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ABSTRACT
ipie is a Python-based auxiliary-field quantum Monte Carlo (AFQMC) package that has undergone substantial improvements since its initial
release [Malone et al., J. Chem. Theory Comput. 19(1), 109–121 (2023)]. This paper outlines the improved modularity and new capabilities
implemented in ipie. We highlight the ease of incorporating different trial and walker types and the seamless integration of ipie with
external libraries. We enable distributed Hamiltonian simulations of large systems that otherwise would not fit on a single central processing
unit node or graphics processing unit (GPU) card. This development enabled us to compute the interaction energy of a benzene dimer with
84 electrons and 1512 orbitals with multi-GPUs. Using CUDA and cupy for NVIDIA GPUs, ipie supports GPU-accelerated multi-slater
determinant trial wavefunctions [Huang et al. arXiv:2406.08314 (2024)] to enable efficient and highly accurate simulations of large-scale
systems. This allows for near-exact ground state energies of multi-reference clusters, [Cu2O2]2+ and [Fe2S2(SCH3)4]2−. We also describe
implementations of free projection AFQMC, finite temperature AFQMC, AFQMC for electron–phonon systems, and automatic differentia-
tion in AFQMC for calculating physical properties. These advancements position ipie as a leading platform for AFQMC research in quantum
chemistry, facilitating more complex and ambitious computational method development and their applications.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0225596

I. INTRODUCTION

Auxiliary-field quantum Monte Carlo (AFQMC)1,2 has become
increasingly popular in quantum chemistry3,4 and is furthermore
being recognized as a useful approach in the context of quantum
algorithms.5–11 A well-maintained AFQMC program with flexibility
and robust performance will play a pivotal role at the intersection
of many disciplines, including chemistry, physics, materials science,
and quantum information science. Given the initial PAUXY devel-
opment effort for rapid prototyping while lacking performance,12–16

the Python-based AFQMC program ipie was designed from
scratch for high performance and ease of development. It was offi-
cially introduced as a production-level package in Ref. 17 under

the Apache License 2.0. ipie was optimized for high-performance
computing architectures with both central and graphical process-
ing units (CPUs and GPUs). High performance was largely achieved
by integrating Numba’s JIT compilation18 to fine-tune the computa-
tional efficiency of specific kernels and MPI parallelism for effective
distributed computing. The utility of ipie was showcased through
the resolution of intricate quantum chemical challenges, notably
the [Cu2O2]2+ torture track.17,19 Rigorous benchmarks on CPU and
GPU platforms position ipie competitively, displaying speed on par
with—or surpassing—existing Python and C++ codes.17,20,21 Sys-
tematic timing benchmarks in Ref. 17 demonstrated the cost of
typical AFQMC calculations using ipie, also compared to other
available C++ codes. Since its release, ipie has gained popularity
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beyond the original developer group, from academic researchers
in quantum chemistry and physics to engineers in the technol-
ogy sector who apply quantum simulations for material design and
algorithm development.3,7,8,10,22–25

In this article, we describe the recent development and current
status of ipie (version v0.7.1),26 introducing enhanced modular-
ity, a suite of new features, interfaces to external packages, and
associated numerical examples. Below are the key highlights.

A. High degree of modularity and customizability
The AFQMC driver has been restructured to be fully mod-

ular, allowing for a straightforward combination of features. This
provides greater flexibility in adapting to a wide range of user
demands. Advancements in AFQMC algorithms often focus on
developing new trial wavefunctions to better control the fermionic
sign/phase problem.5,25,27–29 The key routines in an AFQMC calcu-
lation compute intermediates using walker and trial wavefunctions,
including overlap, force bias, Green’s function, and energy estima-
tors. Without altering the internal core code of ipie, users and
developers can customize all components making up an AFQMC
simulation, including trial wavefunctions, walkers, Hamiltonians,
propagators, and estimators. The key objects are all structured
using object-oriented programming (OOP) principles, facilitating
straightforward customization through inheritance.

B. Development-friendly design
This improvement standardizes the component interfaces and

workflow processes while offering a flexible system that adapts to
various data types and user requirements. The abstract base classes
serve as a foundational blueprint, ensuring all components adhere
to a uniform structure and interact seamlessly. Complementing this,
the factory methods for common workflows simplify the instantia-
tion process, allowing users to set up standard calculations with min-
imal effort and reduced potential for errors. Integrating type-based
dispatch through Plum30 brings increased precision and efficiency in
method handling, ensuring every component downstream dynami-
cally adjusts its operations based on the specific trials and walkers
requested.

Moreover, we have simplified the integration of ipie with
external quantum chemistry packages. While the necessary inte-
grals and orbitals for running AFQMC are most commonly obtained
through an interface with PySCF,31 our simplified file format also
ensures that other packages can be easily used. For sophisticated
trial wavefunctions, such as multiple Slater determinant (MSD) tri-
als derived from selected configuration interaction, interfaces with
PySCF,31 Dice,21,32 and TREXIO33 are available. An additional
interface with the Fermionic Quantum Emulator (FQE)34 has also
been introduced, facilitating the conversion between ipie’s MSD
wavefunction and quantum circuit wavefunctions, which facilitates
AFQMC applications in the quantum information science (QIS)
community.

C. New improvements and features
In the previous release paper,17 we introduced basic capabil-

ities to perform phaseless AFQMC calculations with both single

Slater determinant and multi-Slater determinant trial wavefunc-
tions. It supported CPU and GPU runs for AFQMC with single
determinant trial wavefunctions, while only CPUs were supported
for multi-Slater determinant calculations. In this release, several fea-
tures have been added to ipie to improve memory management,
accelerate performance, handle new problems, and enhance integra-
tion testing, among other advancements. Some notable features are
as follows:

Tackling larger systems: To manage the high storage requirement
of Cholesky vectors [i.e., O(N3)], ipie offers shared mem-
ory across MPI processes on the same node and distributed-
memory among CPUs and GPUs.

Faster calculations for systems with multireference character:
ipie adds support for GPU-accelerated AFQMC calcula-
tion with multi-Slater determinant trials, which enables more
efficient calculations of the ground state of systems with
multireference characters, for example, bond breaking prob-
lems3 and strongly correlated systems such as transition metal
complexes.17,19,22,35

New AFQMC developments: While primarily developed for phase-
less AFQMC (ph-AFQMC) targeting ab initio systems, ipie
also supports additional AFQMC methods, including free-
projection AFQMC,27 finite temperature AFQMC,14 AFQMC
for coupled electron–phonon models,15 and automatic dif-
ferentiation within AFQMC for calculating observables that
do not commute with the Hamiltonian.36 We also sup-
port complex-valued Hamiltonians that will be useful for
performing prototypical solid-state calculations.

Integrated testing: ipie is equipped with improved integration
testing, boosting the package’s robustness and adaptability and
significantly enhancing its reliability and usability for end-users
and developers.

