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ABSTRACT: Electronic resonances are metastable states that can decay by electron loss.
They are ubiquitous across various fields of science, such as chemistry, physics, and biology.
However, current theoretical and computational models for resonances cannot yet rival the
level of accuracy achieved by bound-state methodologies. Here, we generalize selected
configuration interaction (SCI) to treat resonances by using the complex absorbing potential
(CAP) technique. By modifying the selection procedure and the extrapolation protocol of
standard SCI, the resulting CAP-SCI method yields resonance positions and widths of full
configuration interaction quality. Initial results for the shape resonances of N2

− and CO−

reveal the important effect of high-order correlation, which shifts the values obtained with
CAP-augmented equation-of-motion coupled-cluster with singles and doubles by more than
0.1 eV. The present CAP-SCI approach represents a cornerstone in the development of highly
accurate methodologies for resonances.

The electronic spectrum of molecular systems contains
continuum (unbound) states in addition to the usual

discrete (bound) states. Embedded in the continuum, one can
find electronic resonances, which are metastable states that can
decay by losing one electron.1 In contrast to the real energies
of bound states, resonances have a complex-valued energy

=E E i /2R (1)

with resonance position ER and resonance width Γ (related to
its lifetime against autoionization ℏ/Γ).

As a widespread type of resonance, we cite temporary
anions.2,3 They can be formed by electron attachment to a
molecule or by the photoexcitation of a bound anion.
Temporary anions play important roles in various fields of
chemistry and physics. To name a few, they are involved in the
DNA damage induced by ionizing radiation,4,5 in the
bioactivity of some classes of radiosensitizers,6 in the chemistry
of the interstellar medium,7 and in different technologies for
nanofabrication.8,9 Other types of resonances include multiply
charged anions, core-excited, core-ionized, and superexcited
states, and Stark resonances (formed by exposing a molecule to
a strong electric field).10,11

To describe molecular resonances, one must solve a
quantum many-body problem (just as for bound states)
while accounting for its coupling with the continuum (which is
not an issue for bound states). The problem of electronic
correlation in the continuum represents a tremendous
challenge for theory.

Scattering methodologies can formally produce a complete
description of resonances and their embedding continuum.12,13

However, these methods are usually coupled with more
approximate treatments for the electronic correlation, which

currently limits their ability to produce reliably accurate
resonance energies.14−16

Alternatively, one can resort to adapted quantum chemistry
methodologies. They retain the stationary-like picture of a
resonance (as in bound-state quantum chemistry), while the
effect of the continuum is accounted for implicitly. To do so,
one can stay in a Hermitian formulation by employing
stabilization techniques.17,18 Instead, one can shift to a non-
Hermitian formulation of quantum mechanics.10,11,19 In this
case, the Hamiltonian becomes complex-valued and non-
Hermitian. As a consequence, the resonance directly emerges
as an eigenstate of this modified Hamiltonian, which has a
complex energy. In this class of complex variable methods, we
find complex scaling,20,21 complex basis functions,22,23 and
complex absorbing potential (CAP).24−32

In the complete basis set limit and in the full configuration
interaction (FCI) limit, the continuum techniques mentioned
above yield the exact resonance energy. In practice, finite basis
sets and approximate electronic structure theories must be
employed. Various continuum techniques have been combined
with many different levels of theory, giving rise to a wide range
of methods. In particular, CAP is one of the most widely used
techniques for studying resonances. It has been combined with
equation-of-motion electron-attached coupled-cluster with
singles and doubles (EOM-EA-CCSD),27,28,33 Fock-space
multireference coupled-cluster,34,35 coupled-cluster with per-
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turbative triples,36,37 algebraic diagrammatic construction,38−40

symmetry-adapted-cluster configuration interaction,41 ex-
tended multiconfigurational quasidegenarate perturbation
theory of the second order,42,43 multireference configuration
interaction,26,44 and density-functional theory.45

Despite significant theoretical advances in recent years,10,11

the most accurate existing methods for molecular resonances
cannot rival the level of accuracy that has been achieved for
bound states.46 Strikingly, no methodology can systematically
approach the FCI limit for resonances. As a consequence,
highly accurate resonance energies, that is, with uncertainties
below 1 kcal/mol or 0.043 eV, remain out of reach.

