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ABSTRACT
Reduced density matrix functional theory (RDMFT) and coupled cluster theory restricted to paired double excitations (pCCD) are emerging
as efficient methodologies for accounting for the so-called non-dynamic electronic correlation effects. Up to now, molecular calculations
have been performed with real-valued orbitals. However, before extending the applicability of these methodologies to extended systems,
where Bloch states are employed, the subtleties of working with complex-valued orbitals and the consequences of imposing time-reversal
symmetry must be carefully addressed. In this work, we describe the theoretical and practical implications of adopting time-reversal symmetry
in RDMFT and pCCD when allowing for complex-valued orbital coefficients. The theoretical considerations primarily affect the optimization
algorithms, while the practical implications raise fundamental questions about the stability of solutions. In particular, we find that complex
solutions lower the energy when non-dynamic electronic correlation effects are pronounced. We present numerical examples to illustrate and
discuss these instabilities and possible problems introduced by N-representability violations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0242504

I. INTRODUCTION

In quantum chemistry, accurately describing the so-called elec-
tronic correlation effects1 remains an open problem. For prac-
tical purposes, it has been convenient to classify and measure
these effects as dynamic and non-dynamic, where the former can
be interpreted as small corrections on top of the Hartree–Fock
(HF) reference determinant and the latter refers to major changes
in the electronic wave function caused by (near-) degeneracies
in the single-particle states.2–8 Accounting for the so-called non-
dynamic electronic correlation effects in quantum chemistry has
been routinely tackled using multiconfigurational self-consistent
field methodologies,9,10 such as complete active space self-consistent
field (CASSCF),11–13 complete active space configuration interaction
(CASCI), or density-matrix renormalization group (DMRG).14–19

However, their applicability is limited due to the exponential growth
of their computational cost with respect to the system size.

Alternative methodologies such as reduced density matrix
functional theory20,21 (RDMFT) and coupled-cluster theory
restricted to paired double excitations22 including its orbital-
optimized version23,24 (labeled as pCCD in this work) have
recently been gaining practitioners in the electronic structure
community.24–44 Within these methodologies, the diagonalization
of large matrices is replaced by the optimization of occupation
numbers or amplitudes, which drastically reduces the computa-
tional cost. Furthermore, these methodologies are cost-effective
approaches to deal with the so-called non-dynamic electronic
correlation effects8,24,25,28,29,36 because the optimization procedure
introduces fractional occupation numbers that adjust to the degen-
eracies present in the system under investigation. For this reason,
the simplest RDMFT approximations, the Müller and Willner45

and power46,47 functionals, have already been employed to study
strongly correlated materials such as nickel oxides,46,48 where these
methods describe precisely the characteristic Mott-insulator nature
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of these materials. The success of pCCD can be attributed to its
connection with seniority-zero methods, particularly perfect pairing
and generalized valence bond approaches;49–54 which explains its
ability to describe non-dynamic electronic correlation effects.55

However, to achieve quantitatively meaningful results, pCCD must
be combined with an orbital optimization procedure.23,24

It is known that the usual operators employed in quantum
chemistry are real-valued in time-independent applications. Hence,
the use of complex orbitals has been less explored in favor of
real orbitals. Nevertheless, complex orbitals have attracted atten-
tion from the community due to the extra flexibility provided by the
complex parameterization.56–62 In particular, it has shown to be an
efficient alternative to multiconfigurational methods to account for
non-dynamic electronic correlation effects with single-determinant
wave functions.60–62 However, complex-valued orbitals must be used
carefully because they break symmetries among the spin-up (↑) and
spin-down (↓) electrons trivially granted by real-valued orbitals.

In the absence of spin–orbit coupling contributions to the
Hamiltonian or external magnetic fields, the spin-with orbitals
(χp↑ and χp↓) are typically constructed as the direct product between
a spin function (↑ or ↓) and a spatial function χp(r) = ∑μ cμpψμ(r)
built as a linear combination of real atomic orbitals ψμ(r), where
the matrix c gathers the molecular orbital coefficients. (It should be
noted that the convention chosen designates the natural orbitals by
χ and the basis functions by ψ, whereas the opposite convention is
often used in the quantum chemistry community.) In general, real
orbitals (c ∈ R) are constructed to preserve fundamental symme-
tries, such as spin symmetries (Ŝz and Ŝ 2), complex conjugation (K̂),
and time-reversal symmetry (Θ̂). On the contrary, working with
complex orbitals (c ∈ C), one is forced to preserve either Ŝ 2 and Ŝz
(charge current wave in Fukutome’s classification) or Θ̂ and Ŝz (axial
spin current wave in Fukutome’s classification).56,59,60,62 In the for-
mer case, the spatial part of the orbitals, χp(r), for the spin-up and
spin-down electrons is identical, which guarantees the correct value
of ⟨Ŝ 2

⟩. In the latter case, the spin-up orbitals, χp↑(r), are related to
the spin-down orbitals, χp↓(r), as

Θ̂χp↑(r) = Θ̂χp(r)(
1
0
) = −i σy K̂χp(r)(

1
0
)

= −i(
0 −i
i 0

)K̂χp(r)(
1
0
) = χ∗p (r)(

0
1
) = χp↓(r), (1)

where i =
√

−1 and σy is a Pauli matrix. This option preserves time-
reversal symmetry, that is, Θ̂χp↑(r) = χp↓(r) and Θ̂χp↓(r) = −χp↑(r),
but not Ŝ 2.

Before proceeding further, let us express the spin-with orbitals
obtained by imposing time-reversal symmetry in matrix form as

(
χ 0
0 χ∗

) = (
c 0
0 c∗

)(
ψ 0
0 ψ

). (2)

As previously mentioned, this convention also preserves Ŝz (i.e., it
fixes the number of spin-up and spin-down electrons). However, the
axis chosen for the quantization is irrelevant for Hamiltonians that
do not account for spin–orbit coupling effects or external magnetic
fields. Therefore, rather than working in the eigenbasis of Ŝz , we may

equally well choose to work in the eigenbasis of Ŝy whose eigenstates
(χy

p↑ and χy
p↓) are given as a linear combination of the spin-up and

spin-down eigenbasis of Ŝz , i.e.,

χy
p↑(r) =

χp↑(r) + iχp↓(r)
√

2
, χy

p↓(r) =
iχp↑(r) + χp↓(r)

√

2
. (3)

If we also rotate the basis functions to the eigenbasis of Ŝy,

ψy
p↑(r) =

ψp↑(r) + iψp↓(r)
√

2
, ψy

p↓(r) =
iψp↑(r) + ψp↓(r)

√

2
, (4)

we obtain

χy = 1√
2

⎛
⎝

1 i1
i1 1

⎞
⎠
⎛
⎝
χ 0
0 χ∗

⎞
⎠
= 1

2
⎛
⎝

1 i1
i1 1

⎞
⎠
⎛
⎝

c 0
0 c∗

⎞
⎠
⎛
⎝

1 −i1
−i1 1

⎞
⎠
⎛
⎝
ψy 0
0 ψy

⎞
⎠

= 1
2
⎛
⎝

c + c∗ −ic + ic∗

ic − ic∗ c + c∗
⎞
⎠
⎛
⎝
ψy 0
0 ψy

⎞
⎠
=
⎛
⎝

Re(c) Im(c)
−Im(c) Re(c)

⎞
⎠
⎛
⎝
ψy 0
0 ψy

⎞
⎠

.

(5)

This choice of eigenbasis, therefore, leads to real coefficients at the
expense of introducing two-component spinors. When applied to
the HF approximation, the latter corresponds to the real-paired
generalized HF method, which is defined in this work as a partic-
ular case of the paired-generalized HF method62 (see Table 1 in
Ref. 60). In paired-generalized HF, the coefficients of the two-
component spinors are complex, and only time-reversal symmetry
is preserved. However, as shown above, by additionally imposing
real algebra for the two-component spinors, Ŝy is also preserved.
In summary, working with the real-paired generalized HF method
is equivalent to working with complex orbitals. In both cases time-
reversal symmetry is preserved, but the former preserves Ŝy while
the latter preserves Ŝz (and is named paired UHF in Stuber–Paldus
designation62).

