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ABSTRACT

The Bethe-Salpeter equation has been extensively employed to compute the two-body electron-hole propagator and its poles, which corre-
spond to the neutral excitation energies of the system. Through a different time-ordering, the two-body Green’s function can also describe
the propagation of two electrons or two holes. The corresponding poles are the double ionization potentials and double electron affinities of
the system. In this work, a Bethe-Salpeter equation for the two-body particle—particle propagator is derived within the linear-response for-
malism using a pairing field and anomalous propagators. This framework allows us to compute kernels corresponding to different self-energy
approximations (GW, T-matrix, and second-Born) as in the usual electron-hole case. The performance of these various kernels is gauged for
singlet and triplet valence double ionization potentials using a set of 23 small molecules. The description of double core hole states is also

analyzed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0250155

I. INTRODUCTION

Despite its conceptual simplicity, the electron-hole (eh)
random-phase approximation (RPA), introduced by Bohm and
Pines in the context of the uniform electron gas,' * has proven effec-
tive in describing a variety of physical phenomena.® These include
collective excitations (plasmons) in metals and semiconductors,’
non-covalent interaction energies,” '’ and screening of the Coulomb
interaction due to density fluctuations.”'' '’ However, eh-RPA falls
short in accurately describing molecular excitations and excitons in
insulators,”'*"'” highlighting the need for methods that go beyond
eh-RPA.

Since its inception, the eh-RPA equations have been
derived through various formalisms, such as Rowe’s equation
of motion (EOM),"* " time-dependent density-functional theory
(TDDFT),””* and the Bethe-Salpeter equation (BSE).”**” Each of
these frameworks offers a pathway to devising approximations that
extend beyond RPA. Among these, TDDFT has been by far the most
popular, although it suffers from well-documented drawbacks.” "'

In particular, TDDFT lacks systematic improvement, as progressing
up Jacob’s ladder of exchange-correlation functionals’™ does not
guarantee higher accuracy (see Ref. 33 for a recent review). In
contrast, EOM can be systematically improved by increasing the
rank of the excitation operator or moving beyond a mean-field,
Refs. 20 and 21; for example, EOM coupled-cluster (EOM-CC) is
the method of choice for highly accurate excitation energies, albeit
at a significant computational cost.”* *

Within the BSE formalism, eh-RPA corresponds to computing
the two-body eh propagator L, known as the polarization propa-
gator, using the simplest approximation of the kernel, namely, the
Coulomb kernel. To go beyond eh-RPA, one must improve the ker-
nel using, for example, perturbation theory or Hedin’s equations.”
For example, the kernel derived from the popular GW self-energy
approximation'' """’ has been highly successful in computing low-
lying excited states of various natures (charge transfer, Rydberg,
valence, etc) in molecular systems with a very attractive accu-
racy/cost ratio.'”***"**°! Perturbative kernels based on expansions
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in the Coulomb interaction, or in alternative effective interactions
such as the T-matrix, have also been explored.;z";(’

The eh-RPA possesses an analog known as particle-particle
(pp) RPA or pairing vibration approximation.”” This method pro-
vides the simplest beyond-independent-particle approximation to
compute the two-body pp propagator K.””* Their close relationship
is elegantly illustrated in the diagrammatic language of many-body
perturbation theory, as depicted in Fig. 1.°” Both approximations
involve the resummation of specific classes of diagrams: bubbles
for eh-RPA and pp ladders for pp-RPA. The pp propagator cap-
tures complementary information to the polarization propagator as
its poles correspond to the double ionization potentials (DIPs) and
double electron affinities (DEAs) of the N-electron system.

In a recent series of papers, Weitao Yang’s group has shown
that pp-RPA offers an alternative approach to accessing excited
states in N-electron systems.”’” ® In particular, excitation energies
of the N-electron system can be computed as the difference between
DEAs from the corresponding (N — 2)-electron reference state. (For
a complementary starting point using the (N + 2)-electron sys-
tem, see Refs. 65 and 67.) Strategies along these lines have already
been applied within coupled-cluster (CC) theory®® * and are also
related to the spin-flip method for excited states.”” ' Unlike linear-
response-based methods, this approach avoids bias toward the
ground state because the ground and excited states are obtained
within the same calculation. Yang and co-workers have shown that
pp-RPA has some advantages over eh-RPA and TDDFT, such as
the ability to describe charge transfer,””* doubly excited states,”
or conical intersections.®> However, the accuracy of pp-RPA is not
always satisfactory, motivating the development of methods that go
beyond pp-RPA.

As with eh-RPA, pp-RPA can be derived and extended through
various theoretical frameworks. The EOM in the (N +2)- and
(N - 2)-electron sectors of Fock space leads to pp-RPA and,
as for the N-electron case, the systematically improvable DIP-
EOM-CC and DEA-EOM-CC formalisms can provide reliable ref-
erence energies.” "> On the other hand, improving pp-RPA
within the pairing-field TDDFT framework is even more challeng-
ing than in standard TDDFT.** This difficulty arises because
the pairing-field TDDFT kernel is obtained by differentiating the
exchange-correlation functional with respect to the anomalous den-
sity. However, the number of functionals for the anomalous density
remains quite limited® ™ and, to the best of our knowledge, these
functionals have not been employed to derive kernels within pairing-
field TDDFT. Finally, the pp channel of the BSE has been much less
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explored and developed than its eh counterpart. Although the BSE
for the pp propagator has been reported in the literature, its kernel
lacks a simple form. In fact, it is expressed as a Dyson equation of
the eh-BSE kernel, making it difficult to apply in practice.®

The main result of this paper is to present an alternative expres-
sion of the pp-BSE kernel by considering pairing fields and anoma-
lous Green’s functions. This new expression is fully analog to the
eh-BSE kernel as both are expressed as the derivative of a self-energy
with respect to a propagator. The derivation of this expression is
detailed in Sec. II C after discussing correlation functions and their
link to response functions in Secs. IT A and I B, respectively. The last
subsection of Sec. IT addresses the finite orbital basis formulation of
the pp-BSE. Then, the pp-BSE analogs of the usual eh-BSE kernels
[GF(2),” > Gw,”""" " and PP T-matrix” *’] are derived in Sec. 111
and their specificities are discussed. Section IV reports the compu-
tational details of our implementation, while our numerical results
are presented in Sec. V. Some concluding remarks are provided in
Sec. VI.

Il. THEORETICAL FRAMEWORK
A. Correlation functions

The equilibrium time-ordered two-body Green’s function (at
zero temperature) is defined as

G:(121'7) = (D] T @' O], @

where 1 is a space-spin-time composite variable (1) = (x1,#1)
= (r1,01,t1), T is the time-ordering operator, and |¥§) is the
exact N-electron ground state. The annihilation and creation field
operators are in the Heisenberg representation, that is, (1)
= My (x)e™", where H is the non-relativistic electronic Hamil-
tonian,

A R R 1
A= [ dxx)d! GhGax )b + 5 [[ dsxix)
<O  (x) i (30) v (3003 Xy ) P () (). )
The four-point Coulomb interaction is defined as

S(xixy )8 (xaxy )

’U(X1X2;X1lX2l) = |r v |
1—I2

and h(x1x,’) is the one-body Hamiltonian.

