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ABSTRACT
Building on our recent study [Giarrusso and Loos, J. Phys. Chem. Lett. 14, 8780 (2023)], we explore the generalization of the ground-state
Kohn–Sham (KS) formalism of density-functional theory (DFT) to the (singlet) excited states of the asymmetric Hubbard dimer at half-filling.
While we found that the KS-DFT framework can be straightforwardly generalized to the highest-lying doubly excited state, the treatment of
the first excited state presents significant challenges. In particular, using a density-fixed adiabatic connection, we show that the density of
the first excited state lacks non-interacting v-representability. However, by employing an analytic continuation of the adiabatic path, we
demonstrate that the density of the first excited state can be generated by a complex-valued external potential in the non-interacting case.
More practically, by performing state-specific KS calculations with exact and approximate correlation functionals—each state possessing a
distinct correlation functional—we observe that spurious stationary solutions of the KS equations may arise due to the approximate nature of
the functional.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0255324

I. INTRODUCTION

The Kohn–Sham (KS) formalism1 of density-functional theory
(DFT)2 is a cornerstone of electronic structure theory, celebrated
as the method of choice across chemistry, physics, and materials
science for its practicality and versatility.3 At its heart lies the KS
model system, a hypothetical construct of non-interacting electrons
designed to reproduce the electron density of the corresponding
interacting system.1 To recreate the electron density of the physi-
cal system, the KS system evolves in a local multiplicative one-body
effective potential referred to as the KS potential, defined up to an
arbitrary additive constant. While the Hohenberg–Kohn theorem2

does not ensure the existence of this potential, it does establish its
uniqueness for ground-state systems.

The central issue of the existence of such a potential is known
as the v-representability problem.4,5 A density is v-representable
if it arises from a N-electron system with an external potential v.
Densities are further classified as interacting or non-interacting v-
representable, depending on whether they arise from an interacting
or a non-interacting system, respectively. For the KS formalism to

be applicable, the interacting v-representable density of the physi-
cal electron system must also be non-interacting v-representable—a
necessary condition. Thus, the focus is on densities that are both
interacting and non-interacting v-representable.

There is clear evidence that certain physical ground states lack
a corresponding pure-state KS system,6,7 pointing out fundamen-
tal limitations of the KS formalism.8 The existence of a pure-state
KS system for excited states remains even more uncertain.9–11 The
Hohenberg–Kohn theorem guarantees a bijective mapping between
the external potential v and the ground-state density ρ,2,12,13 but no
analogous theorem exists for excited states.14–17

Despite this, orbital-optimized DFT (OO-DFT)9–11,18–24 has
gained traction for excited-state calculations as it consistently deliv-
ers accurate excitation energies, particularly for double excitations
and charge-transfer states.25–37 These capabilities position OO-DFT
as both a practical tool and a compelling alternative to (linear-
response) time-dependent DFT (TDDFT)38–40 for these types of
excitations.41–46 This growing interest has fueled recent efforts
to further refine and formalize the mathematical foundation of
OO-DFT.47–50
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In OO-DFT, self-consistent equations are solved for a non-
Aufbau determinant constructed from KS orbitals. Here, “non-
Aufbau” refers to not strictly occupying the lowest-energy KS
orbitals. This approach enables a state-specific representation,
leading to KS orbitals, orbital energies, and potentials that vary
across electronic states. Since no density-functional approxima-
tions (DFAs) have been specifically developed for excited states,
these calculations often rely on DFAs originally designed for the
ground state. Recent efforts by Gould, Pittalis, and collaborators
have addressed this gap by developing a unified DFA for ground and
excited states (GX24)49 and a local-density approximation designed
specifically for excited states.51 These advancements represent a sig-
nificant step forward in developing state-specific functionals, but
further improvements are clearly necessary.

In a recent paper, we found that a distinct universal functional
exists for each (singlet) state of the asymmetric Hubbard dimer at
half-filling.52 Expanding upon our recent findings, we investigate
the extension of the ground-state KS-DFT formalism to the excited
states of the Hubbard dimer. Here, we show that while the KS-
DFT framework is readily adaptable to describe the highest doubly
excited state, addressing the first excited state proves considerably
more challenging. Using a density-fixed adiabatic connection, we
demonstrate that the density of the first excited state lacks non-
interacting v-representability. However, by introducing an analytic
continuation of the adiabatic path, we show that the first excited
state density becomes non-interacting complex-v-representable, as
it can be reproduced via a complex-valued external potential. From a
practical perspective, we also perform state-specific KS calculations,
employing both exact and approximate correlation functionals. This
reveals that approximate functionals can lead to spurious station-
ary solutions of the KS equations, highlighting key characteristics
and limitations of this methodology, and suggesting the need for the
development of state-specific functionals.

Note that in the work of Yang and Ayers,47 it is found that
the same exchange–correlation functional is used by ground and
excited states. However, their conclusion applies to functionals that
are explicit in either one of the following variables: the KS state, the
corresponding one-body reduced density matrix, or the excitation
quantum number and the KS potential. By contrast, in this work,
we consider state-specific functionals that depend directly on the
density.

II. UNIVERSAL DENSITY FUNCTIONAL
A. Ground state

Here, we review the ground-state theory.53–55 In the following,
we define the universal (i.e., independent of the external poten-
tial) ground-state functional of the density F(0)

[ρ] using Levy’s
constrained search56 and Lieb’s convex formulation,57 two comple-
mentary approaches that offer mathematical rigor and generality to
DFT.