In this work, we have preferred to work with complex orbitals
(instead of two-component real spinors) and preserve Ŝz . In addi-
tion, we have enforced the spin-up and spin-down orbitals to be
related by complex conjugation of the spatial part to preserve time-
reversal symmetry. Thus, deviations from the physical ⟨Ŝ 2

⟩ value
(i.e., spin contamination) might occur. This selection is motivated
by three reasons: (i) time-reversal symmetry is typically imposed
in codes that can deal with complex orbitals/one-body states for
extended systems (e.g., ABINIT63 or QUANTUM ESPRESSO;64,65 also
see Appendix B in Ref. 66), (ii) the simplification in the RDMFT
and pCCD equations facilitates their extension to complex-valued
orbitals, and (iii) it corresponds to the correct non-relativistic
limit when time-reversal symmetry is employed to build the four-
component spinors that are employed in the solution of the
Dirac–Coulomb/Coulomb–Gaunt Hamiltonians.67

To gain further insights into this limit, let us first mention
that the relativistic four-component spinors are complex-valued and
can be chosen to preserve time-reversal symmetry in the absence of
external magnetic fields (i.e., forming Kramers’ pairs68–72). They are
usually expanded in two distinct basis sets, one for the upper (large)
components and one for the lower (small) components of the Dirac
wave function. For better comparison with non-relativistic basis set
expansions, it is, therefore, convenient to perform an exact transfor-
mation to the 2-spinor (X2C) form.73–75 The expansion coefficients
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for these X2C-spinors are complex and the preservation of time-
reversal symmetry is easily visible when they are written in matrix
form as

(
cL↑ cL↓
−c∗L↓ c∗L↑

). (6)

This corresponds to the torsional spin current wave (TSCW) in
Fukutome’s classification.56,60 In the X2C form, it is possible to use
the Dirac identity to remove spin–orbit coupling terms from the
Hamiltonian. This simplifies the matrix representation of the Hamil-
tonian, making it real-symmetric, and thus, one typically proceeds
using real coefficients, as seen in Eq. (5), i.e.,

(
cL↑ cL↓
−c∗L↓ c∗L↑

)→ (
Re(c) Im(c)
−Im(c) Re(c)

). (7)

As previously mentioned, working with real 2-spinors that pre-
serve time-reversal symmetry is equivalent to using complex spatial
orbitals [Eqs. (2) and (5)] that preserve this symmetry, where only
the spin quantization axis is changed (i.e., they correspond to either
eigenfunctions of Ŝy or Ŝz , respectively). However, employing com-
plex spatial orbitals (or real 2-spinors) involves a reduction of the
variational freedom with respect to complex 2-spinors. Despite this,
complex spatial orbitals still retain more flexibility than real spa-
tial orbitals. Hence, real spatial orbitals are only obtained during
orbital optimization if the additional freedom provided by the com-
plex coefficients does not lead to a lower energy solution according
to the variational principle (see Sec. IV C).

The analysis of the consequences of using complex alge-
bra and imposing time-reversal symmetry on the actual univer-
sal RDMFT functional (and approximate functionals built from a
multi-configurational self-consistent field expansion) can be found
in a previous work.76 In contrast, here we examine the role of com-
plex orbitals in extending the applicability of the most recently
developed RDMFT functionals and pCCD to systems described
by complex single-particle states. In Sec. II, we briefly introduce
RDMFT (Sec. II A), pCCD (Sec. II B), and the orbital opti-
mization procedure proposed by Ugalde and Piris (Sec. II C),77

which is currently applied in most RDMFT calculations. Then, in
Sec. III, we discuss the effect of time-reversal symmetry on the
RDMFT and pCCD energy expressions and its impact on the orbital
optimization procedure. Finally, in Sec. IV, we present some numer-
ical examples that illustrate the consequences of using complex-
valued orbital coefficients and time-reversal symmetry in practical
calculations for spin-compensated systems. Our conclusions are
drawn in Sec. V. Unless otherwise stated, atomic units are used
throughout.

II. THEORETICAL BACKGROUND
A. Reduced density matrix functional theory

In 1975, Gilbert20 proposed an extension of the
Hohenberg–Kohn theorem78 for non-local external potentials,
which introduces the energy as a functional of the first-order
reduced density matrix (1RDM) γ. It generalizes the functional
based on the electronic density ρ that is employed in density

functional theory.79 A compact representation of γ is obtained by
expressing it in the natural orbital basis,

γ(r, r′) =∑
p
∑

σ=↑,↓
npσχ∗pσ(r)χpσ(r′), (8)

where npσ ∈ [0, 1] is the occupation number associated with the
natural spin-orbital χpσ . For r = r′, it reduces to the electron den-
sity, that is, ρ(r) = γ(r, r). In practical realizations of RDMFT,
the matrix elements of the second-order reduced density matrix
(2RDM) 2Dσσ′

pq,rs = ⟨Ψ∣ĉ†pσ ĉ†qσ′ ĉsσ′ ĉrσ ∣Ψ⟩ (with σ′ =↑ or ↓) are expressed
as functions of the occupation numbers and the natural orbitals are
employed to compute the two-electron repulsion integrals. Here,
ĉ†pσ (ĉpσ) is the usual creation (annihilation) operator and Ψ is
the exact N-electron wave function. In the most basic RDMFT
approximations,80,81 the 2RDM elements of the opposite-spin
(σ ≠ σ′) and same-spin (σ = σ′) blocks read

2Dσσ′
pq,rs =

npσnqσ′

2
δprδqs, (9a)

2Dσσ
pq,rs =

npσnqσ

2
δprδqs −

f (npσ , nqσ)

2
δpsδqr , (9b)

with f(npσ , nqσ) being a simple function of the occupations
numbers. For example, f (npσ , nqσ) =

√npσnqσ in the Müller
functional82–84 and f (npσ , nqσ) = (npσnqσ)

α with α ∈ R+ in the
power functional.46,47 It should be noted that the elements 2Dσσ′

pq,pq
= npσnqσ/2 correspond to Hartree contributions while the terms
2Dσσ

pq,qp = − f (npσ , nqσ)/2 are modified exchange contributions that
account for electronic correlation effects. Hence, these approxi-
mations are JK-only functionals80 because only Hartree (J) and
exchange (K) integrals are required in the evaluation of the elec-
tronic energy. However, more advanced RDMFT functionals based
on the reconstruction of the second-order cumulant matrix, such
as PNOFi25,85,86 (i = 5, 6, and 7) and GNOF,27 include the addi-
tional L integrals,87 defined in the following. Thus, they are usually
referred to as JKL-only approximations. For spin-compensated sys-
tems (np = np↑ = np↓), the electronic energy functional of PNOFi
and GNOF takes the following form:

ERDMFT
= 2∑

p
nphpp +∑

pq
(

2Dpq,pqJpq +
2Dpq,qpKpq +

2Dpp,qqLpq),

(10)
where the one-electron integrals are

hpq = ∫ drχ∗p (r)ĥχq(r), (11)

with ĥ = −∇2
r/2 + vext(r) being the (one-electron) core Hamilto-

nian and vext(r) is the external potential. The various types of
two-electron integrals,

Jpq = ⟨pq∣pq∣, Kpq = ⟨pq∣qp∣, Lpq = ⟨pp∣qq∣ (12)

are expressed in terms of the spatial part of the natural orbital basis,

⟨pq∣rs∣ =∬ drdr′
χ∗p (r)χ∗q (r′)χr(r)χs(r′)

∣r − r′∣
. (13)
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It should be noted that here, we have employed the spin-summed
2RDM elements, i.e., 2Dpq,rs = ∑σσ′

2Dσσ′
pq,rs. It is worth mentioning

that Löwdin normalization is used throughout this work, that is,
Tr [2D] = N(N − 1)/2, with N being the number of electrons.

The energy contribution involving L integrals arises from the
interaction of opposite-spin electrons, i.e.,

∑

pq

2Dpp,qqLpq =∑
pq
∑

σ≠σ′
2Dσσ′

pp,qqLpq (14)

because the same-spin contributions cancel due to the Pauli exclu-
sion principle (i.e., 2Dσσ

pp,qq = 0). For real orbitals, it is easy to verify
that Lpq = Kpq. Thus, the last term in Eq. (10) is usually combined
with the second term and the electronic energy is written using only
J and K integrals. However, the K and L integrals differ for complex
orbitals unless one imposes time-reversal symmetry (see in the fol-
lowing). It is easy to show that J and K integrals are real even for
complex orbitals. On the contrary, L integrals are complex-valued in
general.