To close this gap between methodologies for bound states
and resonances, here we combine selected configuration
interaction (SCI)47−61 with the CAP technique. This choice
is motivated by the ability of SCI to systematically approach
the FCI limit for bound states.62−66 It is able to provide highly
accurate excitation energies, allowing a faithful benchmark of
more approximate methods.61,67−73 With the present CAP-SCI
methodology, similarly accurate resonance energies can be
envisioned. As a first application of this novel methodology, we
address the emblematic shape resonances of N2

− and CO−.
Unless otherwise stated, atomic units are used throughout.

To absorb the oscillating tail of the resonance wave function
and render it square-integrable, a CAP Ŵ of strength η > 0 is
added to the physical N-body electronic Hamiltonian Ĥ,
yielding a perturbed and η-dependent Hamiltonian

=H H W( ) i (2)

with

=
=

W w
k

N

k
1 (3)

The one-body potential ŵ can be chosen from various
functional forms but the most widely used form remains the
quadratic potential

l
moo
noo

= | | | | >
w

( ) if

0 otherwise
k 0

2
k 0

k
(4)

where = + +w w w wk x y zk k k
, αk ∈ {xk, yk, zk} is the coordinate

of the kth electron, and α0 ∈ {x0, y0, z0} defines the CAP onset.
It is important to notice that Ŵ is a symmetric operator. As a
consequence, while Ĥ is Hermitian, Ĥ(η) is a complex
symmetric operator, that is, =H H( ) ( )T , leading to
complex-valued eigenvalues and eigenvectors, with the left
and right eigenvectors being related by transposition.

Because of the non-Hermitian nature of Ĥ(η), the usual
variational principle of the real-valued energy has to be
replaced by a stationary principle for the complex-valued
energy based on the c-product74

= | |E H( ) ( ) c (5)

where Ψ is a c-normalized trial wave function (i.e., ⟨Ψ|Ψ⟩c = 1)
and

| = r r rf g f g( ) ( ) dc (6)

In a complete basis set, the resonance position and width
can be extracted by computing the energy as η → 0+. However,
in a finite basis set, one must find a nonzero and optimal ηopt

that balances out the error stemming from the CAP (which
increases with η) and the basis set incompleteness error (which
decreases with η). As shown by Riss and Meyer,25 this can be
achieved by minimizing the energy velocity

= E
arg min

d ( )
dopt

(7)

The practical procedure to find ηopt generally consists of
computing η “trajectories” (i.e., the evolution of E(η) as a
function of η) and then looking for the minimum in the energy
velocity defined in eq 7 along the trajectory.

To reduce the dependence of the zeroth-order energy
E(ηopt) on the CAP parameters, it is a common practice to
compute the first-order corrected energy29,30

=
=

E E
E

( ) ( )
d ( )

dopt opt opt

opt (8)

where the derivative is computed as29

= [ ]
=

E
w

d ( )
d

iTr ( )opt

opt (9)

with γ̂(η) being the one-particle density operator.
Here, we rely on the “Configuration Interaction using a

Perturbative Selection made Iteratively” (CIPSI) meth-
od,48,53,60,75−77 one of the numerous variants belonging to
the SCI family.54−56,58,61,65,67,69,78−85 The CIPSI algorithm is
well documented in the literature,60,77 and thus we summarize
below only the main steps to highlight its generalization to a
non-Hermitian, complex-valued framework.

In the standard (real-valued) Hermitian case, the variational
wave function associated with the electronic state of interest is
written as

| = |c I
I

Ivar
(10)

where the |I⟩ terms are Slater determinants belonging to the
so-called internal (or variational) space . The real-valued
variational energy associated with this wave function can be
computed as

= | |E Hvar var var (11)

where Ψvar is chosen as normalized (i.e., ⟨Ψvar|Ψvar⟩ = 1). The
variational energy (eq 11) and the real-valued coefficients cI
appearing in eq 10 are obtained by diagonalization of the CI
matrix with elements | |I H J using the Davidson algorithm.60,86

To complement Evar, a second-order perturbative correction,
EPT2, is usually added to it. Although nonvariational, the
resulting energy, Evar + EPT2, is a more faithful approximation
of the FCI energy. By employing the Epstein−Nesbet
partitioning, the expression of the second-order energy is
expressed as follows