Within the Levy constrained search,56 it can be defined as
F(0)[ρ] = min

Ψ
ρΨ=ρ

⟨Ψ∣T̂ + Ŵ∣Ψ⟩

= ⟨Ψ(0)[ρ]∣T̂ + Ŵ∣Ψ(0)[ρ]⟩, (1)

with T̂ being the kinetic energy operator and Ŵ being the electron
repulsion operator. The minimization (which is independent of the

external potential) is performed over all possible N-electron anti-
symmetric wave functionsΨ that yield a given electron density ρ, i.e.,
ρΨ = ρ. The minimizing wave function, denoted asΨ(0)

[ρ], is known
to exist but may not be unique.57 The exact ground-state energy is
thus

E(0)[v] = min
ρ
{F(0)[ρ] + ∫ v(r)ρ(r)dr}, (2)

where v(r) is the external local potential and ∫ ρ(r)dr = N. The
minimizer,

ρ(0)(r) = arg min
ρ
{F(0)[ρ] + ∫ v(r)ρ(r)dr} (3)

is known to be the ground-state density if it exists.
Alternatively, by adopting the Lieb formulation,57 the universal

density functional is

F(0)[ρ] = max
v
{E(0)[v] − ∫ v(r)ρ(r)dr}, (4)

with

E(0)[v] = min
Ψ
⟨Ψ∣Ĥ[v]∣Ψ⟩ (5)

and

Ĥ[v] = T̂ + Ŵ + V̂[v], (6)

where V̂[v] = ∑N
i v(ri). In Eq. (4), the maximization is carried out

over the external potential v for a fixed density ρ, whereas the energy
[see Eq. (5)] is evaluated at v but may correspond to a different
density. We refer the interested reader to Ref. 58 for an exhaustive
discussion about the distinct features of these universal functionals.

If they exist, the minimizer defined in Eq. (3) and the
maximizer,

v(0)(r) = arg max
v
{E(0)[v] − ∫ v(r)ρ(r)dr} (7)

are both functionals of ρ and are linked via the following relation-
ships:

v(0)(r) = −
δF(0)[ρ(r)]

δρ(r)
∣
ρ=ρ(0)

, (8a)

ρ(0)(r) = +
δE(0)[v(r)]

δv(r)
∣
v=v(0)

, (8b)

which shows that the energy and the universal functional are
conjugate functions while v and ρ are dual quantities. Note that
here we assume differentiability although F(0)

[ρ] is only “almost
differentiable,” which means that it may be approximated to any
accuracy by a differentiable regularized functional.5,59–67
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B. Excited states
In his seminal paper,10 Görling proposed to replace the mini-

mization in Levy’s constrained search [see Eq. (1)] by a general opti-
mization procedure based on the stationarity principle,9,25 where
one seeks the stationary points of ⟨Ψ∣T̂ + Ŵ∣Ψ⟩ with respect to Ψ
(see also Refs. 47–50),

F(m)[ρ] = stat
Ψ

ρΨ=ρ

⟨Ψ∣T̂ + Ŵ∣Ψ⟩

= ⟨Ψ(m)[ρ]∣T̂ + Ŵ∣Ψ(m)[ρ]⟩, (9)

where the subscript m indices the different stationary states Ψ(m),
with m = 0 being the ground state. The exact energy of the mth
excited state can be expressed as

E(m)[v] = stat
ρ
{F(m)[ρ] + ∫ v(r)ρ(r)dr}. (10)

An analogous generalization of the Lieb formulation [see Eq. (4)]
yields

F(m)[ρ] = stat
v
{E(m)[v] − ∫ v(r)ρ(r)dr}, (11)

with

E(m)[v] = stat
Ψ
⟨Ψ∣Ĥ[v]∣Ψ⟩. (12)

Optimizers (assuming they exist) of Eqs. (10) and (11) are given
by48,50

ρ(m)(r) = arg stat
ρ
{F(m)[ρ] + ∫ v(r)ρ(r)dr}, (13a)

v(m)(r) = arg stat
v
{E(m)[v] − ∫ v(r)ρ(r)dr}. (13b)

In our recent work,52 we applied the stationarity principle as
in Eq. (9) to obtain the universal functionals F(m)

[ρ] for the excited
states of a model system. We also applied an analogous stationarity
principle on the Lieb formulation [see Eq. (11)], obtaining identical
F(m)
[ρ] as from the Levy constrained search. Moreover, we showed

that Eqs. (8a) and (8b) apply to the singlet excited states as well as to
the ground state of the model, that is,

v(m)(r) = −
δF(m)[ρ]
δρ(r)

∣
ρ=ρ(m)

, (14a)

ρ(m)(r) = +
δE(m)[v]
δv(r)

∣
v=v(m)

. (14b)

Although generalizations have been attempted in Refs. 48 and 50, a
general proof has not yet been established.

III. KOHN–SHAM SCHEME
A. Ground state

As mentioned in Sec. I, the KS system corresponds to a sys-
tem of (formally) non-interacting electrons.1 For this special case,
the universal functional is often referred to as Ts[ρ], the KS kinetic-
energy functional. Within the constrained-search formalism, the
non-interacting kinetic-energy functional is expressed as

T(0)s [ρ] = min
Φ

ρΦ=ρ

⟨Φ∣T̂∣Φ⟩

= ⟨Φ(0)[ρ]∣T̂∣Φ(0)[ρ]⟩, (15)

where the minimization is performed, for non-degenerate ground
states, over all possible N-electron single-determinant wave func-
tions Φ that yield the fixed density ρ. Again, the minimizing wave
function, denoted asΦ(0)

[ρ] and named KS wave function, is known
to exist but may not be unique.57

The universal functional and the KS kinetic energy functional
are linked by the Hartree–exchange–correlation (Hxc) functional, as
follows:

F(0)[ρ] = T(0)s [ρ] + E(0)Hxc[ρ]. (16)

Thanks to the introduction of the KS fictitious system, one can
recast the minimization over densities in Eq. (2) by a minimization
over single-determinant wave functions,