B. Coupled cluster with paired doubles
The pCCD approximation belongs to the coupled-cluster (CC)

family of methods, which aims to go beyond the single-determinant
wave function ∣0⟩ to describe the many-body state using the wave
operator eT̂ to produce excited determinants from the reference
determinant. In pCCD, for spin-compensated systems, the many-
body wave function is expressed as ∣Ψ⟩ = eT̂

∣0⟩, where the excitation
operator is restricted to paired double excitations,22

T̂ =
N/2
∑

i

M

∑

a=N/2+1
ta
i ĉ†a↑ĉ

†
a↓ĉi↓ĉi↑, (15)

where M is the total number of spatial orbitals and the ta
i ’s are

the so-called amplitudes that are optimized by solving the so-called
amplitude (or residual) equations,

0 = ⟨0∣ĉ†i↑ĉ
†
i↓ĉa↓ĉa↑H̄∣0⟩

= Lai + 2
⎛

⎝

f a
a − f i

i −∑
j

Ljata
j −∑

b
Libtb

i
⎞

⎠

ta
i

− 2(2Jia − Kia − Liata
i )t

a
i +∑

b
Lbatb

i +∑
j

Ljita
j +∑

jb
Ljbta

j t
b
i ,

(16)

where H̄ = e−T̂ ĤeT̂ is the similarity-transformed Hamiltonian,
f q

p are the Fock matrix elements evaluated with ∣0⟩, and i and j
(a and b) refer to occupied (virtual) orbitals with respect to ∣0⟩.
The amplitude equations, which are quadratic in t, can be solved in
M3 computational cost by building the intermediate y j

i = ∑b L jbtb
i .

To perform orbital optimizations,23,24,88,89 let us introduce the
pCCD energy functional as

EpCCD
= ⟨L∣H̄∣0⟩, (17)

where ⟨L∣ = ⟨0∣(1 + Ẑ) is the left eigenvector of H̄ and
Ẑ = ∑ia za

i ĉ†i↑ĉ
†
i↓ĉa↓ĉa↑ is a de-excitation operator. (It should be

noted that this energy functional corresponds to the one used in the
Lagrangian formulation that leads to the well-known Λ equations.9
However, the notations chosen in this work coincide with the ones
used in Ref. 24.) The stationary conditions ∂

∂ ∗ EpCCDza
i = 0 yield the

t-amplitude equations [see Eq. (16)] while the additional conditions
∂

∂ ∗ EpCCDta
i = 0 allows us to write the (linear) residual equations for

the left amplitudes {za
i } as

0 = Lia + 2
⎛

⎝

f a
a − f i

i −∑
j

Ljata
j −∑

b
Libtb

i
⎞

⎠

za
i

− 2(2Jia − Kia − 2Liata
i )z

a
i +∑

b
Labzb

i +∑
j

Lijza
j

+∑

jb
tb

j(Libza
j + Ljazb

i ) − 2Lia
⎛

⎝
∑

j
za

j t
a
j +∑

b
zb

i tb
i
⎞

⎠

. (18)

Next, with the aid of the t- and z-amplitude equations, one can
easily compute the 1RDM, which is diagonal within the pCCD
approximation,24

1Dσ
p,q = ⟨0∣(1 + Ẑ)e−T̂ ĉ†pσ ĉqσeT̂

∣0⟩δpq = npσδpq, (19)

and directly linked to the occupation numbers that can be writ-
ten as niσ = (1 − xi

i) and naσ = xa
a with x j

i = ∑a ta
i za

j and xb
a = ∑i tb

i za
i .

Similarly, we may write the matrix elements of the spin-summed
2RDM,

2Dpq,rs =∑
σσ′
⟨0∣(1 + Ẑ)e−T̂ ĉ†pσ ĉ†qσ′ ĉsσ′ ĉrσeT̂

∣0⟩, (20)

as

2Dii,jj = x j
i + δij(1 − 2xi

i), (21a)

2Dii,aa = ta
i + xa

i − 2ta
i (x

a
a + xi

i − ta
i za

i ), (21b)

2Daa,ii = za
i , (21c)

2Daa,bb = xb
a, (21d)

2Dij,ij = 2(1 − xi
ix

j
j) + δij3(xi

i − 1), (21e)

2Dia,ia =
2Dai,ai = 2(xa

a − ta
i za

i ), (21f)

2Dab,ab = δabxa
a, (21g)

2Dpq,qp =

2Dpq,pq

2
for p ≠ q, (21h)

where we have employed the additional intermediate xa
i

= ∑ jb tb
i ta

j z
b
j .

Noticing that the non-zero spin-summed 2RDM elements are
the same as in PNOFi/GNOF and that the 1RDM is expressed in
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its diagonal representation, we recognize that the pCCD energy can
also be written as

EpCCD
= 2∑

p
nphpp +∑

pq
(

2Dpq,pqJpq +
2Dpq,qpKpq +

2Dpp,qqLpq),

(22)
which exactly matches Eq. (10). Once more, the contributions
involving the time-reversal integrals L arise from the interaction of
opposite-spin electrons as in RDMFT approximations. It is worth
mentioning that the pCCD energy for a given (fixed) set of molecular
orbitals can be written as

EpCCD
= ⟨0∣Ĥ∣0⟩ +

N/2
∑

i

M

∑

a=N/2+1
ta
i Lia, (23)

where only the reference wavefunction ∣0⟩, the ta
i amplitudes, and

the Lia integrals are needed. However, to perform orbital optimiza-
tions within coupled-cluster methods, it is necessary to define a
variational functional9 [such as the one given in Eq. (17)]. Then, all
the possible 1RDM and 2RDM elements have to be built because
they enter into the definition of the gradient (and the Hessian)
of the energy functional with respect to orbital rotations (see in
the following). Interestingly, the 1RDM and 2RDM elements for
the pCCD method [given by Eqs. (19)–(21)] reproduce the struc-
ture of seniority-zero wavefunctions90 due to the type of excitations
involved by this method on the reference wavefunction ∣0⟩. Finally,
let us remark that the L integrals are also present in the definition
of the t and z amplitudes [see Eqs. (16) and (18)]. Therefore, if one
relies on complex-valued orbitals, the resulting amplitudes are also
complex in general.

C. Orbital optimization
It is well-documented23,24,88,89,91,92 that the JKL-only RDMFT

approximations and pCCD are not invariant with respect to orbital
rotations (even for the occupied–occupied and virtual–virtual
blocks). Thus, orbital optimization is required to correctly describe
the electronic structure, especially in spatial regions where non-
dynamic electronic correlation effects are dominant. Since the elec-
tronic energies of JKL-only RDMFT approximations and pCCD
have the same form, as readily seen in Eqs. (10) and (22), the same
orbital optimization machinery can be employed. Here, we consider
first the algorithm proposed by Piris and Ugalde,77 which optimizes
the occupation numbers and the orbitals in a two-step iterative
process (i.e., by neglecting the coupling between occupations and
orbitals).

The central quantity of the Piris–Ugalde constrained optimiza-
tion procedure is the following Lagrangian which reads, for fixed
occupation numbers and spin-summed 2RDM elements,

Ω = EpCCD/RDMFT
−∑

pq
λpq(⟨χp∣χq∣ − δpq), (24)

where ⟨χp∣χq⟩ is the overlap of the spatial part of the natural orbitals
and λpq’s are Lagrange multipliers, which enforce the orthog-
onality of the natural orbitals during the optimization process.