FIG. 1. Diagrammatic representation of
the eh propagator L (top) and pp prop-
agator K (bottom) at the RPA level.
The dashed lines represent the Coulomb
interaction, and the solid lines with
arrows denote the one-body propagator.
The first- and second-order exchange
terms have not been represented but

— ———— ——o——— . .
V4 ‘ | should be included in KRPA,
- - + | +
+
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The two-body Green’s function describes the propagation of
two particles. These particles can be either electrons or holes,
depending on the ordering of the time variables. For example, if
ty, ty > t1,ty7, then G, reduces to

60217 = )W Ha@i @) ] et a)]w) @

and describes the propagation of an electron-hole pair. The eh cor-
relation function L associated with G, is obtained by removing the
uncorrelated part of Eq. (4), that is,

L(121'2") = -G, (12;12) + G(11") G(22), (5)

where we have introduced the one-body Green’s function,
6(11) = () |T[p (" (1) ]|¥), (©)

which describes the propagation of either a hole or an electron.

One can further assume that the electron and hole forming the
pair are created and annihilated simultaneously by setting £ = £,
and t; = £}, (where t* =t + 7 with 5 an infinitesimally small posi-
tive shift) such that L(12; 1'2") depends only on the time difference
t; —t1. The frequency-space representation of this correlation
function is

LN DRY '
L(X1X2;X11X21;w) _ Z n (szlz\]) n[\(]X1},(1 )
o w— (E, —Ey —in)

Lﬁj (szz’ )RL\I(XIXI’)

- , 7
%w—(EQLEfYHq) )
with amplitudes,
LY Gaxy) = (0 |9 ()i )| 92, (82)
R (xaixyr) = (0| () i) |9 ), (8b)

where E) and |¥)) are the energy and wave functions, respec-
tively, of the nth excited state (n = 0 being the ground state) of the
N-electron system. This representation evidences that L is directly
linked to the excitation energies of the N-electron system.

If instead we impose the time ordering, t1,t, > t/, t,, then G,
becomes

G(121'2') = (P (B [T @I T3 @)o (1) ) ©)

and describes the propagation of two electrons. Similarly, the time
ordering t,/, t,» > t1, ¢, would describe the propagation of two holes.

. 2 . . . 7,99
In this case, one defines” the associated correlation function as

—2K(112)) = -Gy (12, 1'2) + G™(12)G*(2'1),  (10)

where the uncorrelated part involves the hole-hole (hh) and
electron-electron (ee) anomalous propagators,

G™(12) = (-)(¥o [ TTH(1) ¥ (2)]|¥5 ). (11a)

Ge(2'1) = (-D{w [T @) " ]w).  aw)
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Note that, because the wave function |¥) ) has a fixed number of
particles, the uncorrelated part vanishes in this case.

Here again, the pairs are assumed to be created and annihilated
instantaneously, i.e., t; = tf and ty = ;7 The Fourier transform of
the pp propagator with respect to ¢, — ¢, yields

1 LN (2 ) RY P2 (x,%0)
K(x1X2; XXy 0) = = " " 21
oy B

Li:\]_z (% xy/ )Rﬁl_z (xix2)

1
- = s 12
PPy e

with amplitudes,

LYV (xixe) = (0 |§r(xa) §(x2) ¥ *2), (13a)
R (xax) = (0020 ()i (o) [ 95), (13b)
L7 (aixe) = (W0 |91 ()i ()| 9072, (13¢)
RY 7 (xixz) = (W0 i (xa ) (%) ¥ )- (13d)

In the previous expressions, Ey*2 and [¥5*?) are the energy and
wave functions, respectively, of the nth excited state of the (N + 2)-
electron system. This highlights the direct link between the pp
correlation function and the DIPs and DEAs of the N-electron
system.

B. Response functions

In Sec. I A, L has been introduced as a correlation function but
it can alternatively be regarded as a generalized response function.”
This is evidenced by the Schwinger relation,”"”

8G(11;[U])

L(12;1'2") = ,
( ) U (22) luso

(14)

where the time-dependent external potential,

Ut = [ atx)i Ut xs i) ()

has been added to the Hamiltonian (2) and U®(11")
= Ueh(xlxlf; t1)8(t1 —t;). The notation G(11’; [U]) means
that the propagator is computed in the presence of the external
potential. However, this dependence is not explicitly written in the
following for the sake of conciseness. The Schwinger relation shows
that knowing the eh correlation function is equivalent to knowing
the response of the one-body Green’s function with respect to an
external potential.

The pp correlation function can also be expressed as a func-
tional derivative within the linear-response formalism. This is done
by considering the response of an anomalous Green’s function to a
time-dependent pairing potential,
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70 = 5| [ )i U™ e 0 xy)
+ [dxx)i ) U xs 0 o) | e

Note that, in the presence of this perturbation, the Hamiltonian
does not commute with the particle number operator. Therefore,
in the presence of the pairing potential, the wave function breaks
the particle-number symmetry and the anomalous Green’s func-
tions do not vanish anymore. Following a derivation similar to the
one of 11(3%. (x 14) (see the supplementary material of Ref. 99), one can
obtain' """’

6Gee(2111)

K(12;12"y=—>~="2| |
( ) 5Uhh(12) U=0

17)
with U™(12) = UM (x1x5; £1)8(t1 — t,). This expression shows
that the response of an anomalous propagator to a pairing field
(evaluated at U = 0) is non-zero even if the equilibrium Hamilto-
nian preserves the number of particles. Therefore, through their
derivatives, anomalous quantities can be useful even in a number-

conserving framework. This was already highlighted in pairing-field
TDDFT*"* and will be further evidenced by the pp-BSE.

C. Bethe-Salpeter equations

The usual eh-BSE will be briefly reviewed before discussing
in more depth its pp counterpart. The eh-BSE is derived starting
from the response-function form of L [see Eq. (14)] and the Dyson
equation for the one-body Green’s function

G '(12) = Gy (12) - U (12) - 2(12), (18)

where Gy is the non-interacting one-body Green’s function and X is
the exact self-energy containing Hartree, exchange, and correlation
effects.” This leads to a Dyson equation for L, which reads

L(12;12") = Lo(12;12")
+ fd(343'4')L0(13';1'3)Eeh(34;3'4')L(4'2;42'),
(19)

where Lo(12; 1'2") = G(12")G(21") is the non-interacting eh prop-
agator and

63(33")
3G(4'4)

2" (34;3'4") = (20)
is the eh effective interaction kernel. This equation is represented
diagrammatically in Fig. 2. Equation (19) shows that the two-body
propagator depends on Lo and gh. Hence, in practice, two approx-
imations have to be made, namely, the choice of the one-body
Green’s function that enters in Lo and the self-energy considered to
compute .

3 4
1 2! 1 —=— 2 1 ¢ ¢
= + Eeh
1 2 1/ —»—2 1’ > >
3 4

- 2
2
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Now that the pp propagator has also been expressed in a
response-function form [see Eq. (17)], a similar derivation can be
performed for the pp channel. In the following, only the main
steps of the derivation of the pp-BSE are discussed but a fully
detailed derivation is provided in the supplementary material. As a
preliminary step, one introduces the Gorkov propagator,'’”

G*a1’) G™1) )

21
Gee(H/) Geh(lll) ( )

G(11") :(

which gathers the normal one-body propagator G™ =G [see
Eq. (6)], the anomalous propagators [see Eqs. (11a) and (11b)], and
the eh one-body propagator related to the normal propagator as
G®(11") = =G"™(1'1). This matrix formalism is known as Nambu’s
formalism.'"” The derivation of the pp-BSE then starts from Eq. (17)
and relies on the following relation:”

B(G—l)ee(?’?’/)
5Uhh(12) U=0

8Gee(2111)

SU™(12) luso GG, ()

= G(32)

which stems from the differentiation of G™'.
This set the stage for the introduction of the Gorkov-Dyson
equation in the presence of the external pairing potential,

G'(11) = G,'(11")

_( Zhz:(lll)

z:eh(lll)

2™ (1) + U (11')
= (11) + UM (11") ’

(23)

which stems from the time derivative of G (see Ref. 99 for a detailed
discussion). This equation defines the four components of the self-
energy in Nambu’s formalism. Using Eq. (23), the derivation can be
pursued and one gets

sUth(33)
BU™(12) lu=o
82(33")
SUM(12)

K(12;1'2") = -G(32") G(3'1)

G(3'1"), (24)
U=0

- G(32")

where the first term in the right-hand side becomes the pp
non-interacting propagator,

Ko(12;1'2") = Z[G(11)G(22") - G(21))G(12")],  (25)

1
2
after the derivative is evaluated.