= =
| |

| |
E e

H
E HPT2

(2) var
2

var (12)

where the |α⟩’s are Slater determinants belonging to the
external (or perturbative) space such that and

| |I H 0. In our implementation, this perturbative
correction is computed using an efficient semistochastic
algorithm.76
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In SCI algorithms such as CIPSI, the internal space
expands iteratively through the inclusion of determinants from
the external space . These determinants are chosen based on
their contribution to the second-order perturbative energy, eα

(2)

[see eq 12]. In practice, we double the size of the variational
space at each iteration by incorporating the determinants with
the largest values of |eα

(2)|. Additional determinants are added in
order to generate pure spin states.87

For large-enough variational spaces, there exists a rigorous
linear relationship between Evar and EPT2.

88 When this linear
regime is reached, it is thus possible to extrapolate Evar to the
limit where EPT2 → 0, which effectively corresponds to the FCI
limit. More information about the theoretical foundation of the
extrapolation procedure can be found in ref 88.

In the case of a CAP-augmented Hamiltonian Ĥ(η), key
changes arise. The stationary wave function associated with the
state of interest reads

| = |c I( ) ( )
I

Ista
(13)

where the CI coefficients cI(η) are now complex-valued.
Moreover, based on the stationary principle defined in eq 5,
the expression of the complex-valued stationary energy is

= | |E H( ) ( ) ( ) ( )sta sta sta c (14)

with the c-normalization condition | =( ) ( ) 1sta sta c , as
defined in eq 6. Likewise, the complex-valued second-order
perturbative energy reads

= =
| |

| |
E e

H
E H

( ) ( )
( ) ( )

( ) ( )PT2
(2) sta c

2

sta c (15)

As in the Hermitian case, the stationary energy (eq 14) and the
coefficients cI(η) are obtained by diagonalization of the CI
matrix with elements | |I H J( ) c using the Davidson algorithm
adapted for symmetric complex matrices,89 while the complex-
valued perturbative correction (eq 15) is computed with a
straightforward generalization of the semistochastic algorithm
developed in ref 76. Note that we did not encounter self-
orthogonality issues (the c-norm may be zero for nonzero
functions) during the iterative Davidson diagonalization
process.

In a complex-valued setup, the selection procedure is more
intricate, as one must select determinants that contribute to the
real and imaginary parts of the stationary energy. The most
natural and democratic way consists of selecting determinants
|α⟩ based on the largest |eα

(2)(η)| values, as in the Hermitian
case (see above). However, as we shall see below, it is also
possible to accelerate the convergence of either the real or
imaginary part of the energy by employing Re[eα

(2)(η)] or
Im[eα

(2)(η)] as a selection criterion, respectively.
To produce the final FCI estimates of the resonance position

and width, we carefully monitored the behavior of the
stationary energy Esta(η) as a function of the perturbative
correction EPT2(η). For sufficiently large stationary wave
functions, we observe that Re[Esta(η)] and Im[Esta(η)] behave
linearly with respect to Re[EPT2(η)] and Im[EPT2(η)],
respectively.

We further notice that, for a sufficiently large stationary
space, because the real components are always much larger
t h a n t h e i r i m a g i n a r y a n a l o g s a n d

[ ] [ | | ]Re E ( ) Re H( )sta c , we have Re[eα
(2)(η)] < 0 for

any external determinant α. In other words, the real part of eq
15 is a sum of negative terms only, and thus Re[EPT2(η)]
approaches zero from below. In contrast, the sign of
Im[eα

(2)(η)] can be either positive or negative. This has two
major consequences: (i) it is not possible to anticipate how
Im[EPT2(η)] approaches zero and (ii) the condition Im-
[EPT2(η)] = 0 does not necessarily imply that the FCI limit has
been reached.

To address this issue, we introduce the “absolute value”
version of the second-order energy

= [ ] + [ ]E e( ) Re e ( ) i Im ( )aPT2
(2) (2)

(16)

such that

[ ] = [ ]E eIm ( ) Im ( )aPT2
(2)

(17)

for which the condition Im[EaPT2(η)] = 0 is fulfilled only when
the FCI limit has been attained. The FCI estimates EexFCI are
thus obtained through independent linear extrapolations of
Re[Esta(η)] as Re[EPT2(η)] → 0 and of Im[Esta(η)] as
Im[EaPT2(η)] → 0.