The organization of this paper is as follows: Sec. II overviews
the theory of AFQMC; Sec. III details the components, software
architecture, and workflow of ipie, including examples to illus-
trate the framework’s adaptability for AFQMC development; Sec. IV
introduces new features in ipie and provides corresponding exam-
ples; Sec. V outlines the interfaces to external packages; and Sec. VI
concludes with a summary and outlook.

II. THEORY OF AFQMC
AFQMC is based on the following imaginary time evolution:

∣Ψ0⟩∝ lim
τ→∞ exp (−τĤ)∣Φ0⟩ = lim

n→∞(exp (−ΔτĤ ))n∣Φ0⟩, (1)

where Δτ is an infinitesimal time step, ∣Ψ0⟩ is the ground state
wavefunction, and ∣Φ0⟩ is an initial state satisfying ⟨Φ0∣Ψ0⟩ ≠ 0.
While ipie supports some of the prototypical model Hamiltoni-
ans, its development has focused on the simulation of the ab initio
Hamiltonian, which in second quantization is given by

Ĥ =
N

∑
p,q=1

hpqâ†
p âq +

1
2

N

∑
p,q,r,s=1

gpsqrâ†
p â†

q ârâs, (2)

where the two-electron repulsion integral (ERI) is factorized with
the Cholesky decomposition

J. Chem. Phys. 161, 162502 (2024); doi: 10.1063/5.0225596 161, 162502-2

Published under an exclusive license by AIP Publishing

 25 O
ctober 2024 10:32:22

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

gpsqr = (ps∣qr) =
Nγ

∑
γ=1

LγpsL
γ
qr. (3)

With this factorization, we have

Ĥ = v̂0 −
1
2

Nγ

∑
γ=1

v̂2
γ, (4)

where

v̂0 =∑
pq
[hpq −

1
2∑r

(pr∣rq)]â†
p âq, (5)

v̂γ = i∑
pq

Lγpqâ†
p âq. (6)

The short-time propagator with Trotter decomposition is written as

e−ΔτĤ = e−
Δτ
2 v̂0 e

Δτ
2 ∑ v̂ 2

γ e−
Δτ
2 v̂0 + O(Δτ3). (7)

Upon applying the Hubbard–Stratonovich transformation,37,38 our
effective propagator contains only one-body operators,

e−ΔτĤ = ∫ dx p(x)B̂(x,Δτ) + O(Δτ2), (8)

where p(x) is the standard Gaussian distribution,
x = (x1, x2, . . . , xNγ) are the auxiliary fields, and the one-body
propagator B̂ is

B̂(x,Δτ) = e−
Δτ
2 v̂ 0 e−

√
Δτx⋅ v̂ e−

Δτ
2 v̂ 0 , (9)

where v̂ = (v̂1, v̂2, . . . , v̂Nγ).
In AFQMC, each walker samples auxiliary fields and represents

a statistical sample of the global wavefunction at imaginary time τ,
written as

∣Ψ(τ)⟩ =
Nw

∑
i

wi(τ)
∣ψi(τ)⟩
⟨ΨT∣ψi(τ)⟩

, (10)

where ∣ψi(τ)⟩ is the wavefunction of the ith walker at time τ and ∣ΨT⟩
is the trial wavefunction used for importance sampling. The energy
estimator is then

E(τ) =
Nw

∑
i

wi(τ)Eloc,i(τ) =
Nw

∑
i

wi(τ)
⟨ΨT∣Ĥ∣ψi(τ)⟩
⟨ΨT∣ψi(τ)⟩

. (11)

The walker state ∣ψi(τ)⟩ is updated by applying the discrete-time
propagator, and the weight wi(τ) is updated following the phaseless
approximation:2

∣ψi(τ + Δτ)⟩ = B̂(xi − xi,Δτ)∣ψi(τ)⟩, (12)

wi(τ + Δτ) = Iph(xi, xi, τ,Δτ) × wi(τ). (13)

We dynamically shift the distribution of auxiliary fields using the
force bias xi defined by

xi(Δτ, τ) = −
√
Δτ
⟨ΨT∣v̂ − ⟨v̂⟩T∣ψi(τ)⟩
⟨ΨT∣ψi(τ)⟩

, (14)

FIG. 1. Overview of phaseless AFQMC in terms of computational hotspots.

where ⟨v̂⟩T is usually called the mean-field shift in the AFQMC lit-
erature.4 Furthermore, the phaseless importance function1,2 used in
the weight update (13) is given by

Iph(xi, xi, τ,Δτ) = ∣I(xi, xi, τ,Δτ)∣ ×max [0, cos (θi(τ))], (15)

which remains real and positive throughout the propagation. The
so-called hybrid importance function is given by

I(xi, xi, τ,Δτ) = Si(τ,Δτ)exi ⋅x i−x i ⋅x i/2, (16)

and the overlap ratio of the ith walker is

Si(τ,Δτ) =
⟨ΨT∣B̂(Δτ, xi − xi)∣ψi(τ)⟩

⟨ΨT∣ψi(τ)⟩
. (17)

We define the phase of the overlap as

θi(τ) = arg [Si(τ,Δτ)]. (18)

The computation of local energies in Eq. (11), propagation of wave-
functions in Eq. (12), and evaluation of force biases in Eq. (14)
are the primary computational hotspots in AFQMC calculations.
We optimize these routines by employing optimized algorithms and
adopting high-performance computing techniques. We provide an
overview of the phaseless AFQMC algorithm described earlier in
Fig. 1.

III. SOFTWARE ARCHITECTURE AND DESIGN
PRINCIPLES
A. AFQMC driver

We overview the software architecture of ipie with empha-
sis on improved modularity. As shown in Fig. 2, ipie generates
an AFQMC simulation by assembling the generic AFQMC driver
from problem-specific components and then running it to exe-
cute the simulation. The driver requires several inputs to define the
QMC simulation, including the trial wavefunction, walkers, and the
Hamiltonian, as well as more generic parameters such as the number
of blocks and time step. The following Python code snippet shows
how the driver can be instantiated:
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FIG. 2. The workflow of ipie.

The code takes several objects needed for a typical AFQMC driver as
follows:

(1) System contains information that defines the problem,
including the number of spin-up and spin-down electrons.

(2) Hamiltonian stores molecular integrals as detailed in
Sec. III B.

(3) Trial represents a trial wavefunction object, for which ipie
provides many options as detailed in Sec. III C.

(4) Walkers manages all information about walkers during the
imaginary time propagation. This includes the initial walker
wavefunctions and the number of walkers, among other
details. ipie allows walkers to be explicitly passed into
the AFQMC driver or dynamically dispatched with default
settings, as detailed in Sec. III D.

(5) Propagator handles the update of walker weights and
wavefunctions during the imaginary time evolution. ipie’s
AFQMC driver can take the propagator class as an input or
dispatch it internally with default settings.