E(0)[v] = min
Φ
{⟨Φ∣T̂ + V̂[v]∣Φ⟩ + E(0)Hxc[ρΦ]}, (17)

where ρΦ is the density produced by Φ. If the minimizing single-
determinant wave function Φ(0) exists, then it yields the exact
ground-state density ρ(0)

(r).
The Hxc functional is often decomposed as

E(0)Hxc[ρ] = EH[ρ] + E(0)x [ρ] + E(0)c [ρ], (18)

where

EH[ρ] =
1
2∬

ρ(r)ρ(r′)
∣r − r′∣

dr dr′, (19a)

E(0)x [ρ] = ⟨Φ
(0)
[ρ]∣Ŵ∣Φ(0)[ρ]⟩ − EH[ρ], (19b)

E(0)c [ρ] = ⟨Ψ
(0)
[ρ]∣T̂ + Ŵ∣Ψ(0)[ρ]⟩, (19c)

− ⟨Φ(0)[ρ]∣T̂ + Ŵ∣Φ(0)[ρ]⟩ (19d)

are the Hartree (H), exchange (x), and correlation (c) energy
functionals, respectively. The correlation part E(0)c [ρ] = T(0)c [ρ]
+W(0)

c [ρ] is the sum of a kinetic contribution,

T(0)c [ρ] = ⟨Ψ
(0)
[ρ]∣T̂∣Ψ(0)[ρ]⟩ − ⟨Φ(0)[ρ]∣T̂∣Φ(0)[ρ]⟩ (20)

and a potential contribution,
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W(0)
c [ρ] = ⟨Ψ

(0)
[ρ]∣Ŵ∣Ψ(0)[ρ]⟩ − ⟨Φ(0)[ρ]∣Ŵ∣Φ(0)[ρ]⟩. (21)

According to KS-DFT, the ground-state density of the interact-
ing Hamiltonian Ĥ[v] can be obtained from

ρ(0)(r) =∑
i

f (0)i ∣ψ
(0)
i (r, σ)∣

2
, (22)

where f (0)i is the occupancy of the ground-state KS orbital ψ(0)i (r, σ)
with spin σ ∈ {↑, ↓}. In the ground-state case, we have

f (0)i =

⎧⎪⎪
⎨
⎪⎪⎩

1 if i ≤ N
0 if i > N,

(23)

which corresponds to populate the N lowest-energy KS orbitals
(Aufbau filling). The ground-state KS orbitals are obtained as the
solutions to a set of single-particle equations, known as the KS
equations,1

[−
∇

2
r

2
+ v(r) + v(0)Hxc(r)]ψ

(0)
i (r) = ϵ

(0)
i ψ(0)i (r), (24)

where ϵ(0)i are KS orbital energies and the Hxc potential is

v
(0)
Hxc(r) =

δE(0)Hxc[ρ(r)]
δρ(r)

, (25)

which can be decomposed into individual contributions, v(0)Hxc(r)
= vH(r) + v(0)x (r) + v

(0)
c (r), and the ground-state KS potential is,

up to an additive constant, v(0)s (r) = v(r) + v
(0)
Hxc(r) or

v
(0)
s (r) = −

δT(0)s [ρ(r)]
δρ(r)

. (26)

Since v
(0)
Hxc is itself a functional of the density, the problem becomes

non-linear and must be solved self-consistently. Under certain
assumptions (the desired density should be both interacting and
non-interacting v-representable) and if the exact expression of
Exc[ρ] were known (in an appropriate domain of ρ), Eq. (22) would
yield exactly the density of the interacting system.

It is possible to link the physical and KS systems by per-
forming an adiabatic connection while keeping the ground-state
density fixed.68–70 In practice, it is done by linearly scaling the
electron–electron interaction with a coupling constant λ ∈ R. The
Hamiltonian is thus defined as

Ĥλ[v
(0)
λ ] = T̂ + λŴ + V̂[v(0)λ ], (27)

where v
(0)
λ is the external potential that imposes that the ground-

state density remains constant along the adiabatic path between the
physical system at λ = 1 and the KS system at λ = 0. In this set-
ting, the universal ground-state functional along the adiabatic path
is defined as

F(0)λ [ρ] = min
Ψ

ρΨ=ρ

⟨Ψ∣T̂ + λŴ∣Ψ⟩

= ⟨Ψ(0)λ [ρ]∣T̂ + λŴ∣Ψ(0)λ [ρ]⟩ (28)

or equivalently,

F(0)λ [ρ] = max
v
{E(0)λ [v] − ∫ v(r)ρ(r)dr}, (29)

which takes the following limiting values at the extremities of the
path:

F(0)λ=0[ρ] = T(0)s [ρ] F(0)λ=1[ρ] = F(0)[ρ]. (30)

B. Excited states
Here, we generalized the ground-state KS scheme described

in Sec. II A to excited states.9,47,71 First, thanks to the stationarity
principle developed in Sec. II B, we generalize the non-interacting
kinetic-energy functional to excited states, such that

T(m)s [ρ] = stat
Ψ

ρΨ=ρ

⟨Φ∣T̂∣Φ⟩

= ⟨Φ(m)[ρ]∣T̂∣Φ(m)[ρ]⟩ (31)

where the search of stationary points is performed over the set of
N-electron single-determinant wave functions with potentially non-
Aufbau fillings. We note that the KS wave function is not necessarily
restricted to a single Slater determinant; in the degenerate case, it
can be expressed as a linear combination of Slater determinants.55,57

(The same comment applies to the ground state.)
There might exist more than one single-determinant wave

function with a different index m that yields the fixed density ρ.
Although we use the same index (m) for the KS and exact excited
states, it is important to mention that the rankings in the KS and
exact frameworks are not necessarily identical. In other words, m
should be regarded more as a tracking number than a ranking
number.