As illustrative examples, we consider the widely studied 2Πg
shape resonance of N2

− and the 2Π shape resonance of CO−.
Shown in Table 1 are the geometries, basis sets, and CAP

onsets and strengths, all taken from ref 28, which reported
CAP-EA-EOM-CCSD resonance energies for these two
systems. We employed the aug-cc-pVTZ basis set with
additional 3s3p3d basis functions located at the geometric
center of the molecule, with exponents chosen as described by
Zuev et al.28 (reproduced in the Supporting Information). To
comply with ref 28, the frozen-core approximation was not
enforced (all electrons were correlated). To mitigate the
unphysical perturbation caused by the CAP, it is common
practice to retain solely the virtual−virtual block of the CAP
matrix.90 However, we decided against this strategy because it
introduces an artificial dependence of the FCI energies on the
choice of orbitals.

Notice that we adopt the CAP strength ηopt optimized for
CAP-EA-EOM-CCSD.28 Here, we do not discuss its
optimization within the CAP-SCI methodology, since our
goal is to gauge the convergence of the resonance energy
toward the FCI limit for fixed CAP parameters. This allows us
to attribute the differences between our CAP-SCI and the
CAP-EA-EOM-CCSD results28 exclusively to electronic
correlation effects. Because of that and to shorten the notation,
we drop the explicit dependence on η from hereon.

All calculations were performed with Quantum Package,60

where we implemented the CAP-SCI scheme. Since Quantum

Table 1. Parameters Employed for the Calculation of the
Shape Resonance of N2

− and CO−a

System State Bond length (x0, y0, z0) ηopt

N2
− 2Πg 2.0740 (2.76, 2.76, 4.88) 0.0015

CO− 2Π 2.1316 (2.76, 2.76, 4.97) 0.0028
aBond length (in bohr), CAP onset (x0, y0, and z0) (in bohr), and
optimal CAP strength ηopt (in a.u.), all taken from ref 28. The
molecular axis is chosen as the z axis and the basis set is aug-cc-pVTZ
+3s3p3d for both systems (the additional basis functions are centered
at the geometric center of the molecule, located at the origin).
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Package relies on the CIPSI flavor of SCI methods, our
particular implementation of CAP-SCI is labeled CAP-CIPSI.

Our calculations relied on a state-following procedure91

which we also implemented in Quantum Package. At each
iteration of the Davidson diagonalization, we keep track of the
state of interest by monitoring the overlap between the input
and Ritz vectors.91 This algorithm enables us to perform CIPSI
calculations for a state that is not the lowest-lying state of a
given symmetry sector. It proved to be very useful to accelerate
the convergence of the present calculations.

Here, we restricted ourselves to real-valued orbitals, which
was driven by their simplicity when compared to the complex-
valued alternative. It allows us to recycle a significant number
of functions from the standard real-valued CIPSI algorithm.60

Additionally, it reduces both the memory requirement for the
two-electron integrals in the orbital basis and the computa-

tional cost of the calculation of quantities derived from these
integrals.

Our computational procedure for the anionic state is as
follows. Starting from a given set of orbitals (described below),
we perform an extended CAP-CIS calculation.92 The
resonance state can be easily identified by the occupation of
a π* orbital and by an imaginary part of the energy that is not
too large (see the Supporting Information). Then, we remove
all of the determinants making small contributions to this state.
Finally, a single-state CAP-CIPSI calculation is performed
using the state-following procedure described above until the
wave function reaches around 4 × 107 determinants.