The Lagrangian Ω must be stationary with respect to the orbital
variations, which is enforced by the following condition:

∂EpCCD/RDMFT

∂χ∗p (r)

= 2npĥχp(r) + 2∑
r

2Drr,rr
∂Jrr

∂χ∗p (r)

+ 2∑
r≠s
[

2Dsr,sr
∂Jsr

∂χ∗p (r)
+

2Dsr,rs
∂Ksr

∂χ∗p (r)
+

2Dss,rr
∂Lsr

∂χ∗p (r)
]

=∑

s
λpsχs(r). (25)

Multiplying from the left by χ∗q (r) and integrating over the spatial
coordinates leads to

λpq = 2(nphqp +
2Dppp,pp⟨qp∣pp∣)

+ 2∑
r≠p
(

2Dpr,pr⟨qr∣pr∣ + 2Dpr,rp⟨qr∣rp∣ + 2Dpp,rr⟨qp∣rr∣). (26)

Then, imposing the Hermiticity of the matrix λ at the station-
ary solution (i.e., λpq = λ∗qp), the auxiliary Hermitian matrix F, with
elements,

Fpq =

⎧
⎪⎪
⎨
⎪⎪
⎩

λqp − λ∗pq for p > q,

λ∗pq − λqp for p < q,
(27)

is built to perform orbital rotations (see Fig. 1 for more details). The
diagonal elements of λ read

λpp = 2(nphpp +
2Dpp,ppJpp)

+ 2∑
r≠p
(

2Dpr,prJpr +
2Dpr,rpKpr +

2Dpp,rrLpr). (28)

Therefore, for real elements 2Dpp,aa that satisfy 2Dpp,qq =
2Dqq,pp

(as it happens in RDMFT approximations), the diagonal elements of
F are zero for real orbitals, i.e.,

λpp − λ∗pp = 2∑
r≠p

2Dpr,rp(Lpr − Lrp) = 4∑
r≠p

2Dpp,rrIm Lpr , (29)

where Im Lpr is the imaginary part of the matrix element Lpr (which
is zero for real orbitals). Hence, λpp − λ∗pp = 0. Consequently, it has
been proposed to define the initial elements of the Fock matrix
as Fpq = (λpq + λ∗qp)/2. Then, the iterative construction and diago-
nalization of F for fixed occupation numbers and 2RDM elements
produce a set of optimal orbitals. Let us mention that, at a given iter-
ation, the eigenvalues ε obtained from the diagonalization of F are
used as its diagonal elements for the next iteration (see Fig. 1).

The orbital optimization algorithm is preceded by the opti-
mization of the occupation numbers, n, in RDMFT approximations
or of the sets of amplitudes, t and z, in pCCD. Therefore, the
optimization procedure consists of an algorithm composed of two
uncoupled steps that are controlled by two thresholds, τλ and τE,
which monitor the deviation from Hermiticity of λ and the energy
convergence, respectively (see Fig. 1).

Other algorithms for the optimization of the orbitals employ
the unitary matrix eκ to perform orbital rotations, which is built
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FIG. 1. Orbital optimization procedure
based on the Piris–Ugalde algorithm77

employed in pCCD and RDMFT. The
matrix c gathers the spin-up natural
orbital coefficients; n is the set of occu-
pations in RDMFT; and t and z contain
the right and left amplitudes in pCCD,
respectively, while the matrices U and
ε gather the eigenvectors and eigenval-
ues of F, respectively. Two thresholds
are introduced. One of them, τλ, con-
trols the deviation from Hermiticity of
λ while the other, τE , monitors the
energy convergence.

as the exponential of an anti-Hermitian matrix κ with elements
κpq ∈ C and κpq = −κ∗qp (see, for example, Refs. 23, 24, 88, and 89
in the case of pCCD). In addition, one may introduce the corre-
sponding rotation operator eκ̂ that is applied to the wave function
to obtain the transformed wave function ∣Ψ̃⟩ = eκ̂ ∣Ψ⟩ built with from
these rotated orbitals, where9

κ̂ =∑
pq
∑

σ
κpqĉ†pσ ĉqσ

=∑

p
∑

σ
i Im κppĉ†pσ ĉpσ +∑

p>q
∑

σ
(Re κpq + i Im κpq)(ĉ†pσ ĉqσ − ĉ†qσ ĉpσ),

(30)
with Re κpp = 0. Assuming that ⟨Ψ∣Ψ⟩ = 1, the energy of ∣Ψ̃⟩ can be
written as

E(κ) =
⟨Ψ̃∣Ĥ∣Ψ̃⟩
⟨Ψ̃∣Ψ̃∣

= ⟨Ψ∣e−κ̂ Ĥeκ̂ ∣Ψ⟩, (31)

which has to be made stationary with respect to the orbital
rotation parameters κpq, i.e., ∂E(κ)/∂κpq ∣κ=0 = 0, for each orbital
pair.

Employing the Baker–Campbell–Hausdorff formula,9

E(κ) = ⟨Ψ∣Ĥ∣Ψ⟩ + ⟨Ψ∣[Ĥ, κ̂]∣Ψ⟩ +
1
2
⟨Ψ∣[[Ĥκ̂], κ̂]∣Ψ⟩ + ⋅ ⋅ ⋅ , (32)

and introducing the elements of the gradient,

gpq =
∂E(κ)
∂κpq

∣
κ=0
=

1
2
(

∂

∂ Re κpq
− i

∂

∂ Im κpq
)E(κ) = 2(λqp − λ∗pq),

(33)
and the Hessian (see the Appendix for its expression in the case of
real orbitals),

Gpq,rs =
∂2E(κ)
∂κ∗pq∂κrs

∣
κ=0

=
1
4
(

∂

∂ Re κpq
+ i

∂

∂ Im κpq
)(

∂

∂ Re κrs
− i

∂

∂ Im κrs
)E(κ)

= G̃pq,rs − G̃qp,rs − G̃pq,sr + G̃qp,sr − G̃pq,rs − G̃qp,rs − G̃pq,sr − G̃qp,sr

+ 2(G̃pq,sr − G̃qp,rs) = −4G̃qp,rs, (34)

with G̃pq,rs defined as
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G̃pq,rs = ⟨Ψ∣
⎡⎢⎢⎢⎢⎣
[Ĥ,∑

σ
ĉ†pσ ĉqσ],∑

σ′
ĉ†rσ′ ĉsσ′

⎤⎥⎥⎥⎥⎦
∣Ψ⟩ = 1

2
[δqr(λps + λ∗sp − 4nrhsp) + δps(λrq + λ∗qr − 4nphqr)]

− 2[2Dqr,qr⟨qs∣pr∣ + 2Drq,qr⟨sq∣pr∣ + 2Drr,qq(⟨sr∣pq∣ + ⟨rs∣pq∣)](1 − δqr)
− 2[2Dps,ps⟨qs∣pr∣ + 2Dps,sp⟨qs∣rp∣ + 2Dpp,ss(⟨qp∣rs∣ + ⟨qp∣sr∣)](1 − δps)
+ 2(2Dqs,qs⟨qs∣pr∣ + 2Dsq,qs⟨sq∣pr∣)(1 − δqs) + 2(2Dpr,pr⟨qs∣pr∣ + 2Dpr,rp⟨qs∣rp∣)(1 − δpr)
+ 2δqs∑

t

2Dtt,qq⟨tt∣pr∣ + 2δpr∑
t

2Dpp,tt⟨qs∣tt∣ − 2δqr∑
t
(2Drt,rt⟨st∣pt∣ + 2Dtr,rt⟨ts∣pt∣)

− 2δps∑
t
(2Dpt,pt⟨qt∣rt∣ + 2Dpt,tp⟨qt∣tr∣) (35)

in RDMFT and pCCD, we may approximate the energy by the
following second-order Taylor series expansion,

E(κ) ≈ E(κ = 0) + κ†
⋅ g +

1
2
κ†
⋅G ⋅ κ, (36)

which is widely used in quadratic convergent methods and
similar algorithms by updating the parameters κpq with the
Newton–Raphson step κ = −G−1

⋅ g.9,23,24,67,88,89,93–99 At the
stationary point, the gradient vector vanishes (g = 0) and the
diagonalization of the Hessian matrix G provides valuable infor-
mation about the type of stationary point one has reached: it
is a minimum when all the eigenvalues are positive, a kthorder
saddle point when there are k negative eigenvalues, or a max-
imum when all eigenvalues are negative. Interestingly, this
algorithm has notably been applied to optimize both occupation
numbers and orbitals in RDMFT by (i) including the energy
gradient with respect to the occupation numbers, and (ii) build-
ing an extended Hessian matrix, which incorporates the second
derivative of the energy with respect to the occupation num-
bers, along with the corresponding crossed terms. The use of
this algorithm is motivated by its accelerated convergence99,100

at the expense of increasing the computational resources

required for the storage and computation (see Sec. III for more
details).