Within the KS scheme, the universal functional associated with
the mth excited state is thus decomposed as

F(m)[ρ] = T(m)s [ρ] + E(m)Hxc [ρ], (32)

and the corresponding energy reads

E(m)[v] = stat
Φ
{⟨Φ∣T̂ + V̂[v]∣Φ⟩ + E(m)Hxc [ρΦ]}. (33)

The state-specific Hxc functional can be decomposed as

E(m)Hxc [ρ] = EH[ρ] + E(m)x [ρ] + E(m)c [ρ], (34)

where the Hartree functional given by Eq. (19a) is the only state-
independent quantity, with the exchange functional being
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E(m)x [ρ] = ⟨Φ(m)[ρ]∣Ŵ∣Φ(m)[ρ]⟩ − EH[ρ], (35)

while the correlation functional is

E(m)c [ρ] = ⟨Ψ(m)[ρ]∣T̂ + Ŵ∣Ψ(m)[ρ]⟩

− ⟨Φ(m)[ρ]∣T̂ + Ŵ∣Φ(m)[ρ]⟩. (36)

Again, we split the correlation part as E(m)c [ρ] = T(m)c [ρ] +W(m)
c [ρ]

with

T(m)c [ρ] = ⟨Ψ(m)[ρ]∣T̂∣Ψ(m)[ρ]⟩ − ⟨Φ(m)[ρ]∣T̂∣Φ(m)[ρ]⟩ (37)

and

W(m)
c [ρ] = ⟨Ψ(m)[ρ]∣Ŵ∣Ψ(m)[ρ]⟩ − ⟨Φ(m)[ρ]∣Ŵ∣Φ(m)[ρ]⟩. (38)

The excited-state density reads

ρ(m)(r) =∑
i

f (m)i ∣ψ(m)i (r, σ)∣
2
, (39)

where non-Aufbau fillings are considered and the occupation num-
bers f (m)i are excited-state-dependent. The KS orbitals are obtained
as the solutions to the state-specific KS equations,

[−
∇

2
r

2
+ v
(m)
s (r)]ψ(m)i (r) = ϵ(m)i ψ(m)i (r), (40)

where the excited-state KS potential is given by v
(m)
s (r) = v(r)

+ v
(m)
Hxc (r) or

v
(m)
s (r) = −

δT(m)s [ρ(r)]
δρ(r)

, (41)

and the state-specific Hxc potential is

v
(m)
Hxc (r) =

δE(m)Hxc [ρ(r)]
δρ(r)

, (42)

which can be decomposed into individual contributions: v(m)Hxc (r)
= vH(r) + v(m)x (r) + v(m)c (r). Similarly to the ground-state formal-
ism, we defined a density-fixed adiabatic connection for each excited
state as

F(m)λ [ρ] = stat
Ψ

ρΨ=ρ

⟨Ψ∣T̂ + λŴ∣Ψ⟩

= ⟨Ψ(m)λ [ρ]∣T̂ + λŴ∣Ψ(m)λ [ρ]⟩ (43)

or equivalently,

F(m)λ [ρ] = stat
v
{E(m)λ [v] − ∫ v(r)ρ(r)dr}, (44)

with

F(m)λ=0 [ρ] = T(m)s [ρ] F(m)λ=1 [ρ] = F(m)[ρ]. (45)

In this case, the Hamiltonian along the adiabatic connection is

Ĥλ[v
(m)
λ ] = T̂ + λŴ + V̂[v(m)λ ], (46)

where v(m)λ imposes that the mth excited-state density remains con-
stant along the adiabatic path between the mth physical excited-state
and its corresponding KS state (if it exists).

IV. ASYMMETRIC HUBBARD DIMER
A. Hamiltonian

In the Hubbard dimer at half-filling (see Fig. 1), the Hamilto-
nian is given by72–85

Ĥ = T̂ + Ŵ + V̂, (47)

with

T̂ = −t∑
σ=↑,↓
(a†

0σa1σ + h.c.), (48a)

Ŵ = U
1

∑
i=0

n̂i↑n̂i↓, (48b)

V̂ = Δv n̂1 − n̂0

2
, (48c)

where t > 0 is the hopping parameter, U ≥ 0 is the on-site interaction
parameter, n̂iσ = a†

iσaiσ is the spin-dependent site-occupation opera-
tor, n̂i = n̂i↑ + n̂i↓ is the spin-summed site-occupation operator, and
Δv = v1 − v0 (with v0 + v1 = 0) is the potential difference (asymme-
try) between the two sites. Note that because the operator T̂ mimics
in some sense the kinetic energy operator for quantum systems in
real space, we will refer to its expectation value as “kinetic energy”
despite some striking differences compared to the real-space case.

The total number of particles in the model is controlled by the
sum of the expectation values of the occupation operator on each

FIG. 1. Schematic representation of the asymmetric Hubbard dimer at half filling:
t is the hopping parameter, U is the on-site interaction parameter, and Δv is the
difference in potential between the two sites.
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site, i.e., n0 + n1 = N. Here, we consider only the case N = 2 (half-
filling). The site-occupation difference Δn = n1 − n0 in the model
plays the role of the electron probability density in real space and we
have −2 ≤ Δn ≤ 2. For notational convenience, we use the reduced
quantity ρ = Δn/2 throughout this paper. Furthermore, we restrict
ourselves to singlet states. Although one technically deals with func-
tions in the Hubbard dimer as −1 ≤ ρ ≤ 1, we shall stick to the term
functional throughout this paper.