(6) mpi_handler manages information related to the Message
Passing Interface (MPI) for parallel computing, including
rank details, chunking, and groups (i.e., a group is a col-
lection of MPI processes). The parameter shared_comm in
mpi_handler refers to the MPI rank within a group where
the chunking integrals are distributed. The specifics of these
are elaborated in Sec. IV A.

(7) Params encompass other fundamental parameters for the
QMC simulation, such as the time step.

While users can directly provide all of the aforementioned
inputs to construct the AFQMC driver object, especially for develop-
ment purposes, a factory method is provided to simplify the process
greatly. This is especially useful for standard AFQMC calculations
using single or multiple Slater determinant trials. This method sig-
nificantly reduces the number of inputs required to construct the
AFQMC object, as demonstrated in Code Snippet 2.

As illustrated in Code Snippet 2 and Fig. 2, the construction
of the AFQMC driver ultimately relies on two key inputs: the
Hamiltonian and the trial wavefunction. The Hamiltonian object
is assembled with one-electron integrals and the Cholesky decom-
position (or density fitting) of two-electron integrals, detailed in
Sec. III B. As for trial wavefunctions, ipie offers various options
that utilize interfaces with external packages such as PySCF,31

Dice,21 and TREXIO33 to facilitate standardized workflows. ipie
can also accommodate user-customized trials, which offers flexibil-
ity in future developments. Benefiting from the flexibility of ipie,
we are also able to incorporate more complicated trial wavefunc-
tions, such as density matrix renormalization group (DMRG), and
in Sec. III C we show the AFQMC calculation with matrix product
states (MPS) trials by incorporating ipie with the DMRG package
Renormalizer.39

The build method in the AFQMC class is designed to
streamline the setup of an AFQMC calculation by requiring
only three inputs: the number of electrons, the Hamiltonian,
and the trial wavefunction. Its main purpose is automating the
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construction of key components such as walkers, propagators, esti-
mators, etc. Users need only specify the hamiltonian and trial
inputs trial_wavefunction, with the build method handling
downstream instantiation of the rest.

Once the driver is built, wavefunction propagation, stabiliza-
tion, population control, and estimator calculation are performed
with the provided QMC parameters. Simulation outputs in both text
file and hdf5 file formats are saved and updated after each block,
which enables real-time reblocking analysis40 via built-in tools.

B. Hamiltonian
The construction of a Hamiltonian object can be achieved in

several ways. One can construct the object directly by inputting the
one-electron integrals and the Cholesky decomposition [Eq. (3)] of
either 8-fold (for real symmetric integrals) or 4-fold (for complex
hermitian integrals) symmetric two-body integrals.

where h1e, chol, and ecore are the one-electron integrals, the
Cholesky decomposition [Eq. (6)] of the two-electron integrals
within the desired orbitals in Eq. (2), and the nuclear repulsion
energy, respectively.

ipie also offers built-in functions for assembling the Hamil-
tonian object from PySCF calculations. One can provide (i) a PySCF
check file, (ii) a PySCF mol object together with the molecular orbital
(MO) coefficient matrix mo_coeff, or (iii) a mol object, mo_coeff,
and a basis transformation matrix X that transforms MOs to orthog-
onal atomic orbitals (OAO), natural orbitals, and so on, depending
on the single particle basis used in the AFQMC calculation.

The argument chol_cut specifies the cutoff for the Cholesky
decomposition; use_mcscf specifies whether to use the multi-
configurational self-consistent field (MCSCF) MO coefficients; and

num_frozen_core specifies the number of frozen cores for the
subsequent AFQMC calculations.

Given that the size of Cholesky vectors scales as O(N3), with
N as the number of orbitals, large systems with large basis sets can
generate electron integrals of considerable size. For such systems,
one cannot store copies of integrals for each MPI process and must
resort to other strategies. Utilizing shared memory across different
MPI processes, ipie offers an approach that allows processes on the
same node to access Cholesky vectors in the same memory block.
The following code snippet can be adopted to ensure the use of
shared memory Hamiltonian objects:

This reads the integrals from the ham.h5 file and generates the
Hamiltonian object with shared integrals across all MPI processes.
pack_chol refers to another strategy used by ipie to reduce mem-
ory usage by a factor of two and speed up the propagation. Namely,
the permutation symmetry of Cholesky vectors is exploited to utilize
only the upper-triangular part of the Cholesky vectors. Propaga-
tion using the packed matrix contracts only the symmetric part in
Eq. (12) and is thus more efficient.

However, the shared memory strategy often creates a mem-
ory access overhead and reduces the MPI parallel efficiency when
many cores are used. We also enable a chunking (or distributed-
memory) strategy. The Cholesky vectors are divided into segments,
or “chunked,” and distributed across different MPI processes to opti-
mize memory usage and computational efficiency. The Cholesky
vectors are divided into several chunks, each of which will be
allocated to separate MPI processes. The specifics of this chunk-
ing process and the associated MPI communication strategy will
be thoroughly explained in Sec. IV A. Given enough nodes, our
approach completely removes the memory bottleneck in AFQMC
and can work on both CPU and GPU nodes. We especially rec-
ommend our distributed-memory implementation for GPUs, where
memory capacity is much more limited than that of CPUs.

C. Trial wavefunctions
Any new trial wavefunction may inherit from the

TrialWavefunctionBase class, which contains methods to
calculate essential quantities including the overlap [Eq. (17)],
force bias [Eq. (14)], etc., as shown in Fig. 3. Some trials, such
as single/multiple Slater determinants, also require computation
of Green’s function and half rotation of electron repulsion inte-
grals.13 There is flexibility to either inherit these functions directly
or overwrite them with customized implementations, ensuring
both consistency in fundamental operations and adaptability for
specialized needs.

Single Slater determinant (SD) trials can be generated with
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FIG. 3. The functions to be defined for a trial object. ∗ : The function is optional depending on the trial type and is used in certain trials for computations like overlap, force
bias, or local energy.

where orbs_a and orbs_b are the spin-up and spin-down coef-
ficient matrices for the SD trials. Similarly, MSD trials can be
generated with

with wfn containing the occupation indices in the basis used in
the configuration interaction (CI) expansion of the MSD and their
coefficients.

A new customized trial can be defined straightforwardly in
ipie. For instance, we consider a “noisy” SD trial that can be inher-
ited from our existing SD trial class. The noisy trial adds Gaussian
noise to the overlap evaluation and keeps everything else the same as
for regular SD trials. The following code snippet achieves this:

FIG. 4. Application of MPS-AFQMC to a two-dimensional hydrogen lattice with
r = 4.2a0. Energy deviation from exact results using MPS-AFQMC, UHF-AFQMC,
and DMRG with different bond dimensions.25

Recently, we have also implemented a more sophisticated
extension using a matrix product state (MPS) trial wavefunction.25

MPS is the variational ansatz used in the density matrix renormal-
ization group (DMRG) algorithm, and we obtain the MPS solution
from external DMRG packages such as Renormalizer.39 The the-
ory explaining the structure of the MPS trial and associated func-
tions is detailed in Ref. 25. A representative calculation is shown in
Fig. 4.