Equation (24) is transformed into a Dyson equation using the
derivative chain rule. This leads to four different terms because the
chain rule has to be performed with respect to the four compo-
nents of G. However, only one of them is non-zero for a number-
conserving system (i.e, at U =0) and this finally leads to the
pp-BSE,

FIG. 2. Diagrammatic representation of the eh-BSE, as
defined in Eq. (19).

Y
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4 3

FIG. 3. Diagrammatic representation of the pp-BSE [see Eq. (26)]. The rightmost K, has been replaced by its first term [see Eq. (25)] using the antisymmetry of the kernel.

FIG. 4. Diagrammatic representation of the two direct second-order terms con-
tained in 2°. The dashed lines represent the Coulomb interaction; the solid
lines with arrows denote the one-body propagator, while the double-arrowed
propagators represent G™ and G®¢.

K(12;1'2") = Ko(12;1'2") - fd(33’44’)1<(12;44’)5PP
x (44'333")K(33'312), (26)
where the pp kernel,

§2(33")

27 (533) = 5G*(44")

(27)

>
U=0

has been introduced. The pp-BSE, defined in Eq. (26), is represented
diagrammatically in Fig. 3. As one can readily se from Egs. (25)
and (27), to compute K, one has to choose G and the anomalous
self-energy =* to build Ky and EPP, respectively. This procedure is
fully analog to the eh-BSE equation, as discussed previously. Accord-
ing to the definition of EP? in Eq. (27), the approximate expression
of Z% must contain exactly one anomalous propagator G* for the
derivative to be non-zero. To illustrate this, we examine the two
direct second-order self-energy terms, with respect to the Coulomb
interaction, contributing to the anomalous self-energy £%.'"* These
diagrams are represented in Fig. 4. The diagram on the right side
possesses three anomalous propagators; thus, its derivative necessar-
ily vanishes when evaluated at U = 0. In contrast, the first diagram
has only one instance of G*, resulting in a non-zero kernel.

D. Eigenvalue problem

With the general pp-BSE now derived, the next step is to refor-
mulate it in a way suitable for implementation in standard quantum
chemistry software. This involves first transforming the equations
into frequency space, followed by projection into a spinorbital basis.
Here, the indices i,j, k, I, m denote occupied spinorbitals; a, b, ¢, d, e
are virtual spinorbitals; and p, g, 7,s correspond to generic spinor-
bitals. Finally, 4 denotes a composite index ia while v corresponds to
a composite index ij (with i < j) or ab (with a < b).

Before performing the Fourier transform, we recall that particle
pairs are assumed to be created and annihilated instantaneously, i.e.,
ty =t and ty = t]:. Hence, in Eq. (26), K(12; 1'2") and Ko (12; 1'2")
depend only on a single time difference, namely, t; — ¢,-. However,
in the second term of the right-hand side of Eq. (26), the quantities

depend on two or three time differences. These time dependencies
are explicitly treated in the supplementary material. The Fourier
transform leads to the following frequency-space pp-BSE:

d(ww)
(2 )2

The two- and three-frequency Fourier transforms are defined in the
supplementary material. As can be readily seen, Eq. (28) cannot be
inverted directly.

To circumvent this issue, we rely on the procedure of Ref. 105
developed for the eh-BSE. The pp-BSE is recast in an invertible form
as

, ) EPP (=@, —@, w) Ko (@, w). (28)

K(w) = Ko(w) - [

K(w) = Ko(w) - K(w)EPP(w0)Ko(w), (29)

where the frequency-dependent kernel is

& _ d(a) K 3
27) = [ K@K @-n.0)

x BPP (@, -@, 0)Ko (—1, @ ) (Ky ) (). (30)

However, at this stage, the newly derived form is not yet practical
as the kernel depends on K and must, therefore, be solved itera-
tively. Equation (30) is thus linearized by substituting K by K. This
approximation might seem drastic but it has proven successful in
the eh-BSE case.'” " It is worth mentioning that if the initial ker-
nel is static, i.e., PP (@, @, w) = EPP, the approximate dynamic kernel
remains unchanged, i.e., PP (w) = EPP,

We now express pp-BSE as an eigenvalue problem. Once
inverted and projected in a finite basis set, Eq. (29) becomes

Kpgro(@) = (Ko )pgrs(@) + Eff (@), (1)

where the four-index tensors have been transformed into matrices
by defining composite indices. Finally, one can show that finding the
zeros of K1 (w), that is, the DIPs and DEAs, is equivalent to solving
the following non-Hermitian non-linear eigenvalue problem:

Cc(Qn) B X)X -
B —Dp(-Q,) Y, \v./)

Cub,cd(w) = (Sa + eb)é\acabd + i‘éi[b),cd(w)’
By, = +iER) ., (33)

Dijja(-w) = (€ + &) 0 + ié};’iz(—w))

where

with the following restrictions on the indices: i < j, k < I, a < b, and
¢ < d. These three blocks will be referred to as the ee-ee, ee-hh, and
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hh-hh blocks, respectively. (In addition, note that EE;U is, in gen-
eral, frequency-dependent. However, for every kernel considered in
this work, this coupling block is found to be static. ) Therefore, if the
kernel is static, égil(—w) = “Epkz and 8% (w) =B . finding the
poles of K reduces to a generalized linear eigenvalue problem. Note
the close connection between the static pp-BSE eigenvalue problem
and the pairing TDDFT equations derived by van Aggelen and co-
workers.””*" This connection is fully analogous to the one between
eh-BSE and TDDFT.***

In both the dynamic and static cases, the problem can be sim-
plified by neglecting the (static) coupling block B. This widespread
approximation is referred to as the Tamm-Dancoff approxima-
tion (TDA). In this case, one ends up solving two indepen-
dent Hermitian non-linear eigenvalue problems for the ee and
hh sectors,

+ C(Qn) 'Xn = Qan) (343)

—D(-Q) - Yy = QY (34b)

Finally, both the static and dynamic eigenvalue problems can be
spin-adapted to split them into independent problems of smaller
size. The spin adaptation is performed and discussed in detail in the
supplementary material.

E. Dynamical perturbative correction

As mentioned earlier, if the kernel is dynamic, then finding
the poles of K requires solving a generalized non-linear eigenvalue
problem [see Eq. (32)]. Alternatively, the dynamical effects can be
perturbatively accounted for in order to avoid the cumbersome non-
linear procedure. This is the choice that has been made in this work.
In addition, the dynamic perturbation is only considered within
the TDA. This dynamic perturbation has already been presented in
detail in Ref. 107 (also see Refs. 17 and 53) for the eh-BSE case and
shall only be outlined here for the hh sector. An analogous procedure
exists for the ee sector.