III. THEORETICAL CONSEQUENCES
OF INCORPORATING TIME-REVERSAL SYMMETRY
WITH COMPLEX ORBITALS IN RDMFT AND pCCD

Enforcing time-reversal symmetry does not alter the energy
contributions [see Eqs. (10) and (22)] involving J and K integrals,
but the energy contributions involving L integrals in Eqs. (10) and
(22) become contributions involving K integrals. To show this, let
us write the energy contribution involving L integrals, including the
spin as

∑

pq

2Dpp,qqLpq =∑
pq
∑

σ,σ′=↑,↓
σ≠σ′

2Dσσ′
pp,qq∬ drdr′

×

χ∗pσ(r)χ∗pσ′(r
′
)χqσ(r)χqσ′(r

′
)

∣r − r′∣
, (37)

where the spin restriction σ ≠ σ′ in the 2-RDM is a consequence
of the Pauli exclusion principle. Then, let us write the two-electron
repulsion integral for σ = ↑ and σ′ = ↓ as two-component integrals,

∬ drdr′
χ∗p↑(r)χ

∗
p↓(r

′
)χq↑(r)χq↓(r′)
∣r − r′∣

=∬ drdr′
((
χp(r)

0
)⊗ (

0
χp(r′)

))

†

⋅ ((
χq(r)

0
)⊗ (

0
χq(r′)

))

∣r − r′∣

=∬ drdr′
((
χp(r)

0
)⊗ Θ̂(

χ∗p (r
′
)

0
))

†

⋅ ((
χq(r)

0
)⊗ Θ̂(

χ∗q (r
′
)

0
))

∣r − r′∣

=∬ drdr′
((I2 ⊗ Θ̂) ⋅ (

χp(r)
0
)⊗ (

χ∗p (r
′
)

0
))

†

⋅ ((I2 ⊗ Θ̂) ⋅ (
χq(r)

0
)⊗ (

χ∗q (r
′
)

0
))

∣r − r′∣

=∬ drdr′
((
χp(r)

0
)⊗ (

χ∗p (r
′
)

0
))

†

⋅ (I 2 ⊗ Θ̂)
†
⋅ (I2 ⊗ Θ̂) ⋅ ((

χq(r)
0
)⊗ (

χ∗q (r
′
)

0
))

∣r − r′∣

=∬ drdr′
χ∗p↑(r)χ

∗
q↑(r

′
)χq↑(r)χp↑(r′)
∣r − r′∣

, (38)
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where we used Eq. (1), ⊗ is the tensor product, † implies complex
conjugation and transposition, I2 is the 2 × 2 identity matrix, and
we relied on the fact that Θ̂ †

⋅ Θ̂ = I2 to obtain the final expression
(after some trivial reorganization). Therefore, the first consequence
of imposing time-reversal symmetry is that the energy contribu-
tions involving the L integrals become contributions involving (real)
K integrals,

∑

pq

2Dpp,qqLpq =∑
pq

2Dpp,qqKpq, (39)

which introduces a simplification of the RDMFT and pCCD energy
expression that can be written as a JK-only functional (as in the real
case).

Next, let us focus on the t- and z-amplitude equations of the
pCCD method [see Eqs. (16) and (18)]. In both equations, L inte-
grals are present (and involve interactions among opposite-spin
electrons). Hence, adopting time-reversal symmetry, we may replace
L integrals with K integrals making the t and z amplitudes real-
valued also for complex orbitals and even for complex 2-spinors that
are related via time-reversal. The latter consequence can be derived
by approximating the Kramers-restricted CCSD formalism101 to
pCCD. By taking only paired excitations only one of the three exci-
tation classes survives and these amplitudes are real because (taā

īi )
∗

= Θ̂taā
īi = tāa

īi = taā
īi , where we have labeled as barred and unbarred

the 2-spinors related by time-reversal symmetry. Consequently,
the 1RDM and 2RDM elements also become real. However, the
Hermiticity of the 2RDM elements is not guaranteed (i.e., 2Dpp,qq

≠
2Dqq,pp) because left- and right-hand wave functions, ⟨L∣e−T̂ and

eT̂
∣0⟩, respectively, are used to build these elements. Nevertheless,

numerical evidence indicates that the deviation from Hermiticity of
the 2RDM is usually small.24 In addition, one can always impose
the Hermiticy of these elements by averaging the elements 2Dpp,qq

and 2Dqq,pp before entering the orbital optimization process. The
value of the energy is not affected by this averaging because of the
replacement of the L integrals by real-valued K integrals that are
symmetric with respect to index exchange (i.e., Kpq = Kqp). Fur-
thermore, imposing the Hermiticity of the 2RDM elements makes
Eq. (29) equal to zero also for the pCCD approximation, which is a
crucial condition for using the optimization procedure presented in
Sec. II C.

To analyze the next consequence, let us focus on the diago-
nal terms of the gradient gpp = 2(λpp − λ∗pp), as given by Eq. (33).
These are iteratively reduced toward zero thanks to an orbital phase
adjustment originating from the optimization parameters i Im κpp.
This can be illustrated by considering the particular case where both
the gradient and Hessian matrices have a diagonal structure, that
is, gpp ≠ 0 and Gpq,pq ≠ 0. In this case, the unitary matrix eκ is con-
structed using a matrix κ that only contains the diagonal elements
i Im κpp. This only alters the orbital phases during the self-consistent
procedure, i.e., χp(r)← χp(r)e−iImκpp . When time-reversal symmetry
is not enforced, we have gpp ≠ 0, which involves that the phases of the
orbitals that must be optimized because the diagonal elements of the
gradient must be, by definition, zero at the stationary solution. On
the contrary, imposing time-reversal symmetry yields gpp = 0 when
the real-valued K integrals replace the L integrals.

Next, let us focus on the off-diagonal elements gpq (p ≠ q),
which are the “active gradients” that must vanish at the station-
ary solution when one imposes time-reversal symmetry. The “active
gradients” are related to the off-diagonal elements of the matrix
F defined in the Piris–Ugalde algorithm as Fpq = gpq/2.102,103 For
this reason, the Piris–Ugalde algorithm can also be employed to
optimize the complex-valued orbitals in RDMFT and pCCD meth-
ods when time-reversal symmetry is imposed. Furthermore, in this
algorithm, the diagonalization of F (see Fig. 1) produces a unitary
matrix U that transforms the natural orbital coefficients c from
one iteration to the other as c ← U ⋅ c, making the gradient ele-
ments equal to zero (i.e., gpq = 0 for p ≠ q) in this direction (and
iteration). Consequently, the Piris–Ugalde algorithm is equivalent
to a gradient-descent method, which explains the large number of
iterations observed near the stationary solutions when compared
to quadratic convergent methods93,104,105 or methods that use an
approximate Hessian matrix.99,106,107

It is worth mentioning that a large number of iterations are
observed only close to the solution. For example, for N2 computed
with the cc-pVDZ basis set108 at RN-N = 0.7 Å, the final converged
GNOF energy (E = −107.688 637 a.u.) is obtained after 276 occupa-
tion number optimizations and 8228 orbital rotations (when using
real orbitals). Although, after 102 occupation number optimizations
and 3060 orbital rotations, the energy is E = −107.688 093 a.u., dif-
fering by ∼5 × 10−4 a.u. from the final converged value. Hence, most
of the optimization steps are due to the slow convergence close to
the solution. On the other hand, when non-dynamic electronic cor-
relation effects are dominant, the optimization is much faster. For
example, for N2 at RN–N = 6.0 Å, the occupation numbers of the bro-
ken bonds rapidly adjust to their limiting value of 0.5, changing less
during each iteration compared to regions dominated by dynamic
correlation effects. In this case, convergence is achieved after
21 occupation number optimizations and 150 orbital rotations,
starting from orbitals obtained by diagonalizing the core Hamil-
tonian. Finally, let us highlight that novel, better, and faster opti-
mization algorithms99,107,109 are rapidly spreading in the RDMFT
community, allowing the computation of large systems and push-
ing the limits of the applicability of this theory, without needing
to build explicitly the Hessian matrix used in quadratic convergent
methods.

In terms of computational cost, the construction of F in the
Piris–Ugalde algorithm scales as M4 and requires M2 storage when
density fitting approximations are employed.110 (The bottleneck
here is the transformation of the electron repulsion integrals to
the orbital basis.) On the contrary, quadratic convergent methods
require the computation of the Hessian matrix. For the exact Hes-
sian, the computational cost associated with its construction scales as
M5 [see Eq. (35)] and M4 for its storage, which makes it prohibitively
expensive for large systems where the Piris–Ugalde algorithm should
be preferred. It should be noted that the computational cost can be
lowered to M4 at the expense of defining additional intermediates
that would further increase storage.