The Hamiltonian Ĥ lives in a three-dimensional Hilbert
space, which can be represented in the basis ∣0↑0↓⟩, ∣1↑1↓⟩, and
(∣0↑1↓⟩ − ∣0↓1↑⟩)/

√
2 and has only three eigenvalues and eigenvec-

tors, labeled E(m) and Ψ(m), respectively. Moreover, the general form
of a singlet wave function is

∣Ψ⟩ = x∣0↑0↓⟩ + y
∣0↑1↓⟩ − ∣0↓1↑⟩

√
2

+ z∣1↑1↓⟩, (49)

with −1 ≤ x, y, z ≤ 1 and the normalization condition,

x2
+ y2
+ z2
= 1. (50)

The energy expression is simply E = T +W + V , with

T = −2
√

2ty(x + z), (51a)

W = U(x2
+ z2
), (51b)

V = ρ Δv, (51c)

and

ρ = z2
− x2. (52)

Note that the normalized eigenstates of the model Hamiltonian are
fully determined by only two parameters: U/(2t) and Δv/(2t). For
this reason, we set t = 1/2 throughout this paper.

For finite and infinite lattice systems, Chayes, Chayes, and
Ruskai proved that every ground-state density is v-representable.86

However, the Hohenberg–Kohn theorem does not always hold
(while a potential exists, it might not be unique). A counterex-
ample has been recently discovered by Penz and van Leeuwen87

and attributed to degeneracies.88–90 Although for Hubbard chains,
the uniqueness and thus the applicability of the Hohenberg–Kohn
theorem are established for the ground state87 but not much is
known for excited states.

Using Levy’s constrained-search formulation56 or, equivalently,
Lieb’s convex formulation,57 we demonstrated in Ref. 52 that the
exact functionals corresponding to each singlet state of the asymmet-
ric Hubbard dimer can be determined. As illustrated in Fig. 2, the
ground-state functional, F(0)

(ρ), is convex with respect to ρ, while
the doubly excited-state functional, F(2)

(ρ), is concave. Remarkably,
the functional associated with the singly excited state is a partial (i.e.,
defined for a subdomain of ρ), multivalued functional that consists
of one convex branch, F(1∪)

(ρ), and one concave branch, F(1∩)
(ρ),

each associated with a separate domain of Δv values. This behavior

FIG. 2. Exact functional F(m)
(ρ) as a function of ρ for each singlet state of the

asymmetric Hubbard dimer with U = 1.

arises from the non-invertibility of the density-potential mapping
for the first excited state, where a single density ρ can correspond to
two different Δv values.

B. Existence of an adiabatic connection
This section explores the hypothetical existence of a (non-

interacting) KS reference state for each interacting state of the
asymmetric Hubbard dimer at half-filling. In particular, we inves-
tigate the existence of a connection, at a fixed density, between the
physical system at λ = 1 and the KS system at λ = 0.

To study this adiabatic connection, we rely on Görling’s sta-
tionary principle as applied to Lieb’s formulation.57 Within this
formalism [see Eq. (44)], the exact functionals F(m)λ (ρ) are obtained
by seeking the set of stationary points with respect to Δv for each
value of m and strength λ, i.e.,

F(m)λ (ρ) = stat
Δv
[ f (m)λ (ρ,Δv)], (53)

with

f (m)λ (ρ,Δv) = E(m)λ − Δvρ

=
⟨Ψ(m)λ ∣Ĥλ∣Ψ

(m)
λ ⟩

⟨Ψ(m)λ ∣Ψ
(m)
λ ∣

− Δvρ, (54)

where E(m)λ are given by the eigenvalues of the following Hamilto-
nian matrix:

Hλ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−Δv −
√

2t 0

−
√

2t 0 −
√

2t
0 −

√
2t +Δv

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+ λ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

U 0 0

0 0 0

0 0 U

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(55)

and Ψ(m)λ is the exact wave function associated with the mth state
at strength λ. As indicated by Eq. (13b), the external potential for a
given ρ is expressed as follows:

Δv(m)λ (ρ) = arg stat
Δv
[ f (m)λ (ρ,Δv)]. (56)
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FIG. 3. Δv(m)
λ (ρ) (top), F(m)

λ (ρ) (center), and E(m)
λ (ρ) (bottom) as functions of

λ for U = 1 and ρ = 1/4: ground state (m = 0), singly excited state (m = 1), and
doubly excited state (m = 2). 1∪ and 1∩ correspond to the convex and concave
branches of the first excited state, respectively, which merge at λ = λc.

As shown in Fig. 3, where we have depicted Δv(m)λ (ρ) (top),
F(m)λ (ρ) (center), and E(m)λ (ρ) (bottom) as functions of λ for
U = 1 and ρ = 1/4, the ground and doubly excited states (m = 0
and 2) are smoothly connected to their respective KS state. This
connection holds for any ρ and any U. In contrast, the curves cor-
responding to the two branches of the first excited states (1∪ and
1∩) merge at the critical value λ = λc and disappear beyond this
point. Therefore, at first glance, it would appear that there is no
well-defined KS state for the first excited state as one cannot find
an external potential that recreates this value of ρ for λ < λc. We can
thus conclude that the first excited state of the Hubbard dimer lacks
non-interacting v-representability.