The matrix to diagonalize is decomposed into a static and
dynamic part D(w) = D + DV(w). Then, the static problem is
first solved,

D(O) Y,go) - _01(10) Y}SO), (35)

and the perturbative correction to the nth eigenvalue 9 s
computed as

ol = (Y(O))T D(l)( Q(O)) Y. (36)
Finally, the corrected eigenvalue is given by
Q.= + 2,00, (37)
where the renormalization factor is

)
_|y_ (y@yt, 9D (-w)
Zn=|1-(Y) o

-1
YS,O)] . (38)

w:QSIO)
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I1l. APPROXIMATE KERNELS

Now that the general formalism has been discussed in detail,
some practical approximations will be presented. In particular, this
section focuses on kernel approximations. As mentioned in Sec. [1 C,
this is not the only approximation made in practice, as one must also
choose an approximate form for the one-body propagator G. The
effect of both sources of approximations will be gauged in Sec. V.

The present section is divided into various subsections, each
corresponding to a given anomalous self-energy and its associated
kernel. First, we will show that considering the static Bogoliubov
self-energy leads to the ubiquitous pp-RPA kernel. Then, three ker-
nels that go beyond pp-RPA will be presented. These are the direct
analogs of well-known kernels that have been considered for the eh-
BSE: a kernel based on a self-energy correct up to second order in the
Coulomb interaction and kernels based on the GW and T matrix
self-energies. The corresponding spin-adapted matrix elements for
each of these kernels are reported in the supplementary material.

A. The first-order Coulomb kernel

The perturbation expansion of =° with respect to the Coulomb
interaction has only one first-order term, which reads'"*

sE(11) = —i/d(SS')v(33'+;11'++)Gee(33/), (39)
where

7‘7(“ 1'|) 8(1'2). (40)

The resultmg kernel i25P(11%;22") = 9(11522")/2 = [v(11';22")
-v(11;2'2)]/2 is simply the anti-symmetric Coulomb interac-
tion. Hence, this is a static kernel that can be used without any
further approximation. Once projected in a basis set, its matrix ele-
ments are simply i(25°)5; = (pqllrs) = (pqg|rs) — (pglsr), where the
two-electron integrals in the spin-orbital basis are defined as

v(11522) = 8(12)

s = [ s e HOEDBODICOWED)

[r1 = 12

Note that here and throughout the manuscript, we assume real
orbitals. The corresponding matrix elements of the linear eigenprob-
lem read

Chpr = (€a + €5)8acOpq + (ablcd),
By = {abllij), (42)
DS%? = —(€i + ej)&kéjl + (l]”kl),

which is easily recognized to be the well-known pp-RPA eigenvalue
problem.

In the absence of instabilities, which corresponds in this case
to test the stability of the reference N-electron state toward a
(N +2)-electron state,'”*'"” the pp-RPA problem yields two sets
of eigenvalues: a set of positive eigenvalues corresponding to
DEAs [(N + 2)-electron states], and a set of negative eigenvalues
corresponding to DIPs [(N — 2)-electron states].
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B. The second-order Coulomb kernel

As explained in Sec. I C, there are two second-order direct
terms in the perturbative expansion of £ and only one contributes
to EPP. This self-energy diagram is represented on the left side of
Fig. 4. 2% also contains two exchange terms and, for the same reason,
only one yields a non-zero kernel. Once added up with the first-order
term of Eq. (39), the second-order kernel reads'"*

@ (11) = -iw@ (33, 11)G*(33"), (43)
where the second-order effective interaction,
w® (33,11) = 0(33;11") — i0(34'; 14) Lo (42;4'2")5(2'3';21"),
(44)
has been introduced. It corresponds to an antisymmetrized
Coulomb interaction “screened” up to second order in the Coulomb
interaction. The differentiation of 2% with respect to G* yields

1
iz @ (11722") = 2[W(Z)(rr’;zz’) -w®a1522)] 45

Because this kernel is frequency-dependent, one must either
evaluate it at w =0 or the corresponding approximate effective

dynamic kernel has to be computed [see Eq. (30)]. The first choice
leads to

& = wi - wi (46a)
g §2> 5;3 Wiﬁﬁ) (46b)
=P () _ @) (@

B2 ngl quk (46¢)

where Wéqr)s is a short notation for ngq,)s(w =0). The matrix ele-

ments of the frequency-dependent effective interaction are given
by

(palrs) + Y {pmllre)(eqllms) _ (peljrm){malles) |
‘lw-(ec—em—in) w— (em—€c+in)
(47)
The dynamic kernel EPP(?) s discussed in the supplementary
material.

Wi(w) =

C. The GW kernel

In the case of the eh propagator, the GW kernel is arguably
the most successful in the context of quantum chemistry and con-
densed matter physics. Hence, a GW-like kernel for the pp channel is
a natural target but it does require a GW-like self-energy approxima-
tion for £°. Such quantity can be obtained by generalizing Hedin’s
equations to the Gorkov propagator, as shown in Ref. 110. For the
sake of completeness, the derivation of 2°*“" is also reported in the
supplementary material.

The resulting self-energy expression is

Zee,GW(lll) _ _iGee(33/)W(33’; 11,), (48)

and the associated kernel is

2" (11522 = %[W(rr’;zz’) -w(11;22)],  (49)
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where W is the screened interaction computed at the eh-RPA level,

W(11522") = v(11';22") —iW(13;23") Lo (4'3';43)v(1'4;2'4").
(50)
Note that, for notational convenience, we use the same notation for
W in Eq. (48) and for W in Eq. (49). However, the first contains
both normal and anomalous bubbles and the latter only includes the
normal bubbles as one sets U — 0 according to Eq. (27).

We also note that contrary to the eh GW kernel where one usu-
ally neglects the term (whlch can be shown to be of second-order
in W),”*"*""" this derrvatlve is effectively zero for the pp channel
as the anomalous propagator vanishes at U = 0. Another interest-
ing property of this kernel is that it justifies the ad hoc kernel of
Rohlfing and co-workers.''* Indeed, while in the eh case only the
exchange term is screened, the authors of Ref. 112 argued that one
has to screen both the Hartree and exchange in the pp kernel using
symmetry arguments. Therefore, Eq. (49) provides a first-principle
justification for this choice.

In the static approximation, the matrix elements of the GW
kernel are

igPPGW
1= “abed T abed — Wubdm (51a)
igPP,GW

) i Wﬂbij - Wahji» (51b)
iaPPGW _

By = Wik = Wi (51c)

with Wpgrs = Wpgrs(w = 0). The elements of the dynamically
screened interaction are given by

MpruMsqu — MipuMgsy

TS = 5 2
Wi (@) = pals) + 5| e - et | (s
where the transition densities are

Mpgy = Z [Xiau{aplig) + Yiay(iplaq)]. (53)

1a

Here, Xpqu> Ypgu> and €, are the matrix elements of the eigen-
vectors and the eigenvalues of the (direct) eh-RPA problem,
which is reported in the supplementary material. Hence, the static
PPBSE@GW eigenvalue problem is the same as the ppRPA one
with screened two-electron integrals instead of the usual unscreened
ones.

To conclude this subsection, the expression of the hh-hh GW
effective dynamic kernel matrix elements are reported,

My My — My M;;
i& GW .y kutVil, kutVii,
gl (-w) = (lJHkl)+Z S —
i 0 (g -+ O~ in)
Mkty Mk],uMil[x

o)
¥

"2

w-(- e,—ek+Q#—111)

MixuMijy = MMy
w— (—ei—€l+Q,4—i71)

Mkly Mk] [A.ley (54)
w- (- ej—ek+Q —in)’
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The ee-hh and ee-ee blocks are reported in the supplementary
material.

D. The T-matrix kernel

Finally, the kernel based on the pp T-matrix effective interac-
tion is discussed. The T-matrix anomalous self-energy approxima-
tion has been derived in a previous study by some of the authors”
(also see Ref. 113). However, the associated pp kernel vanishes in the
normal phase. Hence, there is no kernel of first order in T for the pp-
BSE. This could have been anticipated as the pp T-matrix is already
based on pp-RPA.”