Although the FCI energy is unaffected by the underlying set
of orbitals employed for constructing Slater determinants, in
practice the choice of orbitals can strongly influence how fast
the FCI estimate is reached. Four different sets were tested:
restricted Hartree−Fock (HF) orbitals of the neutral species

Figure 1. Evolution of the real and imaginary parts of the CAP-CIPSI energy, Re[Esta] and Im[Esta], as functions of the number of determinants
[panels (a) and (c)] and as functions of their corresponding second-order energy corrections, Re[EPT2] and Im[EaPT2] [panels (b) and (d)] for the
2Πg shape resonance of N2

− with the parameters in Table 1. Four different sets of orbitals are considered: HFN, HFA, NON, and NOA (see the
main text for more details). Resonance position ER and width Γ are obtained for the fixed extrapolated energy of the neutral system.
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(HFN), restricted open-shell HF orbitals of the anion species
(HFA), natural orbitals of the neutral species (NON), and
natural orbitals of the anion species (NOA). To compute the
natural orbitals, a preliminary CAP-CIPSI calculation was
performed (with HFN orbitals for the neutral and with HFA
orbitals for the anion), which was ended when the wave
function contained at least 5 × 106 determinants. Then, real-
valued natural orbitals were computed by diagonalizing the
one-electron-reduced density matrix at η = 0.

The FCI estimates of the total energy, Re[EexFCI] and
Im[EexFCI], are computed using four-point linear fits with the
largest stationary wave functions. The extrapolated FCI
estimates thus have associated extrapolation errors, which are
given in parentheses. Results produced by three- and five-point
linear regressions are reported in the Supporting Information.

To obtain FCI estimates of the resonance positions ER and
widths Γ, a CAP-CIPSI calculation was also performed for the
neutral species with NON (for the same ηopt values given in
Table 1). ER and Γ were extracted from the corresponding
differences between the energies of the anion EexFCI

A and the
neutral EexFCI

N :

= [ ]E E EReR exFCI
A

exFCI
N (18a)

= [ ]E E2Im exFCI
A

exFCI
N (18b)

The uncertainties in the resonance parameters are derived
from the uncertainties in EexFCI

A and EexFCI
N . It is important to

mention that the CAP has a fairly small effect on the energy of
the neutral systems. Considering the largest wave functions for
N2 and CO, had we adopted the CAP-free results, the zeroth-
order resonance positions would be affected by around 0.1
meV and the widths by less than 5 meV, with even smaller
effects for the first-order values.

We started by investigating the influence of the choice of
orbitals on the convergence of the CAP-CIPSI calculations.
This analysis is done for the 2Πg shape resonance of N2

− and
for the selection criterion based on |eα

(2)| (the comparison
between the different selection criteria is presented later).

The evolution of Re[Esta] as a function of the number of
determinants in the stationary space is illustrated in Figure 1a
for each set of orbitals. All curves display a smooth
convergence from above, similar to what is usually observed
in standard CIPSI calculations for bound states. Natural
orbitals provide faster convergence than HF orbitals, whereas
orbitals optimized for the anion are preferable with respect to
orbitals obtained for the neutral species. For example, the
energy obtained with HFN and 3.2 × 107 determinants is
similar to the energy that one would reach with HFA and 1.6 ×
107 determinants, which in turn is reached with as few as 2.9 ×
106 and 6.2 × 105 determinants with NON and NOA,
respectively.

To obtain EexFCI values, we look into the evolution of
Re[Esta] as a function of Re[EPT2], which is shown in Figure
1b. All stationary energies enter into a linear regime when
Re[EPT2] reaches −0.03 Eh. This occurs between 106 and 2 ×
106 determinants for HF orbitals and for less than 5 × 105

determinants for natural orbitals, a relatively small number of
determinants. We obtained Re[EexFCI] values of −109.326(2),
−109.325(1), −109.324(1), and −109.32370(3) Eh for HFN,
HFA, NON, and NOA, respectively. Despite the slight
differences in the extrapolated values, they all overlap when
accounting for the extrapolation errors. Clearly, natural orbitals
provide smaller extrapolation errors than HF orbitals. More-
over, the extrapolation is less sensitive to the number of fitting
points, as shown in the Supporting Information. Among the
four sets of orbitals, the NOA comes out to be the best choice
by a significant margin; it has the fastest convergence in terms
of the number of determinants in addition to the smallest
uncertainty associated with the extrapolation.