Here, we propose to analytically continue this adiabatic con-
nection into the complex plane by allowing for complex-valued
Δv. One key consequence of this extension is that the Hamilto-
nian Ĥ defined in Eq. (47) becomes a complex symmetric operator.
To accommodate this non-Hermitian nature, we redefine the inner
product, replacing the standard scalar product with the so-called
c-product91–93 defined as ⟨ f ∣g⟩c = ⟨ f ∗∣g⟩. This symmetric bilinear
form, while useful, does not constitute a valid metric norm, as

the c-norm ⟨ f ∣ f⟩c can become zero for non-zero functions f , a
phenomenon known as self-orthogonality. Consequently, the eigen-
functions of Ĥ may not form a complete set. Nonetheless, thanks
to this generalized inner product, the energy can be computed for
complex-valued Δv via the complex-stationary principle,94–96

E(m)λ =
⟨Ψ(m)λ ∣Ĥλ∣Ψ

(m)
λ ⟩c

⟨Ψ(m)λ ∣Ψ
(m)
λ ⟩c

. (57)

Unlike the variational principle for Hermitian operators, Eq. (57)
provides a stationarity condition for the complex energy without
imposing bounds on its real or imaginary components. This exten-
sion of the domain of definition of the energy and the functional
can be seen as a generalization of the holomorphic formalism97 that
allow stationary states to be analytically continued across molecu-
lar structures98,99 and exchange–correlation functionals.100 Here, the
analytic continuation is performed across the interaction strength at
fixed density.101 It also parallels the formalism introduced by Ernz-
erhof for open systems102,103 and the principles of density-functional
resonance theory.104–107

The top panel of Fig. 4 illustrates the behavior of Δv(m)λ (ρ) as
it evolves beyond the critical λ value. After the merging point, the
two stationary points transition into a pair of complex conjugate
solutions and smoothly evolve from λ = λc to λ = 0. In the non-
interacting limit (λ = 0), Δv(m)λ (ρ) is purely imaginary for the first
excited state, whereas it has both real and imaginary components for
0 < λ < λc.

The central and bottom panels of Fig. 4 report the evolution
of F(m)λ (ρ) and E(m)λ , respectively, as functions of λ. As expected,
both quantities become complex-valued past the critical interaction
strength. Interestingly, the energy is zero at λ = 0 for all ρ values
while the exact functional associated with the first excited state is
purely imaginary.

Let us write down the various quantities at λ = 0 in a more
explicit form. By solving the following sixth-order polynomial
equation:

ρ2
+ (3ρ2

− 1)(
Δv
2t
)

2
+ (3ρ2

− 2)(
Δv
2t
)

4
+ (ρ2

− 1)(
Δv
2t
)

6
= 0,

(58)
which is obtained as the limit of

∂ f (m)λ (ρ,Δv)
∂Δv

= 0 (59)

as λ goes to zero, it is easy to show that the optimizers in the non-
interacting limit are

Δv(0)0 (ρ) = v
(0)
s (ρ) = −

2tρ
√

1 − ρ2
, (60a)

Δv(1±)0 (ρ) = v(1±)s (ρ) = ±2ti, (60b)

Δv(2)0 (ρ) = v
(2)
s (ρ) = +

2tρ
√

1 − ρ2
, (60c)
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FIG. 4. Analytic continuation of Δv(m)
λ (ρ) (top), F(m)

λ (ρ) (center), and E(m)
λ (bot-

tom) as functions of λ for U = 1 and ρ = 1/4: ground state (m = 0), singly excited
state (m = 1), and doubly excited state (m = 2). 1∪ and 1∩ correspond to the
convex and concave branches of the first excited state, which become complex-
valued for λ < λc. The solid lines correspond to the real parts, while the dashed
lines represent the imaginary components.

where the two complex branches of the first excited states are
denoted 1±. [The sixth-order polynomial defined in Eq. (58) has
two additional solutions that are purely imaginary for all values of ρ.
At this point, their physical and mathematical significance remains
unclear.] From these quantities, we get the following non-interacting
kinetic energies:

F(0)0 (ρ) = T(0)s (ρ) = −2t
√

1 − ρ2, (61a)

F(1±)0 (ρ) = T(1±)s (ρ) = ±2tiρ, (61b)

F(2)0 (ρ) = T(2)s (ρ) = +2t
√

1 − ρ2, (61c)

and the corresponding total energies read

E(0)0 = −
2t

√

1 − ρ2
, (62a)

E(1)0 ≡ E(1±)0 = 0, (62b)

E(2)0 = +
2t

√

1 − ρ2
. (62c)

We recover the well-known results for the ground state (see, for
example, Ref. 76) and, as expected, the opposite values for the doubly
excited state. Note that because the non-interacting kinetic energy is
linear in ρ, the KS potential of the first excited state is independent
of the density [see Eq. (41)]. In the following, we arbitrarily assign
the positive (negative) complex part to the concave (convex) branch.
Moreover, in the remaining, we omit the dependence in λ.

To conclude this subsection, let us discuss the analytic continu-
ation of the dual quantities Δv and ρ for the fully interacting system.
Figure 5 illustrates the analytic continuation of Δv as a function of ρ
(or vice versa) for the first excited state (m = 1) for U = 1. The ana-
lytic continuation is shown in purple, with the real part represented
by the solid line and the imaginary parts depicted by the dashed lines.
For a given value of U, densities higher than ρc (in absolute value)
cannot be reached with real-valued Δv. Instead, values of ρ exceed-
ing ρc are accessible only for complex-valued Δv. For ∣ρ∣ < ∣ρc∣, two
distinct values of Δv correspond to each ρ: one on the convex branch
for smaller Δv and another on the concave branch for larger Δv.

Similarly, for ∣ρ∣ > ∣ρc∣, there does not exist a unique Δv that
generates this density but a pair of complex-conjugate values of the
potential. The density-potential map is thus non-invertible, both on
the real axis and in the complex plane.