Computing the first vertex correction to this self-energy leads
to an anomalous self-energy of second order in T, which contains
exactly one anomalous propagator,”

@D (117 = —iw @D (33;11)G*(33"), (55)

where the second-order effective interaction,

w@ (33'117) = (335 11") - iT(34';14) Lo (42;4'2") T(2'3';21").

(56)
Note that this self-energy is equivalent to the second-order self-
energy of Eq. (43), where the antisymmetrized Coulomb interaction
is replaced by the effective interaction T and thus leads to a kernel
that is non-zero in the normal phase,

1
iz (22;11') = E[W<2T)(22’; 11) - weD(2'211)], (57)

where

w®D(337,117) = v(33;11") —iT(34';14) Lo (42;4'2") T(2'3';21")
(58)
is an effective interaction analog to W(Z), but of second order in
T instead of v. In the following, this kernel is computed under
the approximation of a static effective interaction T. The deriva-
tion of the second-order kernel in a frequency-dependent effective
interaction is beyond the scope of this work.
The matrix elements of the kernel E°”*7) are the same as in
Eq. (46) but with WEeD instead of W?. The matrix elements of this
effective interaction are given by

Tpmre Teqms Tperm ques

Wi (@) = (pglrs) + 3

me w—(ee—em—irl)

(59)
where Tpgrs = Tpgrs(w = 0) and the pp T-matrix elements are
M2 N2 MV N2
T ©) = ) + pgyv sy pgv Mirsy 60
o) = palr) + 3 RGP S TR (60

Finally, the transition densities are defined as

MY =S (pqlled) X352+ S (pgl YRS (61a)

c<d k<l
My =" (pqlled) X0y +Z (pallkh)Yh,>,  (61b)
c<d

where Xl\ffvz, YN =2 and Q)*? are the matrix elements of the eigen-
vectors and the elgenvalues of the pp-RPA problem and are explicitly

defined in the supplementary material.

_w—(em—ee-v—in) ’
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IV. COMPUTATIONAL DETAILS

The set of molecules considered here is the same as in the
recent benchmark of valence IPs and satellite transitions devel-
oped by some of the authors.!'* This work extends this bench-
mark by computing the exact lowest DIPs (singlet and triplet) of
these 23 molecules. The calculations are performed in Dunning’s
aug-cc-pVTZ.'” "' The geometries are extracted from the QUEST
database,””'"” meaning that they have been optimized at the CC3
level'”" in the aug-cc-pVTZ basis set without frozen-core approx-
imation. These reference values are computed using the implemen-
tation of the configuration interaction using a perturbative selection
made iteratively (CIPSI) method in QUANTUM PACKAGE.'” '
The lowest DIPs of each molecule are obtained as energy differ-
ences between the neutral ground-state energy and the singlet and
triplet cation ground-state energies. The frozen-core approxima-
tion has been used for both calculations. Note that the 1s orbitals
of Li and Be were not frozen. We refer the reader to Ref. 114 for
a detailed discussion of the CIPSI extrapolation procedure, which
is employed to produce the full configuration interaction (FCI)
estimates.

In addition, the single-site double core ionizations of four
molecules (H,O, NH3;, CHy, and CO) have been considered. In
a single-site double core hole (DCH) state, the two 1s electrons
are ionized from the same orbital, while in a double-site DCH
state, the ionization process occurs on distinct 1s orbitals. Here, we
only consider single-site DCHs. These calculations are performed in
Dunning’s aug-cc-pCVTZ."">''*'*” The reference values have been
computed under the core-valence separation (CVS) approximation,
which restricts the CI expansion of the cation to determinants with
two core holes.'””"”" In this case, the frozen-core approximation was
not enforced for the neutral ground-state calculations.

The various flavors of pp-BSE considered in Sec. V have
been implemented in an open-source in-house program, named
QUACK."*? The implementation relies on a full diagonalization
of the spin-adapted pp-BSE matrices. The machinery developed to
reduce the cost of pp-RPA, such as Davidson diagonalization® or
active spaces, " could be transposed to pp-BSE but this is beyond
the scope of this work. In addition, for some starting points and
kernels, the TDA had to be enforced for BN and C, as the pp-BSE
eigenproblem is unstable, that is, the number of negative eigenval-
ues is larger than the number of DIPs.'”” Hence, for the sake of
consistency, each BN and C, DIP has been computed within the
TDA. Note that this instability is expected in these systems as a
consequence of the large negative energy of the lowest unoccupied
molecular orbital (LUMO).

The underlying one-body Green’s function calculations [GW,
GF(2), and T-matrix] rely on the linearized version of the quasipar-
ticle equation (without self-consistency) to obtain the quasiparticle
energies.'” The infinitesimal 7 is set to zero for all calculations except
for the perturbative correction, where a value of 0.05 Eh has been
used. The starting point of the one-body Green’s calculations is
always a (restricted) Hartree-Fock (HF) solution.

The ASCF calculations have been performed with QUANTUM
PACKAGE. The determinants with two core holes have been opti-
mized using the maximum overlap method (MOM)."” """ Finally,
the DIP-EOM-CCSD calculations have been performed using
Q-CHEM 6.2.1'*% and the CVS-DIP-EOM-CCSD using CCpy.'*’
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V. RESULTS

Doubly ionized molecules can be obtained through various
processes such as direct single- or two-photon ionizations or indirect
mechanisms such as the Auger-Meitner effect."'”'"" The theoret-
ical understanding of the dication electronic structure is a cru-
cial tool to interpret the corresponding experimental spectra pre-
cisely. For example, in a series of papers, Schirmer, Cederbaum,
and co-workers applied the algebraic diagrammatic construction
(ADC)'"*'" to the pp propagator to compute valence DIPs." """’
The pp-ADC became, after the seminal ASCF study of Ortenburger
and Bagus,'“*° the method of choice to decipher experimental Auger
spectra.'”’"'"* Various other pp-propagator-based methods have
also been considered to study this problem.'””"** Recently, highly
correlated methods in combination with non-Hermitian extensions
of quantum chemistry have been employed to go beyond the pp-
ADC state-of-the-art for Auger spectra.”””'*” In a different context,
a clear theoretical understanding of DCH states allowed precisely
interpreting the satellites of the corresponding spectra'®>'** as well
as understanding the dynamics of these DCH states.' "

ARTICLE pubs.aip.org/aipl/jcp

In Secs. V A and V B, the pp-BSE formalism is employed to
compute valence and core DIPs, respectively. The accuracy of its
various variants is assessed and discussed for both types of states.

A. Valence double ionization potentials

The first testbed of this study, designed to assess the various
approximations of pp-BSE, is composed of the lowest singlet and
triplet DIP of 23 small molecules. The set of molecules is the same
as in the valence IP and satellite benchmark reported in Ref. 114.
The FCI-quality reference DIPs have been obtained using the CIPSI
algorithm and are reported in Table I. In addition, the main con-
figuration of each CI expansion is reported in the supplementary
material. As mentioned earlier, there are two levels of approxima-
tions in pp-BSE, namely, the underlying one-body orbital energies
and the choice of the kernel.

The impact of the one-body propagators is investigated first.
The DIPs are computed with the pp-RPA first-order Coulomb ker-
nel for various starting points, hence different orbital energies: HF,
GW, T-matrix, and GF(2). These are referred to as ppRPA@[HF,

TABLE I. DIPs (in eV) toward the singlet (left panel) and triplet (right panel) dication ground states in the aug-cc-pVTZ basis set computed at the FCI level and the pp-RPA level
using various one-body energies: HF, GW, T-matrix, and GF(2).