D. Dispatchers of walkers, propagators,
and estimators

As the program grows, additional complexity arises from the
need to dispatch different features for arbitrary combinations of
smaller building blocks. While there are numerous ways to achieve
this, ipie previously relied on conditional if statements at the com-
putational subroutines, which, despite its simplicity, will result in
many intractable conditions as the number of features increases.
The latest release of ipie thus utilizes the multiple dispatch library
Plum30 to dispatch features for different combinations of objects
in a compact and flexible manner. This can be especially useful in
AFQMC, where the behavior of many functions varies based on
the type of trial, walkers, and Hamiltonians. In Fig. 5, we illustrate
the dispatcher for walkers depending on the type of trial. As for
ipie’s native trial wavefunctions, including both single and multi-
ple (orthogonal and non-orthogonal) Slater determinants, once the
trial and Hamiltonian objects are in place, the AFQMC driver can
be formed. In instances where the walker object is not explicitly pro-
vided, the AFQMC driver constructs it inside the build function
based on the type of the trial wavefunction via Plum. The appropri-
ate energy estimators and propagators are also built according to the
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FIG. 5. Dispatcher for different walkers depending on the trial. Lines with arrows
indicate class inheritance, while dashed lines signify the use of the Plum
dispatcher for dispatching.

object type of the trial, walkers, and Hamiltonian, completing the
necessary initialization for AFQMC calculations.

E. Estimators
ipie supports well-optimized energy estimators for wavefunc-

tions, including SD,13 MSD,41 and non-orthogonal configuration
interaction (NOCI) trials. It supports real and complex Hamil-
tonians on both CPUs and GPUs. As mentioned in Sec. III D,
dispatchers can automatically determine a specific implementation
of the estimator required for given user inputs. Users can also com-
pose customized estimators for new types of trial wavefunctions.
Considering the example in Code Snippet 8, we may define the
corresponding energy estimator as

where xp serves as an abstract linear algebra backend, facilitating
seamless integration of either NumPy for pure CPU-based compu-
tations or CuPy for GPU-accelerated tasks. In this estimator, we still
evaluate the local energy as we do for any SD trial. This customized
estimator can be passed to the AFQMC driver simply with

For more sophisticated cases such as MPS trials, in addition to
the usual energy estimator, we can furthermore define other estima-
tors such as one to measure the bond dimension of walkers when
converted into an MPS.25

IV. NEW FEATURES
Many new features have been added to ipie since our first

release paper;17 we highlight some of the more important ones in
this section.

A. Distributed Hamiltonian for limited memory
When using GPUs, we routinely encounter cases where the

Cholesky vectors cannot entirely fit into a single GPU card’s mem-
ory. Or one could imagine a large system where a single CPU
node cannot fit the Cholesky vectors in memory anymore. In such
circumstances, the Cholesky vectors are distributed over several
GPU cards or CPU nodes that constitute a group. Each group stores
the full Cholesky tensor as shown in Fig. 6(a). Whenever the ten-
sor is required by the computational subroutines, for example, in
computing the force bias or local energy, the walkers in each mem-
ber of the group are communicated to other members in the same
group, as illustrated in Fig. 6(b). We employ a cyclic data pass-
ing scheme of walkers among MPI processes to apply all existing
Cholesky chunks to given walkers. With this strategy, one can accu-
mulate locally contracted quantities before moving to the next QMC
time step.

We performed timing benchmarks as an application by com-
puting the parallel-displaced benzene dimer, a van der Waals com-
plex taken from the S22 dataset.42 Disk usage for the benzene dimer
calculations varies with the choice of basis set: 11 GB for the aug-cc-
pVTZ basis and 67 GB for the aug-cc-pVQZ basis with a Cholesky
decomposition threshold of 10−3. The threshold is set based on the
Hartree–Fock energy error around typical density fitting errors43

(<50 μEh per atom here). We used our shared memory frame-
work for CPU calculations and distributed Cholesky vectors and
half-rotated integrals13 across multiple cards were used for GPU
computations.

We analyze computational wall time as a function of the config-
uration (nmembers × ngroups) in Fig. 7(a), where we also compare
the GPU implementation against the CPU setup. We denote the
number of cards over which the Cholesky vectors are distributed as
nmembers, and every nmembers card forms a group, as described in
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Fig. 6(a). We denote the number of groups as ngroups. For ben-
zene dimer with aug-cc-pVTZ, a single A100 GPU card achieves
performance around tenfold faster than 36 CPU cores. Compar-
isons between configurations of (1 × 2) vs (2 × 1) and (2 × 2) vs
(4 × 1), with an equivalent total number of GPU cards, demon-
strated that configurations with a greater number of nmembers were
slightly slower due to the increased communication cost that scales
linearly with nmembers. We show how the communication within
a group occurs in Fig. 6(b). As shown in Fig. 7(a), distributing
the Hamiltonian across additional GPUs slightly slows down the
performance, predominantly during the VHS step, which involves
the construction of two-body propagators (where HS stands for
Hubbard–Stratonovich) during propagation. A (2 × 2) setup shows
2× faster speed compared to a (2 × 1) configuration, reaffirming
that the distributed memory approach retains good parallel effi-
ciency. While communication overhead is an inherent challenge in
the distributed memory setup, this example shows the utility of our
distributed-memory implementation.

Using our GPU implementation, we calculated the interaction
energy of the benzene dimer with counterpoise correction.48 We
compared AFQMC results with those from other methodologies,
as shown in Figs. 7(b) and 7(c). While coupled cluster with singles
and doubles (CCSD) underestimates the binding energy, second-
order Møller–Plesset perturbation theory overestimates. Crucially,
we observed that RHF-AFQMC is on par with CCSD with pertur-
bative triples [CCSD(T)]. We used 1224 walkers for this calculation,
which were found to have negligible population control biases. In
general, one should perform a convergence test to determine the
number of walkers needed, as is standard in QMC calculations.3 We
obtained more than 30 000 total blocks for both dimer and monomer
calculations to compute the interaction energy with the error bars
shown in Figs. 7(b) and 7(c). The raw data for all blocks can be
obtained from the data repository in Data Availability. Such a large

FIG. 6. (a) Distribution of walkers and the chunked Hamiltonian over multiple
groups. (b) MPI communication between MPI processes within a group with the
distributed Hamiltonian and walker batches.