Concerning Im[Esta], its evolution as a function of the
number of determinants is depicted in Figure 1c. Contrary to
Re[Esta], it evolves more erratically before the stationary space
reaches approximately 106 determinants. Beyond this point, it
converges smoothly from above with natural orbitals and from
below with HF orbitals. However, from the different behaviors,
it is hard to conclude which set has the best rate of

Figure 2. Evolution of the real [panel (a)] and imaginary [panel (b)] parts of the CAP-CIPSI energy, Re[Esta] and Im[Esta], as functions of the real
and imaginary second-order energy corrections, Re[EPT2] and Im[EaPT2], for the 2Πg shape resonance of N2

− with the parameters of Table 1. Three
selection criteria are considered: |eα

(2)|, Re[eα
(2)], and Im[eα

(2)]. Resonance position ER and width Γ are obtained for the fixed extrapolated energy of
the neutral system.
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convergence. For that, it is necessary to look at the evolution of
Im[Esta] as a function of Im[EaPT2], which is reported in Figure
1d. Only the curve associated with NOA exhibits a clear linear
behavior, whereas the three other curves would probably need
a few additional CAP-CIPSI iterations to reach the linear
regime. Therefore, these three sets of orbitals should be less
trustworthy for a linear extrapolation of Im[Esta] to its FCI
limit. Indeed, the values of Im[EexFCI] obtained from
calculations employing HFN, HFA, NON, and NOA are,
respectively, −0.007(1), −0.007(1), − 0.0072(4), and
−0.00728(6) Eh. While all values are consistent among
themselves, the latest one has the smallest uncertainty and
the least dependence on the number of fitting points
(Supporting Information). Therefore, we can clearly see that,
again, it is more suitable to consider NOA orbitals.

When employing Im[EPT2] instead of Im[EaPT2], the curves
exhibit an overall more linear behavior (as shown in the
Supporting Information). However, as mentioned before, this
may be a problematic extrapolation criterion because its
individual components, Im[eα

(2)], can be either positive or
negative. Still, the extrapolated values are also consistent with
those obtained with Im[EaPT2].

After establishing that NOA leads to the fastest convergence,
we now address the role of the selection procedure. As
described before, we employed three different criteria for the
selection of the determinants, namely, based on the norm of
the perturbative correction (|eα

(2)|), its real (Re[eα
(2)]), or its

imaginary (Im[eα
(2)]) components.

Starting with Re[Esta] as a function of Re[EPT2], Figure 2a
shows that the curves associated with the different selection
criteria are rather close and exhibit a clear linear behavior.
Re[EexFCI] is estimated as −109.32370(3) Eh according to |eα

(2)|
and −109.32374(8) Eh according to Im[eα

(2)], which are
consistent with each other. However, the selection based on
Re[eα

(2)] produces a slightly different value, −109.3240(2) Eh,
having greater uncertainty and lying outside of the
extrapolation errors of the estimates obtained with the two
alternative selection criteria. Hence, the results given by either |
eα
(2)| or Im[eα

(2)] criteria seem to be more trustworthy, with a
preference for the former due to its smaller extrapolation error.

In contrast to the real part, the evolution of Im[Esta] as a
function of Im[EaPT2], represented in Figure 2b, strongly

depends on the selection criterion. Both |eα
(2)| and Im[eα

(2)]
attain a linear regime, and they produce very similar
extrapolated values of −0.00728(6) and −0.00729(4) Eh,
respectively. With the Re[eα

(2)] criterion, however, a linear
extrapolation would yield −0.0063(7) Eh, which is far off from
the two previous values, reflecting the fact that a linear regime
has not been reached in this case.

Overall, both |eα
(2)| and Im[eα

(2)] selection criteria are sensible
choices, whereas the criterion based on Re[eα

(2)] is not
recommended. We prefer to rely on |eα

(2)| to obtain our final
FCI estimates, as it is arguably a more natural generalization of
the standard CIPSI selection for complex-valued energies.

The above findings do not seem to depend on the choice of
orbitals (results for HFA orbitals are reported in the
Supporting Information). Similarly, the trends observed for
the choice of orbitals and the selection criteria remain
unchanged for the first-order corrected energies (also shown
in the Supporting Information).