Singlet DIPs

Triplet DIPs

Molecule FCI ppRPA@HF ppRPA@GW ppRPA@GT ppRPA@GF(2) FCI ppRPA@HF ppRPA@GW ppRPA@GT ppRPA@GF(2)

H,O 41.43 47.00 45.01 43.94 42.39
HF 50.69 57.85 54.93 53.90 51.87
Ne 65.43 72.80 69.34 68.64 66.63
CH4 38.98 41.07 40.91 39.95 39.61
NH; 3591 39.45 38.45 37.47 36.55
CO 41.29 43.99 42.71 41.71 40.75
N> 42.81 46.27 44.20 42.93 41.53
BF 34.53 34.72 35.25 34.50 34.67
LiF 40.00 46.75 43.69 42.77 40.47
BeO 32.18 36.43 34.97 33.73 32.00
BN 34.98 36.34 36.73 36.25 35.29
Cy 35.98 37.58 38.58 38.74 38.88
CS 33.36 34.87 34.76 33.80 33.71
LiCl 30.83 33.18 32.48 32.03 31.62
F> 44.48 48.90 45.03 43.15 40.63
H,S 31.75 32.81 32.82 32.19 32.19
PH3 31.15 31.94 32.25 31.47 31.57
HCI 37.17 39.17 38.75 38.21 38.03
Ar 44.74 47.14 46.38 45.98 45.73
SiHy 32.78 33.74 33.71 33.07 32.94
CH,O 33.33 35.66 34.20 32.79 31.45
CO, 38.54 40.26 38.96 37.69 36.72
BH3 36.72 37.50 37.62 36.95 36.84
MSE 2.89 1.85 0.99 0.13
MAE 2.89 1.85 1.23 0.96
RMSE 3.55 2.16 1.58 1.32
SDE 2.11 1.13 1.25 1.34
Min 0.19 0.42 -1.32 -3.85
Max 7.37 4.24 3.21 2.90

40.29 46.18 44.37 43.27 41.80
47.90 55.62 52.71 51.67 49.65
62.19 70.12 66.65 65.96 63.95
38.27 40.37 40.21 39.25 38.91
38.38 41.98 41.25 40.23 39.44
41.56 42.61 41.94 41.06 40.54
43.70 46.66 46.14 45.24 44.96
38.47 39.33 38.10 37.29 36.44
37.35 44.71 41.66 40.73 38.44
30.17 35.06 33.60 32.36 30.63
33.73 35.19 35.59 35.10 34.15
35.14 36.50 37.50 37.66 37.80
32.68 34.22 34.11 33.15 33.06
29.35 31.80 31.10 30.65 30.24
43.87 48.63 44.79 42.91 40.41
32.77 34.16 34.12 33.45 33.38
32.38 33.22 33.33 32.58 32.54
35.61 37.70 37.28 36.74 36.56
42.98 45.42 44.66 44.26 44.01
32.65 33.52 33.49 32.85 32.72
35.68 38.35 37.61 36.41 35.64
37.37 39.83 38.54 37.27 36.32
35.44 36.14 36.32 35.62 35.52

3.02 2.05 1.21 0.40

3.02 2.08 1.45 1.06

3.76 2.45 1.83 1.35

2.30 1.37 1.41 1.32

0.70 -0.37 -1.18 -3.45

7.93 4.81 3.78 2.67
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FIG. 5. Histogram of the errors (with respect to FCI) for the singlet and triplet principal DIPs of 23 small molecules computed in the aug-cc-pVTZ basis set at the pp-RPA

level using various one-body energies: HF, GW, T-matrix, and GF(2).

GW, GT, and GF(2)] and their respective values are gathered in
Table I. Figure 5 presents the corresponding histograms of errors
with respect to FCI. Before discussing these errors for DIPs, one
should recall the error on single IPs of these four starting points.
For a set of 58 valence IPs (of these 23 molecules), the mean abso-
lute errors (MAEs) of these four methods are 1.30, 0.47, 0.49, and
0.81 eV while the mean signed errors (MSEs) are 1.23, 0.40, 0.01,
and —0.55 eV.'!*

The MAE and MSE associated with the pp-RPA@HF DIPs are
both 2.95 eV. This error is larger than the 1.30 eV MAE of HF IPs.
However, the mean values of IPs and DIPs on these two sets are 16.29
and 38.41 eV, respectively. Hence, the ratios of MAE over the mean
value are similar: 0.07 for IPs and 0.08 for DIPs.

The GW one-body energies offer a quantitative improve-
ment by decreasing the MAE by ~1 eV. In addition, the positive
MSE, 1.95 eV, almost equal to the MAE, 1.97 eV, is in agree-
ment with the ppRPA@GW results of Noguchi and co-workers
who also observed a systematic overestimation of DIPs for several
small molecules.”” """ The ppRPA@GT and ppRPA@GF(2) have
a similar MAE, 1.34 and 1.01 eV, respectively. However, with a
MSE of 0.27 eV, the ppRPA@GEF(2) error distribution is more cen-
tered around zero than its ppRPA@GT counterpart with its MSE of
1.10 eV. Note that the decrease in the MSE along the series HF, GW,
T-matrix, and GF(2) is the same as observed in the case of single IPs.
The error spread, quantified by the root mean square error (RMSE)
and the standard deviation error (SDE), is also decreased when using
GW, T-matrix, and GF(2) orbital energies rather than HF. Finally,
for these four methods, there is no noticeable difference between the
MAE for singlets and triplets (see Table I).

Note that, for the GW, GF(2), and T matrix self-energies, we
rely on the one-shot scheme to compute the quasiparticle energies.
The effect of self-consistency on the one-body energies has also been
gauged by computing the pp-RPA DIPs based on evGW'®" """ and
qsGW'"""7° starting points. The corresponding values are reported
in the supplementary material and evidence that self-consistency
slightly improves both the IPs and DIPs.

Now that the effect of the one-body energies has been discussed
in detail, approximate kernels going beyond the first-order static
approximation will be considered. These kernels will be compared to
the state-of-the-art wave function method for valence DIP, namely,
the DIP-EOM-CCSD. The corresponding values are reported in
Table II. For this benchmark set, DIP-EOM-CCSD has a MAE of

0.61 eV and a MSE of 0.61 eV. We recall that its computational cost
is O(N®), where N is the size of the one-body basis set.

First, we focus on the GW kernel (see Sec. 111 C), which has
been the most popular in the eh case. The results for the three vari-
ants of this kernel that will be discussed are reported in Table II,
and the corresponding histograms of errors are displayed in Fig. 6.
The static GW kernel, denoted as ppBSE@GW, brings a quantitative
improvement with respect to both ppRPA@HF and ppRPA@GW.
However, the MAE of ppBSE@GW, 0.66 €V, is still slightly higher
than DIP-EOM-CCSD while having the same O(N®) formal com-
putational cost. The TDA of the static GW kernel (denoted as
TDA@ppBSE@GW) also has a computational cost of O(N®) but
with a much lower prefactor as its scaling is formally O(0 V) while
the full ppBSE@GW is O(V*®) and DIP-EOM-CCSD is O(0*V*)
(where O and V are the numbers of occupied and virtual spin-
orbitals, respectively)."”” Hence, TDA@ppBSE@GW is much less
expensive than ppBSE@GW and DIP-EOM-CCSD. As one can see
in Fig. 6, this approximation does not quantitatively affect the MSE
and MAE with respect to its ppBSE@GW counterpart. The impact
of the TDA is further investigated using various kernels in the
supplementary material. This shows that the effect (on average) of
the TDA, as for the GW kernel, is to increase the DIPs with respect
to the full pp-BSE scheme.