FIG. 7. (a) Timing benchmarks for AFQMC calculations on the benzene dimer
with the aug-cc-pVTZ basis employing 36 CPUs with shared memory and multiple
A100 GPUs with the distributed Hamiltonian. The data were obtained by averaging
100 blocks, each containing 25 steps with a time step of 0.005E−1

h . The interaction
energy of the dimer computed from AFQMC is compared against other methods
using the aug-cc-pVTZ basis in (b) and in the complete basis set limit obtained
from a two-point basis extrapolation44 from aug-cc-pVTZ and aug-cc-pVQZ calcu-
lations in (c). The MP2, CCSD, and CCSD(T) data using the aug-cc-pVTZ basis
in (b) were obtained from Refs. 45 and 46. The CCSD(T) and FN-DMC data in
(c) were extracted from Ref. 47. All AFQMC results were obtained with 1224 total
walkers. The CPU calculations employed an Intel® Xeon® Platinum 8268 CPU @
2.90 GHz. The GPU calculations employed an NVIDIA A100 GPU, accompanied
by an Intel Xeon Platinum 8358 CPU @ 2.60 GHz.

number of blocks is generally unusual for AFQMC calculations; in
the rest of the calculations shown in this paper, a few thousand
blocks are sufficient to achieve the desired accuracy.

B. Support of complex Cholesky vectors
Most calculations in quantum chemistry deal with real-valued

integrals. However, in some cases, especially in the presence of
external magnetic fields, when considering spin–orbit coupling or
employing Bloch orbitals in solid-state calculations, the wavefunc-
tions (and orbitals) can become complex-valued.49 This adds a layer
of mathematical and computational complexity. To handle these
cases, ipie supports complex Cholesky vectors; the number of aux-
iliary fields is hence twice as many as the number of Cholesky
vectors. The implementation details are available in Ref. 50.

C. GPU accelerated MSD-AFQMC
and timing benchmarks

ph-AFQMC with MSD trials is a powerful tool for systems
with multi-reference characteristics, especially when the phaseless
bias can be converged away. Building on top of our successful CPU
implementation17 based on Wick’s theorem,41 as detailed in Ref. 51,
ipie has now enabled GPU-accelerated MSD-AFQMC implemen-
tations. Here, we summarize some of the important features of our
implementation and discuss applications of this feature. Interested
readers are referred to Ref. 51 for more details.
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FIG. 8. (a) Comparisons of the time cost per block for AFQMC calculations on
[Cu2O2]2+ using the BS1 basis17 with 10 walkers on a single CPU core and a
single A100 GPU. The CPU calculations employed an Intel Xeon Platinum 8336C
CPU @ 2.30 GHz. (b) Time per block with 640 walkers on a single A100 against
32 CPU cores. Figure adapted from Ref. 51.

Similar to our single determinant GPU implementation, ipie
employs cupy.einsum via the cuTENSOR library to enhance
matrix multiplication performance. Additionally, Wick’s algorithm
is adapted for GPU execution using custom CUDA kernels, effec-
tively speeding up the computational hotspots in MSD-AFQMC,
such as Green’s function, overlap, and local energy computations.

The GPU implementation of MSD-AFQMC is benchmarked
on the example [Cu2O2]2+ from ipie’s first release paper.17 In addi-
tion to employing a total of 10 walkers to directly compare with our
previous results in Ref. 17, calculations using a total of 640 walk-
ers were also performed to obtain a more realistic comparison. With
10 walkers, the GPU implementation on a single NVIDIA A100 card
is six times faster than using a single CPU core when the num-
ber of determinants in the trial is less than 103. As the number of
determinants increases, the performance improvement is even more
pronounced: tenfold with 104 determinants and ∼100-fold with
106 determinants, as illustrated in Fig. 8(a). With 640 walkers, the
GPU code on a single A100 card is compared against 32 CPU cores.
As shown in Fig. 8(b), a fourfold speedup is observed with less than
102 determinants that increase to around sixfold with more deter-
minants. The determinants were divided into chunks and computed
sequentially to handle a larger number of determinants within the
memory limits. This approach introduces an overhead that mostly
affects the energy estimator, as reported in Ref. 51.

The timing and absolute energy benchmarks are further bench-
marked on the (20o, 30e) active space of the [Fe2S2(SCH3)4]2−

cluster,51 as shown in Fig. 9. In contrast to the 108-orbital calcu-
lation of [Cu2O2]2+, a merely two-fold speedup is observed using
a single A100 card compared to 32 CPUs. This speedup increases
almost tenfold when the number of determinants exceeds 104. As
shown in Fig. 9(b), another observation is that using natural orbitals
for AFQMC calculation leads to chemical accuracy with around
3 × 105 determinants in the trial. In contrast, reaching chemical
accuracy is more challenging when using localized orbitals employed
for DMRG calculations.35 These observations highlight the critical

FIG. 9. Time cost and absolute energy benchmarks on the [Fe2S2(SCH3)4]2− clus-
ter. (a) The time cost per block with 640 walkers on 32 CPU cores and a single
A100 GPU. The CPU calculation employed an Intel Xeon Platinum 8336C CPU @
2.30 GHz. (b) Absolute energies are derived using localized atomic orbitals and
natural orbitals. Figure adapted from Ref. 51.

need to select an appropriate set of orbitals for AFQMC calculations
involving strongly correlated systems. Additionally, it is notewor-
thy that the energies obtained using localized orbitals with a limited
number of determinants are initially lower than the FCI energy,
and they tend to converge upward toward the FCI reference as the
number of determinants increases.

D. Free projection AFQMC
Free projection (fp-) AFQMC is a numerically exact method for

calculating the eigenvalues of a Hamiltonian. While the more com-
monly used ph-AFQMC variant employs the phaseless constraint to
control the sign problem, fp-AFQMC attempts to sample the ground
state energy brute-force with exponential-scaling sample complex-
ity. Despite this scaling, it is possible to perform relatively large
active space calculations in practice using accurate trial states.

In fp-AFQMC, the ground-state energy is estimated by

E(τ) = ⟨ψl∣Ĥe−τĤ ∣ψr⟩
⟨ψl∣e−τĤ ∣ψr⟩

= ∫dx p(x)⟨ψl∣ĤB̂(x,Δτ)∣ψr⟩
∫dx p(x)⟨ψl∣B̂(x,Δτ)∣ψr⟩

, (19)
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where ∣ψl⟩ and ∣ψr⟩ are left and right trial states, respectively,
B̂(x,Δτ) is defined in Eq. (9), and τ is the imaginary time. Analo-
gously to the ph-AFQMC propagator sampling, the auxiliary fields
x are sampled from the Gaussian distribution p(x). Unlike ph-
AFQMC, we do not use the force bias to perform importance
sampling. Instead, only mean-field subtraction is used. We also do
not employ population control.

A judicious choice of ∣ψl⟩ and ∣ψr⟩ offers two advantages. First,
more accurate trial states (e.g., selected CI) reduce the imaginary
time required to project the ground state energy to a given accuracy,
thereby reducing the noise in the energy estimate.27,41 Integrating
the GPU-accelerated MSD code51 will also significantly accelerate
the fp-AFQMC calculations with MSD trials. Second, since ener-
gies are measured using the state ∣ψl⟩, the closer this state is to
the ground state, the smaller the variance in the energy estimate
due to the zero variance principle.52 Furthermore, one can use a
CCSD wavefunction as the initial state ∣ψr⟩, which reduces the pro-
jection time. The CCSD wavefunction is employed by performing
a Hubbard–Stratonovich transformation on the exponential of the
cluster operator.27 Using trial states belonging to specific symme-
try sectors also allows one to target the lowest energy states in the
corresponding sectors.