As a summary of the theoretical consequences, incorporat-
ing time-reversal symmetry in complex orbitals within RDMFT
and pCCD implies that L integrals can be replaced by K integrals,
which permits us to employ the Piris–Ugalde algorithm to perform
the orbital optimization.77 Moreover, for pCCD calculations, the
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t and z amplitudes become real-valued quantities due to the replace-
ment of L integrals by real-valued K integrals in the amplitude
equations.

IV. NUMERICAL CONSEQUENCES
OF INCORPORATING TIME-REVERSAL SYMMETRY
WITH COMPLEX ORBITALS IN RDMFT AND pCCD

To analyze the practical consequences, we present some calcu-
lations performed with representative systems at different geome-
tries, which lead to different flavors of electronic correlation
effects.

A. Computational details
All calculations presented in this work were performed with the

MOLGW program111 that incorporates the stand-alone NOFT mod-
ule112 based on the DoNOFT program113 that performs RDMFT
and pCCD calculations with the Piris–Ugalde algorithm.77 For this
study, we have incorporated the pCCD method and the use of
complex orbitals, including time-reversal symmetry into the NOFT
module. The calculations on the H2, LiH, BH, and N2 molecules
were performed using the cc-pVDZ basis set,108 including den-
sity fitting techniques. The FCI energies for N2 were taken from
Ref. 114. For the BeH2 system, the basis set developed by Evange-
lista and collaborators115 was employed to facilitate the comparison
with previous studies.30,116 We have labeled the real restricted solu-
tions as RHF, RPNOF5,117 RPNOF7,26 RGNOF,27 and RpCCD,
while for the complex solutions including time-reversal symme-
try, we denote them as THF, TPNOF7, TPNOF5, TGNOF, and
TpCCD. The THF results correspond to the axial spin current wave
in Fukutome’s labeling56 or paired unrestricted HF in Stuber–Paldus
designation.62

We employed either the real orbitals produced with the
Perdew–Burke–Ernzerhof density-functional approximation118 or
the diagonalization of the core Hamiltonian as the starting point
for the RDMFT and pCCD calculations. For calculations using
complex-valued orbitals, the real orbitals were multiplied by ran-
dom imaginary phases eiθ with θ ∈ [0, 2π) being a random number.
All electrons were included in the active space except for N2, where
the 1s electrons were frozen. In addition, all virtual orbitals were
included in the active space. Finally, it should be highlighted that, for
each studied system and method, we have evaluated the eigenvalues
of the real and complex Hessian matrices in the regions where the
real and the complex solutions differ (see in the following) to con-
firm that the targeted solution corresponds to a minimum. We have
also tested different starting points to make sure that the solution
found was the global minimum.

Finally, it should be mentioned that a comprehensive bench-
mark of complex-valued RDMFT methods including larger systems
and the most recently developed optimization algorithm109 is left for
future work.

B. When the complex (with time-reversal symmetry)
and the real solutions coincide

For some systems (e.g., H2 and LiH), the use of complex orbitals
does not provide any extra flexibility and the restricted real solu-
tions coincide with the time-reversal-symmetric complex orbitals.

FIG. 2. Potential energy curves obtained with the real (solid) and complex (dotted)
versions of the HF, pCCD, and GNOF methods for the dissociation of the LiH
molecule.

Here, we focus on the LiH case. (See the supplementary material for
the H2 example.) In Fig. 2, we have represented the potential energy
curve (PEC) for the homolytic dissociation of LiH obtained with HF,
pCCD, and the GNOF RDMFT functional approximation. The real
unrestricted HF (UHF) PEC is also included for comparison pur-
poses. In LiH, only one pair of electrons forms the bond while the
1s2 electrons of Li remain almost unaltered at all bond lengths. In
the ground state, the bond is formed by the so-called harpoon mech-
anism,119 where the dominant species are Li+ and H− around the
equilibrium distance while neutral atoms are formed in the dissoci-
ation limit. As we can observe, the GNOF functional and the pCCD
approximation results are similar because both methods accurately
describe the correlation effects of the electron pair responsible for
forming the bond. In addition, as shown in Fig. 2, the real solutions
coincide with the complex ones for all bond lengths along the disso-
ciation curve. The analysis of the eigenvalues of the complex Hessian
matrix revealed that the real orbitals also lead to a minimum for the
complex orbital optimization problem. In addition, the analysis of
the electronic density shows that the real and the complex electronic
densities coincide with only tiny numerical differences caused by the
finite convergence thresholds.

C. When the complex (with time-reversal symmetry)
and the real solutions differ

While the time-reversal-symmetric complex and real solutions
match for the H2 and the LiH systems across all bond lengths, this
correspondence does not necessarily occur in other systems. To
illustrate this, we have studied the PEC of BeH2 during the inser-
tion of a beryllium atom into a hydrogen molecule. In Fig. 3(a),
we have represented the reaction coordinate x (in Bohr), where the
Be atom is placed at the coordinate origin and the H atoms are
located at ±y = 2.54 − 0.46x with x ∈ [0, 4]. This system has recently
been used as a benchmark tool of different methods,30,88,115,116,120–131

including the pCCD and RDMFT functional approximations,
where the ability of these methods to account for non-dynamic
electronic correlation effects was evaluated. For small values of
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FIG. 3. (a) Schematic representation of the insertion reaction of Be into H2 to form BeH2. The Be atom is placed at the origin and the hydrogen atoms are located at
±y = 2.54 − 0.46x. (b) Potential energy curves obtained with the real (solid) and complex (dotted) versions of HF, PNOF5, and GNOF methods for 0 ≤ x ≤ 4. The real UHF
and the FCI curves are also included for comparison. (c) Changes in the spin-summed occupations numbers (η3 and η4) for the THF natural orbitals as functions of the
reaction coordinate x. (d) Difference between the real and complex optimized electronic densities, ρ(r), for the GNOF functional approximation along the insertion pathway
for x = 2.75 bohrs.

x > 0, the exact wave function is primarily governed by the elec-
tronic configuration ∣(1a1)

2
(2a1)

2
(1b2)

2
⟩. As x increases, however,

the configuration ∣(1a1)
2
(2a1)

2
(3a1)

2
⟩ becomes dominant. In the

range 2.5 < x < 3, the wave function undergoes a rapid transition
from ∣(1a1)

2
(2a1)

2
(1b2)

2
⟩ to ∣(1a1)

2
(2a1)

2
(3a1)

2
⟩. Therefore, in

the BeH2 system, the region 2.5 ≤ x ≤ 3.5 exhibits strong non-
dynamic electronic correlation effects while the dynamic component
is dominant for all other geometries.

Focusing on the consequences of using complex orbitals with
time-reversal symmetry, we see in Fig. 3(b) that in regions where the
dynamic electronic correlation effects are dominant, the real and the

complex solutions coincide. On the contrary, the flexibility provided
by the complex natural orbital coefficients leads to a relaxation of
the electronic density in the region where non-dynamic correlation
effects are dominant (i.e., x ∈ [2.5, 3.5]), making the complex solu-
tions lie below the real ones for all the methods studied. Let us first
analyze the HF solutions. As we can observe, both solutions produce
a smooth curve in the region where non-dynamic electronic corre-
lation effects are dominant with the THF solution lying below the
RHF one only on a very small interval. Using the real RHF orbitals to
build the complex Hessian matrix [see Eq. (34)] in the interval where
the solutions differ and proceeding to diagonalize it, we obtain one
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or two (depending on the geometry) negative eigenvalues. Since the
gradient is still zero, this result indicates that the real solution is a
stationary point (i.e., a saddle point) for the complex optimization
problem. Thus, by re-optimizing the orbitals (and occupation num-
bers), we obtain the actual minimum. This result is comparable with
the usual ones obtained with restricted and unrestricted methods for
geometries beyond the Coulson–Fischer point.132 However, as we
show in Fig. 3(b), the THF energy lies above the real UHF one, which
shows that the flexibility provided by the complex orbital coeffi-
cients is not sufficient to account for all the non-dynamic electronic
correlation effects present.