V. KOHN–SHAM IN PRACTICE
We now perform state-specific KS calculations in practice using

various Hxc functionals. In other words, we study the performance

FIG. 5. Analytic continuation of Δv as a function of ρ for the first excited state
(m = 1) for U = 1. The real and imaginary parts of Δv are represented by the
solid and dashed lines, respectively. The analytic continuation part is depicted in
purple.
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of the ground-state functional for excited-state calculations, and vice
versa. Ground-state and doubly excited state KS calculations are dis-
cussed in Secs. V A and V B, respectively, while the singly excited
state KS scheme is addressed in Sec. V C. Since the Hx contribution
is identical for all states, the only distinction arises from the corre-
lation component. To illustrate this, Fig. 6 depicts the correlation
functional (top) and correlation potential (bottom) for each sin-
glet state of the asymmetric Hubbard dimer. The correlation energy
functionals are calculated as

E(m)c (ρ) = F(m)(ρ) − T(m)s (ρ) − EHx(ρ)

where F(m) are the functionals shown in Fig. 2 for each m, T(m)s are
given by Eq. (61), while EHx = U/2(1 + ρ2

) for any m. The corre-

sponding potentials are simply given by v
(m)
c (ρ) = dE(m)

c (ρ)
dρ . Finally,

we note that for m = 1(±), we only plot the real part (compare
Sec. V C). As discussed in the following, these results reveal notable
differences as well as intriguing similarities.

A. Ground-state Kohn–Sham calculations
In ground-state KS calculations, one seeks the values of ρ such

that the following equation is fulfilled:

v
(0)
s (ρ) − v

(m)
Hxc (ρ) − Δv = 0, (63)

where v
(0)
s is the ground-state KS potential [see Eq. (60a)],

v
(m)
Hxc = Uρ + v(m)c is the Hxc potential of the mth state (m = 0, 1∪,

1∩, or 2), and Δv is an input variable. The corresponding KS energy
is given by

E(0,m)
KS = T(0)s (ρ

(0,m)
) + E(m)Hxc (ρ

(0,m)
) + Δvρ(0,m), (64)

FIG. 6. E(m)
c (top) and v(m)

c (bottom) as functions of ρ for each singlet state of the
asymmetric Hubbard dimer with U = 1.

FIG. 7. v(0)
s − v

(m)
Hxc − Δv as a function of ρ for U = 1. The horizontal gray line

indicates the value of Δv, which is set to zero here. Lowering Δv would move
down this line. For a givenΔv, the stationary densities are given by the intersection
of the colored curves and the gray line.

where T(0)s is given by Eq. (61a), E(m)Hxc is the Hxc functional of the
mth state, and ρ(0,m) is one of the roots of Eq. (63).

In Fig. 7, we plot v(0)s − v
(m)
Hxc − Δv as a function of ρ for U = 1

and m = 0 (ground state), m = 1∪ (convex branch of the first excited
state), m = 1∩ (concave branch of the first excited state), and m = 2
(second excited state). The horizontal gray line indicates the value
of Δv, which is set to zero here. Solutions for other values of Δv can
be obtained by shifting down this gray line. The stationary densities
are given by the intersections of the colored curves and the gray line.
The resulting stationary ρ values may or may not be exact depending
on the correlation potential (i.e., the value of m).

For m = 0 (red curve), one always gets a unique root that corre-
sponds to the exact value of ρ as v(0)Hxc is the exact ground-state Hxc
potential. Using v

(2)
Hxc instead (green curve), one gets a ρ value quite

close as generally v
(2)
Hxc is a fairly good approximation of v(0)Hxc, espe-

cially for large Δv. The convex branch of the first excited state (blue
curve) is also a good approximation of v(0)Hxc for 0 < Δv < 1. Notably,
there is a strong similarity between the curves obtained with v

(1∪)
Hxc

and v
(2)
Hxc. In all cases, a single solution is obtained across the range of

Δv, and these solutions correspond to minima. This can be checked
by computing the second derivative of the energy with respect to ρ,
which is independent of Δv. Conversely, the concave branch (yellow
curve) provides poor estimates of ρ and these correspond to maxima
rather than minima. This branch should be avoided for ground-state
calculations.

B. Doubly excited state Kohn–Sham calculations
In a doubly excited state KS calculation, one looks for the zeros

of the following equation:

v
(2)
s (ρ) − v

(m)
Hxc (ρ) − Δv = 0, (65)

where v
(2)
s is the KS potential associated with the second excited

state [see Eq. (60c)] and the expression of the KS energy reads

E(2,m)
KS = T(2)s (ρ

(2,m)
) + E(m)Hxc (ρ

(2,m)
) + Δvρ(2,m), (66)

where T(2)s is given by Eq. (61c) and ρ(2,m) is a root of Eq. (65).
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FIG. 8. v(2)
s − v

(m)
Hxc − Δv as a function of ρ for U = 1. The horizontal gray line

indicates the value of Δv, which is set to zero here. Increasing (decreasing) Δv
would move up (down) this line. For a given Δv, the stationary densities are given
by the intersection of the colored curves and the gray line.

Figure 8 presents v(2)s − v
(m)
Hxc − Δv for both positive and nega-

tive values of ρ as the non-monotonic nature of the potential makes
things more interesting. As before, the value of Δv is set to zero;
increasing (decreasing) Δv shifts the line upward (downward). Note
that the stationary densities correspond to the intersections of the
colored curves and the gray line.

As anticipated, v(2)Hxc (green curve) yields the unique exact solu-
tion for any Δv. Note that these solutions are energy maxima.
Overall, v(1∪)Hxc (blue curve) is an excellent approximation of v(2)Hxc for
small Δv but its accuracy deteriorates near the junction with v

(1∩)
Hxc ,

which, as in ground-state KS calculations (see Sec. V A), leads to
extremely poor densities and energies. The convex branch (yellow
curve) should also be avoided for doubly excited state calculations.
v
(0)
Hxc is a reasonable approximation of v(2)Hxc, particularly for large Δv.