As an illustrative example, we consider the D4h symmet-
ric transition state of cyclobutadiene. This state has a biradical
character, which makes it a challenging problem for single ref-
erence electronic structure methods, including spin-restricted and
spin-unrestricted CCSD(T) [RCCSD(T) and UCCSD(T)]. We per-
formed fp-AFQMC calculations on this system using an MSD trial,
obtained via heat-bath configuration interaction (HCI), as ∣ψl⟩ and
the spin-restricted CCSD (RCCSD) state as ∣ψr⟩. The HCI state was
obtained from an HCI calculation with a crude ϵ1 = 10−4 in the full
space except for four frozen HF orbitals. These orbitals were kept
frozen in all correlated calculations. The geometry was taken from
Ref. 27, which also reported fp-AFQMC energies for this system. As
additional validation of our results, we converged the ph-AFQMC
energy with respect to the number of determinants in the trial HCI
state; we expect this energy to be nearly exact. Results are shown
in Fig. 10.

The fp-AFQMC energy converges to the converged ph-
AFQMC energy within statistical error bars. Our results suggest that
hybrid (H)-AFQMC energies reported in Ref. 53 are likely biased
as they are too much lower than our converged ph-AFQMC and
fp-AFQMC energies. RCCSD(T) is about 13.5 mEh higher than
ph-AFQMC, while UCCSD(T) is closer but still about 4.5 mEh
higher. The differences in the barrier height largely come from tran-
sition state energies because all these methods work well for the
equilibrium D2h geometry.

E. AFQMC beyond the ground-state electronic
structure energy

The preceding discussions concentrate on the ground-state
ab initio electronic structure energy calculations. Apart from
this, ipie now also accommodates other types of calculations
within the framework of AFQMC, such as property calculations,36

finite temperature calculations,14,54 and ground-state calculations of
electron–phonon coupled model systems.15 The code structures for
these different features mirror those of the zero temperature ab initio

FIG. 10. Convergence of the fp-AFQMC energy for the cyclobutadiene transition
state in the cc-pVDZ basis set with projection time. The inset shows the conver-
gence of ph-AFQMC energy with respect to the number of determinants in the
trial.

electronic structure implementation. We also note that ipie’s legacy
code also supports the ground state and finite-temperature calcula-
tions of other model systems such as the Hubbard model, which we
do not discuss in this paper.

1. Electronic structure at finite temperatures
An extension of the phaseless AFQMC method at zero temper-

ature, finite-temperature AFQMC (FT-AFQMC) was developed to
study systems at finite temperatures.14 It is customary (though not
necessary55) to work in the grand canonical ensemble described by
the temperature T, volume V , and chemical potential μ. The central
quantities of interest are thermal expectation values computed from
the partition function

Ξ = Tr [e−β(Ĥ−μN̂ )], (20)

where N̂ is the total number operator and μ is the chemical potential.
The Boltzmann factor in Eq. (20) can be interpreted as a propagator
in imaginary time τ = β.

Analogously to the zero temperature case, τ is first discretized
into l intervals of length Δτ = τ/l,

Ξ = Tr [e−β(Ĥ−μN̂ )] = Tr [ lim
l→∞

k=l

∏
k=1

e−Δτ(Ĥ−μN̂ )], (21)

the short-time propagator is then Trotter decomposed as

e−Δτ(Ĥ−μN̂ ) ≃ e−
Δτ
2 ( v̂ 0−μN̂ )e

Δτ
2 ∑γ v̂ 2

γ
e−

Δτ
2 ( v̂ 0−μN̂ ), (22)

and the application of the Hubbard–Stratonovich transformation
gives

e−Δτ(Ĥ−μN̂ ) ≃ ∫ dx p(x)B̂(x,Δτ,μ), (23)
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where the one-body propagator B̂ is now also function of μ,

B̂(x,Δτ,μ) = e−
Δτ
2 ( v̂ 0−μN̂ )e−

√
Δτx⋅ v̂ e−

Δτ
2 ( v̂ 0−μN̂ ). (24)

The grand canonical partition function is thus evaluated as

Ξ = Tr [e−β(Ĥ−μN̂ )] = ∫ dx1 ⋅ ⋅ ⋅dxl p(x1) ⋅ ⋅ ⋅ p(xl)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p(x1 ,...,xl)

× Tr [
l

∏
k=1

B̂(xk,Δτ,μ)], (25)

with p(x1, . . . , xl) being the probability of sampling a specific path
designated by auxiliary fields x1, . . . , xl. Furthermore, the trace in
Eq. (25) can be written in terms of a determinant,56–58 which finally
yields

Ξ = ∫ dx1 ⋅ ⋅ ⋅dxl p(x1, . . . , xl) det [I +
l

∏
k=1

B(xk,Δτ,μ)], (26)

where I is the identity matrix and B is a matrix representation of B̂ in
a single-particle basis. It should be noted that the partition function
itself is not explicitly calculated—expectation values derived from it
are. For some generic observable Ô, its expectation value is

⟨Ô⟩ = 1
Ξ

Tr [e−β(Ĥ−μN̂ )Ô], (27)

= ∫ dX
p(X) Tr [A(X,Δτ,μ)]
∫dY p(Y) Tr [A(Y,Δτ,μ)] , (28)

×
Tr [A(X,Δτ,μ)Ô]
Tr [A(X,Δτ,μ)] , (29)

where we introduced the shorthand X for the set of auxiliary fields
along an imaginary path {x1, . . . , xl} and,

A(X,Δτ,μ) =
l

∏
k=1

B̂(xk,Δτ,μ). (30)

Rewriting Eq. (27) in the form Eq. (29) allows ⟨Ô⟩ to be estimated
through an importance sampling procedure. The field configura-
tions X are obtained via Monte Carlo sampling from the modified
probability distribution p̃(X) = p(X) Tr [A(X,Δτ,μ)], while the
computed random variables are the local expectation values

OL(X,Δτ,μ) =
Tr [A(X,Δτ,μ)Ô]
Tr [A(X,Δτ,μ)] . (31)

Similar to the zero temperature case, the importance sampling
is implemented by initializing a set of walkers in the space of auxil-
iary fields with weights wi and propagating them in imaginary time.
We, therefore, evaluate Eq. (29) in practice as

⟨Ô⟩ = ∑i wiOL(Xi)
∑i wi

. (32)

An example of the imaginary time trace for observables is provided
in Fig. 11, which reproduces Fig. 3 in Ref. 14.

FIG. 11. Imaginary time trace from FT-AFQMC of the uniform electron gas model
with 2 electrons. The top panel depicts the average electron number at imaginary
time τ, ⟨N̂⟩τ , while the bottom panel shows the error in the total energy compared
to FCI, i.e., EFT-AFQMC(τ) − EFCI. These results reproduce Fig. 3 in Ref. 14.