To gain more insights into the THF solution, we have com-
puted the spin-summed occupations numbers for the THF natural
orbitals as a function of the reaction coordinate x. It should be
noted that this procedure is equivalent to the construction of the
spin-summed unrestricted natural orbitals within the unrestricted
HF formalism.9 To do so, we built

P = c†
↑ ⋅

1D ⋅ c↑ + c†
↓ ⋅

1D ⋅ c↓, (40)

where P is the density matrix written in the real (scalar) atomic
orbital basis ψ, c↑ (c↓) gathers the molecular orbital coefficients
for the spin-up (spin-down) orbitals, and 1D is the HF first-
order reduced density matrix (with 1Dpq = δpq for p, q occupied and
0 otherwise). Then, using the Löwdin orthonormalization (S−1/2

⋅ P ⋅ S−1/2 with S being the overlap matrix of the real (scalar)
orbitals) and diagonalizing the resulting matrix, we obtained the
THF natural orbitals and THF natural occupation numbers (η). In
Fig. 3(d), we have plotted the spin-summed occupations numbers
for the THF natural orbitals for the third and fourth natural orbitals
(η3 and η4). The η1 and η2 occupation numbers remain equal to 2
for all geometries. As we can observe in Fig. 3(d) in the region where
non-dynamic correlation effects are dominant, η3 and η4 approach
1. Therefore, the THF is capable of retrieving some non-dynamic
correlation effects present when compared to RHF, but its ability is
limited and it is unable to perform as well as real UHF in this region
[see Fig. 3(b)].

Moving to the PNOF5 and GNOF results, we also observe that
the real and the complex solutions differ in the region where non-
dynamic correlation effects are dominant. In the case of PNOF5,
which is a fully N-representable method133,134 thanks to its cor-
respondence with the constrained anti-symmetrized product of
strongly orthogonal geminals,135 we notice that the TPNOF5 esti-
mates (red dots) lie above the FCI energies. Interestingly, the PNOF5
results are very similar to the pCCD ones due to the close rela-
tionship between their associated wavefunctions. For this reason,
the pCCD results for this system are reported and discussed in the
supplementary material. In the case of the TGNOF results (orange
dots), these lie below their FCI counterparts in the x ∈ [2.5; 3.5]
interval, which indicates that this functional approximation can
introduce N-representability violations when non-dynamic corre-
lation effects are pronounced. Next, the analysis of the difference
in the electronic density along the H–Be–H path for x = 2.75 bohrs
reveals that, for the GNOF functional, non-negligible changes occur
in the vicinity of the nuclei and in the bonding region. (Similar
results were obtained with the PNOF5 functional approximation.)
Finally, let us mention that contrary to the HF case, the analysis
of the eigenvalues of the complex Hessian matrix built with the

RPNOF5 and RGNOF occupation numbers and orbitals revealed
that the real solutions correspond to local minima for the com-
plex optimization problem because all the eigenvalues obtained were
positive.

To gain further insights into the complex solutions, let us ana-
lyze the THF as the non-relativistic limit of the Kramers’ restricted
four-component DIRAC-HF (KR-4c-DHF) equation.67,136,137 The
KR-4c-DHF equation is the relativistic extension of the HF method
for relativistic calculations, which produces 4c-spinors preserving
time-reversal symmetry. It is known that the non-relativistic limit
can be approached by setting the value of the speed of light c to a
large value in the 4c-DHF.67,136,138,139 Then, as discussed in Sec. II,
in this limit, the KR-4c-DHF solution approaches the THF solution
(instead of the RHF one) when the RHF and THF solutions differ
because (i) the THF solution can be lower in energy, (ii) the THF and
the KR-4c-DHF methods work with the extra flexibility provided by
complex orbitals, and (iii) both the methods are built to preserve
time-reversal symmetry. To show this, we have taken the BeH2 sys-
tem at the x = 2.75 bohrs geometry, employed the cc-pVDZ basis
set,108 and performed calculations using the DIRAC program140 set-
ting the speed of light value to c = 105. In the non-relativistic limit,
the KR-4c-DHF energy (−15.575 55 hartree) approaches the THF
value (−15.575 600 hartree), where for c = 105, the energy differ-
ence is lower than 5 × 10−5 hartree (the RHF energy is −15.563 664
hartree). This result illustrates that KR-4c-DHF solutions in the non-
relativistic limit only approach the RHF ones when the RHF and
the THF solutions are equivalent (which occurs in regions where
non-dynamic correlation effects are not dominant). Otherwise, the
KR-4c-DHF solutions in the non-relativistic limit may recover the
THF values.141

Another example where the real and the complex solutions may
differ is the BH homolytic dissociation. In Fig. 4, we have collected
the potential energy curves obtained with real-valued and complex-
valued orbitals using the HF, pCCD, PNOF7, and GNOF methods.
As in our previous example, the pCCD and the PNOF5 results are
very similar; thus, we have only included the pCCD values. As we can
observe from Fig. 4, only for the PNOF7 and GNOF approximations
the use of complex-valued orbitals leads to different solutions in the
region where non-dynamic electronic correlation effects are dom-
inant. On the contrary, for the HF, pCCD, and PNOF5 methods,
both solutions coincide. Compared to the FCI results, the poten-
tial energy curve of the RGNOF approximation is the most accurate
one; then, the performance of the TGNOF deteriorates when the
BH bond is broken because TGNOF produces lower energies in this
region. It should be noted that the TGNOF, RPNOF7, and TPNOF7
energies lie below the FCI values, which shows that these func-
tional approximations introduce N-representability violations. Let
us recall that for the BH system, it is possible to find a general-
ized HF potential energy curve142 that differs from the RHF one.
Nevertheless, as shown in Fig. 4, the THF method does not have
enough flexibility (compared to the generalized HF one); therefore,
the potential energy curve obtained with the THF method coincides
with the RHF one. Recalling that BeH2 and BH present generalized
HF solutions and, that for these systems, we obtained different solu-
tions using the RDMFT functionals and/or the pCCD method, we
may argue that there is a weak relationship between the presence
of a generalized HF solution and the discovery of a new solution
when employing complex-valued orbitals in the RDMFT and pCCD
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FIG. 4. Potential energy curves obtained with the real (solid) and complex (dotted)
versions of the HF, pCCD, PNOF7, and GNOF methods for the dissociation of the
BH molecule.

methods. However, this relationship is not strong, as not all methods
are consistently affected. For instance, the pCCD method does not
yield a new solution for the BH system when using complex-valued
orbitals.

Next, let us discuss our last example where the real and com-
plex solutions differ, the homolytic dissociation of the N2 molecule
in its ground state, where three pairs of electrons are simultane-
ously broken. In Fig. 5(a), we have collected the real and com-
plex HF, pCCD, and GNOF PECs. As one can observe, for all
methods, the real and complex solutions are equivalent up to
RN–N ∼ 1.4 Å. Then, for larger interatomic distances, the real and

the complex solutions differ, with the complex solution lying below
the real one in all cases. As in the BeH2 example, the RHF is a saddle
point of the complex solution when we evaluate the Hessian matrix.
Again, the THF results can partially retrieve some non-dynamic
electronic correlation effects but are still far from the UHF results.
On the other hand, the GNOF real and complex results are very
similar but the pCCD ones present large deviations, which shows
that the difference between the real and the complex solutions is
system- and method-dependent. Once more, as for the BeH2 system,
all the eigenvalues of the complex Hessian matrix built with the real
GNOF/pCCD occupation numbers/amplitudes and orbitals (multi-
plied by some random phases) were positive, which suggests that the
real solutions correspond to local minima of the complex optimiza-
tion problem for the RDMFT functional approximations and the
pCCD method. Comparing the GNOF and pCCD methods against
FCI [see Fig. 5(a)], we observe that real and complex results lie far
from the FCI values because of the missing dynamic electronic cor-
relation effects. Finally, concerning the shape of the potential energy
curves, we notice that the TpCCD curve improves over the RpCCD
curve for all geometries [see Fig. 5(b)] and also improves for the
value of the dissociation energy.

Up to now, we have shown the effect of using complex-valued
orbitals with small basis sets for all systems to facilitate the analysis.
Nevertheless, it is worth evaluating the role of the size of the basis
set. To this end, we have collected in Fig. 6 the potential energy
curves for the N2 system computed using the cc-pVDZ and the
cc-pVTZ basis sets108 and using the pCCD method. We only report
the pCCD results because it leads to the largest difference between
the real-valued and complex-valued orbitals solutions among all
the methods employed. (For example, using the RGNOF and the
TGNOF approximations, the difference among the energies for the
RN–N = 6.0 Å geometry is only ∼0.009 a.u.). For this test, we have
frozen the 1s and 2s electrons because the occupation numbers of

FIG. 5. (a) Potential energy curves obtained with the real (solid) and complex (dotted) versions of the HF, pCCD, and GNOF methods for the dissociation of the N2 molecule.
The real UHF results are included for comparison. The FCI values were taken from Ref. 114. (b) ΔE(in a.u.) = ERN–N − ERN–N

= 2.5Å.
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FIG. 6. Potential energy curves computed with the cc-pVDZ and cc-pVTZ basis
sets and using the real (black) and complex (red) versions of the pCCD method
for the homolytic dissociation of the N2 molecule.

these orbitals remain practically constant for all geometries. As we
can observe, the RpCCD potential energy curve computed with
the cc-pVDZ basis set is almost parallel to the cc-pVTZ one; the
same holds for the TpCCD curves, which indicates that the con-
sequences of using complex-valued orbitals are consistent across
different basis sets. Nevertheless, as we discuss in Sec. IV D, the use
of complex-valued orbitals plays a crucial role in the convergence.