The last variant of the GW kernel that is considered is the
perturbative correction accounting for dynamic effects. This cor-
rection is only considered in the TDA and the results are referred
to as TDA@dynBSE@GW in Table II and Fig. 6. For the 46 DIPs
considered in this work, the dynamic correction is positive for
45 of them. For the DIPs that were already overestimated at the
static level, this positive shift slightly worsened the results. How-
ever, on average, this perturbative correction improves the results
as the MAE (0.58 eV) is decreased with respect to the static case.
Hence, the TDA@dynBSE@GW method has the same accuracy as
the EOM-DIP-CCSD while being more centered around zero (MSE
of 0.2 eV). Regarding its cost, computing the dynamic correction
scales as O(O’ V), but this task has to be performed for each eigen-
value one is willing to correct. Note that the TDA@dynBSE@GW
results have been obtained using # = 0.05 Eh in order to regular-
ize the diverging denominators of Eq. (54). The renormalization
factor associated with the dynamic correction is reported in paren-
thesis in Table II. The smallest factor among this set is 0.78, which
shows that, at least under regularization, the perturbation theory is
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TABLE II. DIPs (in eV) toward the singlet (left panel) and triplet (right panel) dication ground states in the aug-cc-pVTZ basis set for DIP-EOM-CCSD and three variants of pp-BSE
corresponding to a static GW kernel (ppBSE@GW), a static GW kernel within the TDA (TDA@ppBSE@GW), and a dynamic GW kernel within the TDA (TDA@dynBSE@GW).
The renormalization factor associated with the dynamic correction, as defined in Eq. (38), is reported in parentheses.

Singlet DIPs Triplet DIPs
TDA TDA TDA TDA
Molecule  DIP-CCSD  ppBSE@GW  ppBSE@GW  dynBSE@GW  DIP-CCSD  ppBSE@GW  ppBSE@GW  dynBSE@GW
H,0 42.04 40.30 40.48 41.04 (0.78) 41.06 40.25 40.30 41.17 (0.85)
HF 51.53 49.22 49.35 50.22 (0.80) 48.89 47.27 47.33 48.52 (0.85)
Ne 66.16 63.15 63.30 64.43 (0.84) 63.03 60.79 60.86 62.28 (0.88)
CH, 39.29 39.31 39.37 39.78 (0.94) 38.59 38.76 38.79 39.18 (0.94)
NH; 36.25 34.94 35.13 35.53 (0.81) 38.86 38.61 38.65 39.38 (0.92)
co 42.02 41.83 41.98 42.13 (0.90) 42.19 41.57 41.59 41.68 (0.97)
N, 43.94 44.10 44.16 44.19 (0.96) 44.57 44.34 44.37 44.86 (0.94)
BF 34.86 33.54 33.77 33.68 (0.81) 38.59 38.01 38.02 38.14 (0.98)
LiF 41.05 37.75 37.88 38.63 (0.88) 38.55 36.00 36.05 36.83 (0.82)
BeO 33.21 30.56 30.67 31.02 (0.81) 31.38 29.39 29.43 29.94 (0.78)
BN 35.33 33.94 33.94 3427 (0.83) 34,17 32.98 32.98 33.41 (0.86)
C, 37.18 36.44 36.44 36.77 (0.88) 36.34 35.52 35.52 35.91 (0.90)
cs 34.02 33.79 33.84 34.09 (0.95) 33.32 33.33 33.35 33.56 (0.96)
LiCl 31.36 30.09 30.17 30.41 (0.88) 29.93 29.02 29.05 29.34 (0.86)
F, 4541 45.05 45.08 45.19 (0.99) 44.85 44,55 4457 44.85 (0.98)
H.,S 31.99 31.03 3118 31.44 (0.88) 33.09 32.79 32.82 33.06 (0.92)
PH, 31.37 30.91 31.05 31.27 (0.90) 32.61 32.62 32.64 32.78 (0.95)
HCI 37.52 36.57 36.66 37.06 (0.89) 36.01 35.41 35.44 35.87 (0.91)
Ar 45.17 44.01 44.10 44.57 (0.90) 4345 42.66 42.70 43.18 (0.92)
SiH, 33.01 33.36 33.38 33.49 (0.98) 32.90 33.20 33.22 33.30 (0.98)
CH,0 33.85 33.15 33.24 33.52 (0.94) 36.53 35.84 35.86 36.41 (0.92)
Co, 39.10 38.45 38.50 38.79 (0.97) 38.16 37.87 37.90 38.27 (0.97)
BH; 36.90 36.72 36.78 36.97 (0.95) 35.63 35.61 35.64 35.81 (0.96)
MSE 0.59 -0.47 -0.38 -0.03 0.64 -0.07 ~0.04 033
MAE 0.59 0.84 0.78 0.61 0.64 0.48 0.48 0.57
RMSE 0.66 1.03 0.97 0.72 0.72 0.60 0.59 0.67
SDE 0.32 0.94 091 0.74 0.34 0.61 0.60 0.60
Min 0.18 ~2.28 ~2.14 -1.37 0.12 ~1.40 ~1.33 ~1.30
Max 1.20 1.29 1.35 1.38 1.20 0.68 0.70 1.15
DIP-EOM-CCSD ppBSEQGW TDAGppBSEQGW TDA@dynBSEQGW

12ENiSE MAE | 12fMSE MAE | 12fMSE MAE {12fMSE MAE
12 0.61 &V g 001 eV 12 —0.27 &V 0.66 ¢V 12 ~0.21 &V 0.63 oV 13 0.2 6V 0.58 &V

6 6 6 6

4 4 4 4

I
2 2 il 2 il 2 [l
-4 3 -2-10 1 2 -4-3-2-10 1 2 -4-3-2-10 1 2 —-4-3-2-10 1 2
Error (eV) Error (eV) Error (eV) Error (eV)

FIG. 6. Histogram of the errors (with respect to FCI) for the singlet and triplet principal DIPs of 23 small molecules computed in the aug-cc-pVTZ basis set at various levels
of theory. The leftmost panel gathers the DIP-EOM-CCSD results, and the three other panels are based on pp-BSE with a static GW kernel (ppBSE@GW), a static GW
kernel within the TDA (TDA@ppBSE@GW), and a dynamic GW kernel within the TDA (TDA@ppBSE@dynBSE), respectively.
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well-behaved. Finally, the dynamically corrected GW kernel negates
the MAE discrepancy between singlets and triplets that can be
observed at the static level.

To conclude this section, we discuss alternative kernels based
on second-order or T-matrix self-energies. The 46 DIPs have been
computed using the GF(2) kernel under the static approxima-
tion and the results are reported in Table III under the label
pPBSE@GF(2). As shown by the corresponding histogram of errors
(see Fig. 7), the static second-order kernel performs as poorly as
ppRPA@HF but with a MSE of the opposite sign. As for the GW
case, the effect of the one-body energies and the kernel adds up, lead-
ing to a decrease in the DIPs with respect to ppRPA@HF. However,
in the GF(2) case, these two corrections are too large, and hence, the
PPBSE@GF(2) correction is overestimated and does not improve the
result on average.

The performance of the second-order T-matrix kernel, dis-
cussed in Sec. III D, is also investigated. This kernel is considered
in the static limit and is denoted as ppBSE@GT. The corresponding

TABLE ll. DIPs (in eV) toward the singlet (left panel) and triplet (right panel) dication
ground states in the aug-cc-pVTZ basis set computed with pp-BSE using a static
GF(2) kernel and a static T-matrix kernel.