2. Electrons coupled to phonons
Utilizing the tools provided in ipie, one may write a new pro-

jector Monte Carlo method to calculate the ground state of electrons
coupled to phonons (i.e., lattice vibration),15

Ĥ =∑
pq

hpqa†
paq

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥel

+∑
ν
ωνb†

νbν

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥph

+∑
pqν

gpqνa†
paq(bν + b†

ν)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Ĥel−ph

, (33)

where b(†) represents the bosonic annihilation (and creation)
operator, the first term represents the electronic band term, the
second term represents the phonon band term, and the third term
represents the coupling between electrons and phonons.

The corresponding ground-state projector is obtained from
trotterizing the imaginary time propagator corresponding to
Eq. (33),

e−ΔτĤ = e−
Δτ
2 Ĥ el e−

Δτ
2 Ĥ ph e−ΔτĤ el−ph e−

Δτ
2 Ĥ ph e−

Δτ
2 Ĥ el + O(Δτ3). (34)

In our method, we choose walkers of the form ∣ψw⟩⊗ ∣Xw⟩
≡ ∣ψw(τ), Xw(τ)⟩, with ∣ψw⟩ being a single determinant and ∣Xw⟩
being the coordinates for phonon displacements. Using the Monte
Carlo sampling, we can work in the position space of phonons with-
out invoking any boson number truncation. This strategy differs
from other standard Monte Carlo approaches in this area.59,60

With importance sampling via a trial wavefunction, ∣ΨT⟩, our
global wavefunction is a weighted linear combination of walker
vibronic wavefunctions,

∣Ψ(τ)⟩ =
Nwalkers

∑
w=1

ww(τ)
∣ψw(τ), Xw(τ)⟩
⟨ΨT ∣ψw(τ), Xw(τ)⟩

. (35)

The propagation of the bosonic degrees of freedom under Ĥph is per-
formed via a diffusion Monte Carlo algorithm.61 With the walker
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FIG. 12. Reproduction of Fig. 3 in Ref. 15. Results are shown for a 20-site Holstein
model at half-filling. We used a coherent state trial to obtain the AFQMC/S results.
CSMP2 data points correspond to perturbation theory-based computations based
on molecular orbitals obtained from SCF calculations for a Holstein Fock opera-
tor.15 Panels (a)–(d) show scans along phonon frequencies ω for λ equals (a) 0.1,
(b) 0.3, (c) 0.8, and (d) 2.

representation, the propagation with Ĥel and Ĥel−ph is straight-
forward by exploiting the Thouless theorem. More details can be
found in Ref. 15. As an example calculation, we picked the one-
dimensional Holstein model under a periodic boundary condition,62

which involves hpq = −t(δp+1,q + δp,q+1), ων = ω, and gpqν = gδpqδpν.
For 20-site at half-filling, we considered four different unitless
electron–phonon coupling strengths λ = g2

2tω , which are displayed
in Fig. 12. It is evident from Fig. 12 that the coherent state trial is
not an optimal choice for the intermediate coupling regime, where
2tλ < ω. By employing more sophisticated trial wavefunctions, we
can obtain more reliable results also for the intermediate coupling
regime.15 The computational bottleneck of our QMC algorithm is
the evolution under the el–ph projection operator, generally scaling
as O(N3).

3. Automatic differentiatiable AFQMC
The computation of observables that do not commute with

Ĥ poses additional challenges in projector Monte Carlo, such as
AFQMC. A recently proposed approach by Mahajan et al.36 aims
to compute the response estimator [Eq. (36)] which, though still not

exact due to the discontinuity in the distribution, is accurate enough
to give reliable results,

⟨Ô⟩response =
dEAFQMC(λ)

dλ
∣
λ=0

. (36)

Here, λ is a parameter for the perturbed Hamiltonian Ĥ(λ) = Ĥ
+ λÔ, and AFQMC energy EAFQMC(λ) is given by the Monte Carlo
estimator

EAFQMC(λ) =
∑i wi(λ) ⟨ΨT(λ)∣Ĥ(λ)∣ψi(λ)⟩

⟨ΨT(λ)∣ψi(λ)⟩
∑i wi(λ)

, (37)

where wi(λ) is the weight for the ith walker, and ∣ψi(λ)⟩ is the ith
walker state at coupling strength λ.

We implemented this scheme for computing observables using
the Automatic Differentiation (AD) functionality of PyTorch63 as
an add-on within ipie. It is noteworthy that storing the computa-
tion graph for an entire AFQMC run requires substantial memory.
In practice, we use the concept of AD blocks.36 We only track
the computation graph within an AD block; there is no connec-
tion between different AD blocks. Using this approach, we manage
memory costs by adjusting block size. We also use the gradient
checkpointing technique64 to reduce the memory cost further.

For relatively large systems, the AFQMC calculation is paral-
lelized using MPI to distribute walkers over MPI tasks. The differen-
tiation of the AFQMC global energy estimator is not embarrassingly
parallel since walkers will mix between different MPI ranks via pop-
ulation control. The AD implementation in ipie does not support
communication between MPI tasks. Therefore, we perform “local”
population control within an MPI rank. Because the local population
control does not mix the walkers between different ranks, it is valid
to regard those estimates as independent samples. We thus perform
block analysis on those samples to obtain the final result. Effectively,
this amounts to running very low walker population simulations
(50 walkers per task here), which is only practically possible for small
system sizes where population control is not a concern. For interme-
diate system sizes, one could imagine using large memory nodes and
OpenMP threading or using single GPUs with a sufficient amount of
memory.

Here, we present the results of AD-AFQMC calculations on
various molecular systems. The molecular integrals are obtained by
PySCF,31 and the modified Cholesky decomposition is performed
with ipie, with a threshold of 10−5. We used a time step of
0.01 a.u., and periodic reorthogonalization of walkers is performed

TABLE I. Comparison of AD-AFQMC dipole moment (in a.u.) of various molecules at equilibrium geometry with the imple-
mentation in Ref. 36 and other quantum chemistry methods. The data using RCCSD and RCCSD(T) are also extracted from
Ref. 36.

Molecule This work AD-AFQMC in Ref. 36 RCCSD RCCSD(T) Experiment

H2O 0.723(2) 0.720(2) 0.7335 0.7247 0.73066

NH3 0.592(2) 0.592(2) 0.6015 0.5938 0.581(1)67

CO 0.022(4) 0.019(4) 0.0199 0.0429 0.048(1)68

HCl 0.428(1) 0.429(1) 0.4318 0.4273 0.43069

HBr 0.332(2) 0.329(2) 0.3289 0.3245 0.32569
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every five steps for all calculations. We used the restricted Hartree
Fock (RHF) trial for all systems. For accurate statistical analysis, we
perform block analysis for ≥200 gradient samples for each calcula-
tion. All AFQMC calculations are performed using the frozen-core
approximation.