Having defined our optimal computational protocol (NOA
orbitals and the |eα

(2)| selection criterion), we are now in the
position to compute FCI estimates of the resonance position
and width for the shape resonances of N2

− and CO−, labeled
CAP-exFCI from here on. The results are gathered in Table 2
and compared to the CAP-EOM-EA-CCSD values extracted
from ref 28. Experimental resonance parameters (for the
equilibrium geometry) are also reproduced for these two
prototypical systems, which were obtained by fitting theoretical
models to experiment.93−96

Our CAP-exFCI resonance parameters can be considered
chemically accurate for the given basis set and CAP
parameters. The uncertainties for the resonance positions are
0.001 eV (N2

−) and 0.008 eV (CO−), whereas for the widths,
they are 0.003 eV for both systems. Larger uncertainties arise
for the first-order corrected energies [see eq 8], though still
below 0.01 eV. This is understandable as the first-order
correction changes the stationary energy Esta but not the
perturbative energy correction EPT2, thus rendering the
extrapolation curves less linear than those involving the
zeroth-order stationary energy Esta (see the Supporting
Information).

For N2
−, we find that zeroth-order CAP-EOM-EA-CCSD

delivers very close results to zeroth-order CAP-exFCI, with a

Table 2. Position ER and Width Γ of the Shape Resonance of N2
− and CO−, in eV, computed at the Zeroth-Order and First-

Order CAP-EOM-EA-CCSD and CAP-exFCI Levels with the Parameters of Table 1a

N2
− CO−

ER Γ ER Γ
Zeroth-order CAP-EOM-EA-CCSDb 2.487 0.417 2.088 0.650
Zeroth-order CAP-exFCIc 2.449(1) 0.391(3) 2.060(8) 0.611(3)
Zeroth-order CAP-exFCI + basis set correction 2.470(1)d 0.338(3)d 1.898(3)e 0.765(3)e

First-order CAP-EOM-EA-CCSDb 2.571 0.255 1.981 0.585
First-order CAP-exFCIc 2.435(6) 0.31(1) 2.035(3) 0.696(5)
First-order CAP-exFCI + basis set correction 2.342(6)f 0.34(1)f 1.816(5)g 0.715(5)g

Experimenth 2.316 0.414 1.50 0.75
1.52 0.80

aExtrapolation errors associated with the CAP-exFCI values are given in parentheses. bValues taken from ref 28. cThis work. dBasis set correction
computed as the difference between the zeroth-order CAP-EOM-EA-CCSD values in the aug-cc-pVQZ+3s3p3d and aug-cc-pVTZ+3s3p3d basis
sets taken from ref 28. eBasis set correction computed as the difference between the zeroth-order CAP-EOM-EA-CCSD values in the aug-cc-pV5Z
+3s3p3d and aug-cc-pVTZ+3s3p3d basis sets taken from ref 28. fBasis set correction computed as the difference between the first-order CAP-
EOM-EA-CCSD values in the aug-cc-pVQZ+3s3p3d and aug-cc-pVTZ+3s3p3d basis sets taken from ref 28. gBasis set correction computed as the
difference between the first-order CAP-EOM-EA-CCSD values in the aug-cc-pV5Z+3s3p3d and aug-cc-pVTZ+3s3p3d basis sets taken from ref 28.
hExperimental values for N2

− extracted from ref 93 and for CO− extracted from refs 94−96.
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slightly overestimated resonance position and width, by
0.038(1) and 0.026(3) eV, respectively. The discrepancy in
the resonance position is consistent with the typical errors of
EOM-CCSD for excitation energies of bound states.71 We also
find milder first-order corrections with CAP-exFCI [the
resonance position changes by −0.013(6) eV and the width
changes by −0.09(2) eV] than with CAP-EOM-EA-CCSD
(resonance position changes by 0.084 eV and width by −0.162
eV). This in turn deteriorates the favorable comparison
observed for the zeroth-order results. The first-order CAP-
EOM-EA-CCSD resonance position becomes even more
overestimated, by 0.136(6) eV, whereas the width now appears
underestimated by −0.05(1) eV, with respect to first-order
CAP-exFCI.

The findings for CO− are overall similar to those discussed
for N2

−. CAP-EOM-EA-CCSD compares more favorably with
CAP-exFCI in their zeroth-order versions [resonance positions
and width slightly overestimated by 0.028(8) and 0.039(3) eV]
than their first-order counterparts [resonance positions and
width underestimated by −0.058(3) and −0.111(5) eV].
Similarly, the first-order correction has a less pronounced effect
on the resonance position obtained with CAP-exFCI
[−0.025(6) eV] than with CAP-EOM-EA-CCSD (−0.107
eV).