Singlet DIPs Triplet DIPs

Molecule ppBSE ppBSE ppBSE ppBSE

@GF(2) @GT @GF(2) @GT
H,O 36.54 41.51 35.90 40.93
HF 44.76 50.96 42.12 48.71
Ne 59.99 65.76 56.79 63.02
CH4 37.55 38.97 36.97 38.32
NH3 32.40 35.75 35.73 38.65
CO 39.46 42.04 41.04 41.36
N> 42.47 44.04 43.11 44.40
BF 30.30 33.79 37.02 37.55
LiF 32.92 40.31 30.29 38.25
BeO 24.38 31.42 22.95 30.03
BN 31.40 35.85 29.84 34.67
Cy 37.10 37.95 35.88 36.84
CS 30.29 33.51 32.35 32.90
LiCl 28.81 30.93 27.58 29.61
F> 42.22 44.79 40.14 44.28
H,S 29.55 31.22 31.58 32.61
PH3 28.84 30.63 31.62 32.11
HCl 35.76 37.05 34.20 35.68
Ar 43.07 44.78 41.56 43.15
SiHy 32.48 32.83 32.39 32.64
CH,O 30.32 32.60 33.25 35.61
CO, 37.00 38.37 35.96 37.77
BH;3 36.00 36.60 34.99 35.36
MSE -2.85 0.11 -2.38 0.28
MAE 2.94 0.45 2.44 0.45
RMSE 3.58 0.64 3.24 0.61
SDE 2.22 0.65 2.26 0.55
Min -7.80 -0.77 -7.22 -0.92
Max 1.12 1.97 0.74 1.71
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FIG. 7. Histogram of the errors (with respect to FCI) for the singlet and triplet
principal DIPs of 23 small molecules computed using the aug-cc-pVTZ basis set
using a static GF(2) kernel and a static T-matrix kernel.

numerical results are displayed in Table IIT and Fig. 7. This method
achieves the best MAE (0.45 eV) among all the methods considered
in this work. Hence, as the GW kernel, the ppBSE@GT also achieves
a correct balance between the corrections coming from the one-body
energies and the kernel. On the other hand, this kernel is also more
expensive than the GW and GF(2) ones as it requires the computa-
tion of the tensor elements associated with the effective interaction T
[see Eq. (60)], which formally scales as O(N*OV). In addition, note
that, in the static T-matrix case, there is no noticeable difference in
accuracy between singlet and triplet DIPs.

B. Double core hole states

DCH states were first discussed by Cederbaum and co-
workers, who showed that they are significantly more sensitive to
the chemical environment than single-core holes.'”*'”” This the-
oretical prediction was later experimentally confirmed by several
research groups.'*”'**'*"'*" Cederbaum’s seminal studies have since
inspired numerous studies on DCH states using state-specific cor-
related methods.'*>'**'%*"'%> These theoretical developments have
been instrumental in accurately interpreting the satellite structure
observed in some DCH spectra.' '

The DIPs corresponding to DCH states are naturally captured
within the poles of the two-body pp propagator [see Eq. (12)].
Table IV presents single-site DCH energies for two different kernels:
the pp-RPA kernel (Sec. 11T A), the static GW kernel (Sec. I1I C),
and the static T-matrix kernel (Sec. III D). The results are compared
to mean-field state-specific (ASCF) DCH energies obtained using
MOM and with DIP-EOM-CCSD under the CVS approximation.
Finally, the reference energies are of FCI quality and have been com-
puted using the CIPSI algorithm under the CVS approximation on

TABLE IV. Single-site DCH energies (in eV) computed at various levels of theory with
the aug-cc-pCVTZ basis set. The asterisk indicates the ionization site.

Molecule H,0* N*H; C*Hy, CO* C*O
CVS-ECI 11729 8922 651.3 1177.0 6659
ASCF 1170.9 8909 650.8 1174.5 667.7
ppRPA@HF 12479 9575 704.6 12534 7134
pPpBSE@GW 11869 906.6 664.8 12094 678.0
CVS-DIP-EOM-CCSD 11945 911.0 666.5 1200.1 678.2
ppBSE@GT 1144.1 874.5 639.2 11446 659.0
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FIG. 8. Errors (with respect to CVS-FCI) associated with single-site DCH energies
computed in the aug-cc-pCVTZ basis set at the ppRPA@HF, ppBSE@GW, and
ASCF levels. The asterisk indicates the ionization site.

top of the corresponding ASCF determinant. In the case of DCHs,
the CVS approximation constrains the determinants in the CI and
EOM expansions to be doubly core ionized configurations.

Figure 8 shows the error of the five approximate methods
considered in this work. It is readily seen that both ppBSE@GW
and ppBSE@GT largely improves the DCH energies with respect to
ppRPA@HEF. However, the minimal error for ppBSE@GW remains
as large as 12 eV, while the maximum error at the ASCF level
is only 2.5 eV. This significant performance disparity arises from
the inclusion of orbital relaxation effects at the MOM level, which
are absent in the linear-response approach. Indeed, the CVS-DIP-
EOM-CCSD, which is also a linear-response approach, showcases a
similar accuracy as ppBSE@GW. In the CC case, the results would
be improved by including triples or higher excitations.®” This com-
parison highlights that while kernel improvements enhance results
in the linear-response framework, state-specific formalisms should
be preferred when available for core-ionized states. Nevertheless,
the improvement offered by ppBSE@GW can be valuable in cases
where state-specific approaches are challenging to implement, as in
periodic systems." """

VI. CONCLUSION

This work provides an in-depth discussion of the eh and pp
components of the two-body propagator, highlighting their similar-
ities from the perspectives of both correlation functions and linear
response theory. In particular, it demonstrates that the response of
an anomalous propagator to a pairing field yields a kernel expression
for the pp-BSE that is fully analogous to the standard eh-BSE kernel.
This kernel has been explicitly calculated for common self-energy
approximations, including the first- and second-order Coulomb
self-energies. In addition, approximate kernels derived from effec-
tive interactions, specifically W (based on bubble diagrams) and
T (based on pp-ladder diagrams), are discussed in detail. These
approximate pp kernels hold potential in other contexts, such as
the three-body propagator equations, which usually rely on the
Coulomb kernel or ad hoc kernels."'>'**"""

The performance of these various approximations has been
assessed for valence and core DIPs. The influence of the choice of
the starting point and of the kernels has been investigated across a
set of 46 DIPs. It has been shown that the static GW kernel under
the TDA is only slightly worse than DIP-EOM-CCSD but with a
much lower computational cost. Furthermore, adding a perturba-
tive correction on top of the pp-BSE brings it even closer to the
DIP-EOM-CCSD accuracy. On the other hand, the second-order

ARTICLE pubs.aip.org/aipl/jcp

Coulomb kernel performs poorly for DIPs. However, the second-
order kernel relying on the pp T-matrix effective interaction is more
accurate than ppBSE@GW and DIP-EOM-CCSD on average, albeit
with a higher computational cost. Finally, it has been shown that the
GW kernel also provides a quantitative improvement over pp-RPA
for core DIPs.

While this work has focused on DIPs, the accuracy of the vari-
ous kernels for DEAs is an obvious and interesting follow-up of this
work. However, systems capable of binding two electrons are gener-
ally spatially large, posing challenges for our current computational
implementations. In addition, the DEAs of the (N — 2)-electron sys-
tem computed at the pp-RPA level have been extensively used to
compute neutral excitation energies of the N-electron system.”’
Comparing the performance of various kernels within this frame-
work would be valuable. Finally, the adiabatic connection fluctua-
tion dissipation theorem, which has been applied to the two-body
eh propagator to compute correlation energies, could be transposed
to the pp case as well.™**""*"'%* This is left for future work.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed derivation of
every equation presented in the main manuscript and additional
results on the pp-RPA starting-point dependence and the TDA.
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