However, for small Δv (∣Δv∣ ≲ 0.2), using the ground-state func-
tional for a doubly excited state calculation can produce spurious
solutions due to the presence of multiple roots. Caution is, therefore,
warranted, as convergence to a spurious solution (either a maximum
or a minimum) can occur depending on the initial density. This issue
becomes more pronounced at larger U, where correlation effects are
stronger.

C. Singly excited state Kohn–Sham calculations
We now turn our attention to singly excited state KS calcula-

tions. In this case, we seek the roots of the following complex-valued
KS equation:

v
(1±)
s (ρ) − v(m)Hxc (ρ) − Δv = 0, (67)

where m = 0, 1−, 1+, or 2; v(1±)s is the KS potential associated with
the first-excited state [see Eq. (60b)]; and the complex-valued KS
energy is

E(1±,m)
KS = T(1±)s (ρ(1±,m)

) + E(m)Hxc (ρ
(1±,m)

) + Δvρ(1±,m). (68)

Here, ρ(1±,m) is a real-valued root of Eq. (67). Complex-valued roots
may exist but they are not considered here due to their unphysical
nature. Note that both the real and imaginary parts of Eq. (67) van-
ish at a stationary point, i.e., for ρ = ρ(1±,m). This is illustrated in Fig. 9
where we report v

(1+)
s − v

(1±)
Hxc − Δv (top) and v

(1−)
s − v

(1±)
Hxc − Δv

(bottom) as functions of ρ. Two values of the external potential are

FIG. 9. v(1+)
s − v

(1±)
Hxc − Δv (top) and v(1−)

s − v
(1±)
Hxc − Δv (bottom) as functions

of ρ for U = 1, Δv = −2 (top), and Δv = −1/5 (bottom). The zeros, as indicated
by markers, correspond to the stationary self-consistent KS solutions.

considered: Δv = −2 and Δv = −1/5, with each providing a solu-
tion on a different branch. The stationary densities are indicated
by markers. As one can see, stationary points only appear when
the functional is real-valued since the complex part of the poten-
tial is excluded by restricting Δv to real values. Therefore, unless a
complex density is specifically chosen as the starting point for the
self-consistent procedure, we can safely limit ourselves to the real
part of the functionals without any loss of generality.

In this context, we define v
(1)
s = Re[v(1±)s ] = 0 and

T(1)s = Re[T(1±)s ] = 0 and the real-valued version of Eq. (67)
reads

v
(1)
s (ρ) − v

(m)
Hxc (ρ) − Δv = 0, (69)

where m = {0, 1∪, 1∩, 2}. The roots of Eq. (69) are denoted as ρ(1,m),
and the real-valued KS energy is

E(1,m)
KS = T(1)s (ρ

(1,m)
) + E(m)Hxc (ρ

(1,m)
) + Δvρ(1,m). (70)

Figure 10 illustrates the evolution of v(1)s − v
(m)
Hxc − Δv as a func-

tion of ρ. The trends observed here are similar to those in Figs. 7
and 8, and comparable conclusions can be drawn. A key distinc-
tion, however, is the absence of a stationary solution for ∣Δv∣ > 1,
except when the concave branch of the first-excited-state functional
is employed. This underscores the unique character of this func-
tional compared to the others. As expected, v(1∪)Hxc and v

(2)
Hxc remain

remarkably close for small Δv, highlighting their consistency in this
regime.

The similarity of v(0)Hxc and v
(2)
Hxc can be attributed to the fact

that the ground and doubly excited states describe the same type
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FIG. 10. v(1)
s − v

(m)
Hxc − Δv as a function of ρ for U = 1. The horizontal gray line

indicates the value of Δv, which is set to zero here. Decreasing Δv would move
down this line. For a givenΔv, the stationary densities are given by the intersection
of the colored curves and the gray line.

of electron correlation, namely, two electrons occupying the same
orbital. This correlation is predominantly dynamic in nature and
also applies to the first excited state for small Δv (i.e., the convex
branch). For large Δv, the ground and doubly excited states can be
interpreted as ionic configurations, where both electrons are located
on the same site. In contrast, in the first excited state at larger Δv
(i.e., the concave branch), the electrons are distributed across differ-
ent sites, with one electron located on each site. This corresponds
to a charge-transfer state characterized by covalent configurations.
This distinction highlights the significant difference in the corre-
lation functional between short-range dynamic correlation, where
electrons are close to one another, and charge-transfer states, where
electrons are distributed across different centers.

VI. CONCLUSION
In this study, we extended the KS-DFT formalism to explore its

applicability to excited states, focusing on the asymmetric Hubbard
dimer at half-filling. While the highest-lying doubly excited state fits
within the KS-DFT framework, the first excited state poses signifi-
cant challenges due to its lack of non-interacting v-representability.
By employing an analytic continuation of the adiabatic connection,
we showed that the density of the first excited state can be generated
by a complex-valued external potential in the non-interacting case.
One could regard the density of the first excited state as “complex-v-
representable.” Our findings might prove useful in systems where
the KS v-representability condition is violated, such as first- and
second-row atoms with partially filled p-shells.7

From a more practical point of view, our results highlight the
emergence of spurious stationary solutions in the KS equations when
approximate correlation functionals are employed, highlighting the
importance of developing more accurate functional approximations
for state-specific KS calculations. In the case of the Hubbard dimer,
this occurs when performing a doubly excited state calculation
using the ground-state functional, a widely adopted custom among
OO-DFT practitioners. This work provides a deeper understanding
of the theoretical and practical limitations of KS-DFT for excited
states.

Thus, to advance the applicability of OO-DFT, the creation of
state-specific functionals is essential.49,51 Such developments would

bridge the gap between theoretical insights and practical com-
putations, allowing for more reliable computational tools across
chemistry, physics, and material science.
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