Accounting for the resonance positions and widths of both
systems, zeroth-order CAP-EOM-EA-CCSD has a mean
absolute error of 0.033(4) eV with respect to CAP-exFCI,
which increases to 0.087(9) eV when comparing the first-order
corrected methods. These results suggest that the apparent
good performance of zeroth-order CAP-EOM-EA-CCSD is
partially due to error cancelation stemming from the presence
of the CAP and from the method’s restriction to double
excitations.

When compared to experiment, it is clear that correlation
effects captured at the CAP-exFCI level have a major impact.
Taking the more reliable first-order corrected results, going
from CAP-EOM-EA-CCSD to CAP-exFCI significantly
reduces the gap with respect to experiment for the resonance
position of N2

− [from 0.255 to 0.119(6) eV] and for the
resonance widths of N2

− [from 0.159 to 0.108(1) eV] and
CO− [from 0.19 to 0.079(5) eV]. Furthermore, by looking into
relative differences instead of absolute differences, we see that
higher-order correlation effects are more pronounced for the
resonance widths than for the resonance positions. The
remaining differences from experiment should be related to
basis set effects, known to be particularly relevant for these
shape resonances,28,97 and the CAP itself, with an associated
error that remains less understood.

We can estimate the basis set effect from the difference
between the CAP-EOM-EA-CCSD values obtained in a more
complete basis set (aug-cc-pVQZ+3s3p3d for N2

− and aug-cc-
pV5Z+3s3p3d for CO−) and in the aug-cc-pVTZ+3s3p3d
basis set, all extracted from ref 28. Whereas such a basis set
correction based on lower-level computational models is a
common practice for bound state calculations, it has not yet
been carefully studied in the case of resonances. That being
said, the correction brings the first-order CAP-exFCI results
closer to experiment. As shown in Table 2, the effect is modest
for the resonance widths but is more significant for the
resonance positions, where a close match with experiment is
seen for N2

−. The basis set correction also improves the
comparison with the experimental resonance position of CO−,
but the gap remains substantial nonetheless. While this could

be related to the error introduced by the CAP, the slow basis
set convergence suggests that even larger basis sets would be
needed. Because of that, the present basis set correction also
becomes more questionable. Assuming there are no major
inaccuracies in the experimental values, it is interesting to
notice that CO− remains more challenging for theory than
N2

−, despite the qualitatively similar character of the two
isoelectronic shape resonances.

In conclusion, we have reported the first implementation of
SCI for resonances using the CAP technique. As a first
application, we have shown that the resulting CAP-SCI
methodology allows us to produce FCI estimates of the
position and width of the shape resonances of two
paradigmatic transient anions, N2

− and CO−.
To reach this level of accuracy, the choice of orbitals plays a

critical role. We have found that (real-valued) natural orbitals
obtained specifically for the resonant state are particularly well-
suited. There is, however, room for improvement, and one
could employ other kinds of orbitals. Among them, we can
mention complex-valued natural or energetically optimized
orbitals,81,98,99 although it would imply significant modifica-
tions of the current CIPSI algorithm. The way to select the
determinants has also been found to be crucial as they must be
selected based on both the real and the imaginary parts of the
stationary energy.

Our results indicate that, for a given set of CAP parameters
and basis set, the higher-order correlation effects fully
accounted for in the CAP-SCI methodology can explain up
to half of the difference between CAP-EOM-EA-CCSD
results28 and experiment. The remaining deviation between
theory and experiment can thus be attributed to the finite basis
set error and/or the approximate treatment of the continuum
by the CAP. We also discussed how zeroth-order CAP-EOM-
EA-CCSD is probably subject to partial error cancelation.

As a perspective, we are planning on extending SCI to other
adapted quantum chemistry methodologies, such as complex
scaling and complex basis functions. We are also interested in
studying resonances where SCI is expected to be particularly
well adapted. As an example, the two-particle, one-hole
Feshbach resonances of water and benzene are known to be
challenging systems for state-of-the-art methodologies.100,101

We hope to report on this in the near future.
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