D. Changes on the convergence caused
by using complex-valued orbitals

First of all, let us focus on the speed of convergence, which
is affected by the random phases employed. For example, for
N2 at RN–N = 6.0 Å, taking as a starting point the real orbitals
obtained from the diagonalization of the core Hamiltonian multi-
plied by random phases. The TGNOF can converge for two sets
of random phases after (a) 21 occupation number optimizations
and 305 orbital rotations, or (b) 36 occupation number optimiza-
tions and 501 orbital rotations. Consequently, the random phases
in the non-dynamic electronic correlation regime strongly affect
the speed of convergence. On the contrary, when dynamic elec-
tronic correlation effects are dominant, convergence is less affected
by the random phases; a similar number of iterations is obtained
with real- or complex-valued orbitals. In summary, the random
phases employed to build the complex-valued orbitals determine the
speed of converge. Similar results were obtained for other RDMFT
approximations and the pCCD method.

Despite the random-phase dependency observed in the speed
of convergence when using complex-valued orbitals, let us men-
tion that convergence is facilitated by using complex-valued orbitals,
especially, when non-dynamic electronic correlation effects are
enhanced. For example, for the dissociated N2 system (i.e., RN-N
> 2.5 Å), convergence to the lowest energy state using pCCD and
real orbitals was not possible with the algorithm employed (for the
cc-pVDZ and the cc-pVTZ basis sets). Attempting to reach conver-
gence, we used the PNOF5 solutions as a starting point for the pCCD
calculations. Unfortunately, this strategy fails to converge when

using real-valued orbitals. However, it is effective when complex-
valued orbitals are employed. For instance, using the TPNOF5
orbitals as a starting point, we have converged the TpCCD energy
after 38 amplitude optimizations and 1036 orbital rotations for
RN–N = 10 Å. Thus, in general, we have observed that working with
complex-valued orbitals facilitates convergence when non-dynamic
correlation effects become dominant.

V. CONCLUSIONS
In this work, we have presented and discussed the conse-

quences of using complex orbitals including time-reversal symmetry
in RDMFT and pCCD calculations. From a theoretical perspective,
the RDMFT JKL-only functional approximations and the pCCD
method reduce to JK-only methods, where only the Hartree and
exchange integrals are needed to evaluate the energy. In particular,
for spin-compensated systems, the energy expression is given by

ETPNOFs/TGNOF/TpCCD
= 2∑

p
nphpp +∑

pq
(

2Dpq,pqJpq +
2Dpq,qpKpq).

(41)
This simplification occurs because the L integrals that accompany
opposite-spin interactions become K integrals when time-reversal
symmetry is considered. Consequently, the t and z amplitudes of
TpCCD are also real-valued. It should be noted that Eq. (41) is also
applicable for other methods that use JKL-only integrals such as
the antisymmetrized product of strongly orthogonal geminals,135 the
ΔNO method,97,143 and the recently proposed methodology based
on Richardson–Gaudin states.144–146 Another major advantage of
including time-reversal symmetry is that the Piris–Ugalde orbital
optimization algorithm can be applied to problems involving com-
plex orbitals. This is because the diagonal terms of the gradient
responsible for changing the orbital phase vanish (gpp = 0). This
advantage can be further exploited in future implementations of
the Piris RDMFT functional approximations and pCCD methods
for extended systems where several complex one-body Bloch states
are required. In such cases, quadratic convergent algorithms that
require the Hessian matrix become computationally prohibitive.
Therefore, this work sheds light on the technical and theoretical
aspects encountered when implementing the Piris RDMFT func-
tional approximations and pCCD methods for extended systems.
On the other hand, restricting ourselves to JK-only functionals
implies that the usual shortcomings of using two-index quantities
to approximate the electron–electron interactions are still present.
For instance, the well-known problem of the inability of these
RDMFT functionals to account for long-range dynamic electronic
correlation effects147 (responsible for the so-called weak interac-
tions) is not improved by using complex-valued orbitals and time-
reversal symmetry. Future studies are still needed to focus on these
open issues. In particular, cost-effective approaches would be desir-
able as the currently available proposals based on perturbation
theory26,148–151 cannot be directly employed in large systems (e.g.,
extended systems).

From a practical perspective, our numerical examples reveal
that the real and complex solutions may differ in regions where
non-dynamic correlation effects are enhanced with complex ener-
gies lying below the real ones in such cases. In the case of HF
calculations, the real solutions correspond to saddle points of the
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complex optimization problem. On the other hand, for RDMFT
functional approximations and the pCCD method, the real solu-
tions are local minima. Interestingly, the TGNOF energies may
lie below the FCI ones in regions dominated by non-dynamic
correlation effects, suggesting that this functional approximation
introduces N-representability violations. All RDMFT functionals
presented in this work use two-index quantities to approximate
the 2RDM elements. Hence, ideally, the “best” functional approx-
imation that one can build should reproduce the doubly occu-
pied configuration interaction (DOCI) results.152,153 However, the
N-representability violations allow the TGNOF functional to pro-
duce total energies that lie below the DOCI (or the FCI) ones, espe-
cially in regions where non-dynamic electronic correlation effects
are important. This unpleasant feature can deteriorate the perfor-
mance of the TGNOF approximation as it may produce lower energy
at the expense of increasing the N-representability violations. Never-
theless, we have observed that this effect is system-dependent as the
BeH2 energies lie below the FCI ones, while the N2 energies remain
far from the FCI values. For this reason, N-representability viola-
tions can limit the reliability of the TGNOF functional in practical
applications, but these violations might not be decisive in all cases.
However, future developments of RDMFT approximations should
focus on overcoming this issue before using these approximations
in extended systems. Finally, we have shown that the THF solution
corresponds to the non-relativistic limit of the KR-4c-DHF method,
where the RHF solution is attained only when it is equivalent to the
THF one in regions where the non-dynamic electronic correlation
effects are not dominant.

SUPPLEMENTARY MATERIAL

The supplementary material for the present article includes the
H2 case, where the RPNOF5 and TPNOF5 solutions coincide, as well
as the pCCD results for the BeH2.
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APPENDIX: THE REAL RDMFT AND pCCD HESSIAN

For real orbitals, the one- and two-electron integrals, the occu-
pation numbers, second-order reduced density matrix elements, and
the parameters κpq are real. For restricted calculations, only the
elements κpq with p > q are unique. Hence, we have

κ̂ =∑
p>q
∑

σ
κpq(ĉ†pσ ĉqσ − ĉ†qσ ĉpσ), (A1)

where only the gpq for p > q elements of the gradient are needed and
only p > q and r > s terms of the Hessian are required. The Hessian
is generally a Hermitian matrix (symmetric in the real case); thus,
its construction only requires building the upper diagonal part and
applying the symmetry conditions. In the case of RDMFT and pCCD
calculations, the construction of the Hessian scales as M5, which
makes it reasonable in terms of computational cost when compared
to more complex methods where the construction of the Hessian
scales as M7. The Hessian for real orbitals in terms of the auxiliary
G̃ matrix elements takes the following form:

Gpq,rs =
∂2E(κ)
∂κpq∂κrs

= G̃pq,rs − G̃qp,rs − G̃pq,sr + G̃qp,sr (A2)

that are evaluated using Eq. (35). It should be noticed that the real
Hessian is given by the first four elements of Eq. (34) because they
correspond to partial derivatives taken with respect to Re κpq ele-
ments. Finally, for completeness, let us mention that the sixth to
the eighth elements in Eq. (34) are obtained with partial derivatives
with respect to Im κpq while the third line is produced by crossed
Re κpq and Im κpq derivatives.
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