ≤ 1 and 1 − ky ≤ q ≤ 1,
where k ⋅ p = kpx and k ⋅ q = −kqy. This leads to

∫ dq∫
dp

k ⋅ (p − q + k) ≈ (2π)2∫
1

0
dx∫

1

0
dy∫

1

1−kx
dp∫

1

1−ky

dq
k(x + y) .

(22)

Finally, the integration over k in the range
√

rs < k < 1 (where the
upper limit is arbitrary and

√
rs corresponds to the characteris-

tic wave vector below which the Coulomb interaction is effectively
screened57) yields

ϵ(2d) ≈ − 3
16π5∫

1

√
rs

4πk2dk
k4 (2π)2 2k

3
(1 − ln 2) ∼ 1 − ln 2

π2 ln rs.

(23)
For the excited-state UEGs, the infrared divergence originates from
various (de)excitation processes, in which the energy difference
between the occupied and vacant states vanishes (see the red lines
in Fig. 1). By considering the various admissible regions of p, q, and
k in Eq. (21), we have identified the following six divergent terms:

● Excitations from occupied states with 0 < p < 1 − Δ and
0 < q < 1 − Δ to unoccupied states with 1 − Δ < ∣p + k∣ < 1
and 1 − Δ < ∣q − k∣ < 1.

● De-excitations from occupied states with 1 < p < 1 + κΔ and
1 < q < 1 + κΔ to unoccupied states with 1 − Δ < ∣p + k∣ < 1
and 1 − Δ < ∣q − k∣ < 1.

● Excitations from occupied states with 1 < p < 1 + κΔ and
1 < q < 1 + κΔ to unoccupied states with 1 + κΔ < ∣p + k∣ and
1 + κΔ < ∣q − k∣.

● Mixed process corresponding to excitations from occupied
states with 0 < p < 1 − Δ to unoccupied states with 1 − Δ
< ∣p + k∣ < 1, combined with de-excitations from occupied
states with 1 < q < 1 + κΔ to unoccupied states with 1 − Δ
< ∣q − k∣ < 1.

● Mixed process corresponding to de-excitations from occu-
pied states with 1 < p < 1 + κΔ to unoccupied states with
1 − Δ < ∣p + k∣ < 1, combined with excitations from occu-
pied states with 1 < q < 1 + κΔ to unoccupied states with
1 + κΔ < ∣q − k∣.

● Excitations from occupied states with 0 < p < 1 − Δ to
unoccupied states with 1 − Δ < ∣p + k∣ < 1, combined with
excitations from occupied states with 1 < q < 1 + κΔ to
unoccupied states with 1 + κΔ < ∣q − k∣.

Each of these processes leads to a logarithmic divergence of the cor-
relation energy in the high-density limit, with a distinct dependence
on Δ. For excited-state UEGs, the Δ-dependent direct component
has the following form:

ϵ(2d)(Δ) ∼ λ0(Δ) ln rs, (24)

and, following a similar procedure as for the ground state (see
above), one can show that the corresponding gap-dependent
coefficient can be decomposed as

λ0(Δ) = Λ0(Δ)λ0 =
1

π2

6

∑
k=1

λ(k)0 (25)

with

λ(1)0 = (1 − Δ)3F(1, 1), λ(2)0 = F(1, 1),

λ(3)0 = (1 + κΔ)3F(1, 1), λ(4)0 = −2F(1 − Δ, 1),

λ(5)0 = −2F(1, 1 + κΔ), λ(6)0 = 2F(1 − Δ, 1 + κΔ)
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FIG. 4. Λ0 as a function of Δ, as given by Eq. (25).

and

F(α, β) = α2β + αβ2 + α3 ln α + β3 ln β − (α3 + β3) ln (α + β).
(26)

In the limit of a vanishing gap, the ground-state behavior is
recovered, i.e., λ0(Δ = 0) = λ0 = (1 − ln 2)/π2. As Δ approaches 1,
the behavior remains logarithmic, though weaker, with λ0(Δ = 1)
≈ 0.005 78826. The evolution of Λ0(Δ) = λ0(Δ)/λ0 as a function of
Δ is shown in Fig. 4. Higher-order terms in rs have yet to be explored.
This is left for future work.

IV. CONCLUSION
To conclude, this work introduces a generalization of the

UEG paradigm for excited states and reports closed-form expres-
sions for the reduced kinetic and exchange energies of these
excited-state UEGs as functions of the density and the gap. In
addition, the leading-order term of the correlation energy in the
high-density limit is derived. By modifying the UEG to include a
gap at the Fermi surface arising from excitations near the Fermi
level, this new paradigm provides a foundation for constructing
state-specific functionals beyond ensemble-based approaches. This
pure-state approach represents a significant step toward developing
(semi-)local approximations capable of accurately describing
excited-state properties within DFT.

One might reasonably argue that the UEG bears little resem-
blance to a real-life molecule. Nevertheless, the LDA, originally
derived from the UEG, has proven surprisingly successful in mod-
eling the electronic structure of complex materials and molecular
systems or, at the very least, in serving as a foundation for more
sophisticated approximations. We hope that this transferability from
the UEG to molecular systems extends to excited states as well,
although this remains to be thoroughly validated. It is important to
recognize that, in practice, a global property of the UEG, such as
the exchange or correlation energy computed over the entire sys-
tem (i.e., involving all electrons), is mapped onto a local property
within a molecule, such as the exchange or correlation energy at a
specific grid point. This same philosophy underlies the construction
of our excited-state UEG models. In the present approach, elec-
trons are considered to be excited from a fraction of the occupied

band into a fraction of the unoccupied band, a global property of
the UEG, which we aim to map onto a local measure that reflects
the degree of excitation at each point in a molecular system. That
said, we acknowledge that this mapping and its implications require
further investigation, and we hope to address some of these open
questions in future work.

In terms of perspectives, (semi-)local functionals based on
excited-state UEGs are currently being developed by embedding an
additional variable that quantifies the degree of excitation directly
into the functional. This approach opens new avenues for improv-
ing density-functional approximations beyond ground-state DFT.
Future work will focus on refining this framework and evaluating
its performance in practical applications.
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