We benchmarked our implementation on various small
molecules using the aug-cc-pVTZ65 basis set and compared the
results to Ref. 36 in Table I. All dipole moments align strongly with
the AD-AFQMC results reported in Ref. 36. Furthermore, except for
CO, AD-AFQMC matches experimental values better than RCCSD
and exhibits accuracy comparable to RCCSD(T). This supports the
widely held view that AFQMC’s accuracy falls between CCSD and
CCSD(T).

F. Enhanced integration testing and no-MPI mode
As ipie expands its functionalities, robust testing workflows

become crucial. ipie supports a new integration testing framework
that enhances the package’s robustness and adaptability and signifi-
cantly contributes to its reliability and ease of use for the end-users.
The GitHub continuous integration (CI) workflow automatically
tests new pull requests, ensuring that every change to the codebase
does not break existing functionalities. The workflow encompasses
a comprehensive test suite and executes various linting and code
formatting checks before running serial and parallel unit tests and
integration tests.

Recognizing the diverse computational environments in which
ipie might be deployed, we introduced the no-MPI mode. This
mode is designed for situations where MPI is unavailable or its use is
not desired, offering greater flexibility for users and developers. The
CI workflow includes a job that tests ipie’s functionality without
the MPI dependency. This mode is particularly beneficial for users
who wish to perform quantum Monte Carlo simulations on per-
sonal computing setups or in environments where setting up MPI
is challenging.

V. INTERFACES TO EXTERNAL PACKAGES
A. Dice interface and SHCI-AFQMC

ipie includes utilities for converting the output from Dice,21

a package that employs semistochastic heat bath configuration
interaction (SHCI)21,32 as the complete active space (CAS) solver,

which produces the wfn.h5 file containing the coefficients and
the indices of occupied orthogonal orbitals for spin-up and spin-
down sectors that follows the block-formatted (αα ⋅ ⋅ ⋅ββ ⋅ ⋅ ⋅) orbital
convention in ipie. The SHCI calculation generates a good
MSD trial for challenging systems.17,41 However, it is not a black-
box approach and often requires careful handling, such as selecting
CAS and using natural orbitals, as discussed in Sec. IV C.

These detailed discussions are beyond the scope of this arti-
cle, and we briefly mention the procedures in the semi-black box
example provided within ipie:17

1. Initiate a preliminary rough SHCI calculation in an extensive
active space for the system under study.

2. Derive the SHCI one-electron reduced density matrix
(1-RDM), extracting the resultant natural orbital occupation
number (NOON) and natural orbitals.

3. Define an active space criterion based on a predetermined
NOON threshold.

4. Adjust the orbitals through rotation, aligning them with the
unitary transformation specified by the natural orbitals.

5. Execute a refined SHCI self-consistent field calculation within
the new active space determined in the previous step.

6. Use this MSD trial in AFQMC.

This strategy ensures the trial wavefunction encapsulates static
correlations within the active space via the MSD trial. At the
same time, AFQMC incorporates the residual dynamic correla-
tions. This procedure is folded into the factory utility method
ipie.utils.from_dice.build_driver_from_shciscf.

B. TREXIO support and CIPSI-AFQMC
The TREXIO library and file format have been developed to

offer a robust and efficient solution for storing and exchanging
wavefunction parameters and matrix elements.33 This library sup-
ports bindings in several programming languages, including Python,
and can be conveniently installed via the pip package manager.

The compatibility of ipie with the TREXIO format facili-
tates its integration with various software packages. Specifically,
it allows ipie to utilize trial wavefunctions produced by Quan-
tum Package,70 along with the associated one-electron integrals and
Cholesky-decomposed electron repulsion integrals. This interface
allowed us to check if AFQMC could complement configuration
interaction using perturbative selection done iteratively (CIPSI) cal-
culations to improve full configuration interaction (FCI) energy
estimates of large systems.

Typically, to estimate the FCI energy from a CIPSI calculation,
one extrapolates to zero the variational energy, Etrial, as a function
of the renormalized second-order perturbative correction, ErPT2.70

However, the AFQMC energy, EAFQMC, is anticipated to provide a
closer approximation to the FCI energy than the sum of Etrial and
ErPT2. This expectation is particularly relevant for systems with large
ErPT2 corrections.

We conducted AFQMC calculations on the nitroxyl and ben-
zene molecules using CIPSI trial wavefunctions of increasing sizes.
The results of these calculations are detailed in Table II. Supporting
our expectation, Fig. 13 demonstrates that the AFQMC corrections
align the data points along a straight line,71 validating the hypoth-
esis that AFQMC energies are more reliable for the extrapolation
toward the FCI value, especially in cases with large rPT2 corrections.
Employing calculations with comparatively small wavefunctions
for benzene, as shown in Table II, a three-point linear extrapola-
tion based on the rPT2 correction yields a correlation energy of
−858.6 mEh. In contrast, extrapolation using AFQMC energies
results in a correlation energy of −862.2 mEh. This latter value is

J. Chem. Phys. 161, 162502 (2024); doi: 10.1063/5.0225596 161, 162502-13

Published under an exclusive license by AIP Publishing

 25 O
ctober 2024 10:32:22

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

TABLE II. Renormalized PT2 correction ErPT2, variational energy Evar, and AFQMC energy EAFQMC for the nitroxyl and
benzene molecules as functions of the number of determinants in the variational space.

System, basis Ndet Etrial Etrial + ErPT2 EAFQMC

HNO, 6-31G 1 −129.712 554 −129.987 361 −129.971(1)
2 −129.752 113 −129.987 158 −129.974(1)

41 −129.781 149 −129.981 219 −129.9727(6)
748 −129.894 775 −129.973 405 −129.9724(2)

2838 −129.942 391 −129.975 057 −129.9726(1)
14 201 −129.955 368 −129.973 620 −129.9727(1)

C6H6, cc-pVDZ 1 −230.720 490 4 −231.393 30 −231.5887(7)
23 −230.761 581 6 −231.421 67 −231.5866(7)

828 −230.868 707 2 −231.446 02 −231.5864(6)
15 690 −231.130 008 7 −231.493 30 −231.5848(4)

109 869 −231.315 239 9 −231.530 22 −231.5842(4)

FIG. 13. Energy of the trial wavefunction (Etrial) as a function of ΔE, where
ΔE = ErPT2 for CIPSI calculations and ΔE = EAFQMC − Etrial for AFQMC. exFCI
is the extrapolated FCI energy obtained from CIPSI calculations.

significantly closer to the correlation energy of −863.4 mEh achieved
through CIPSI with 167 × 106 determinants.72

These preliminary calculations enabled by the TREXIO inter-
face illustrate that the integration of AFQMC with CIPSI emerges as
a promising methodology for estimating the FCI energy of systems
larger than those currently feasible.

C. FQE interfaces
The Fermionic quantum emulator (FQE)34 is a lightweight

fermionic circuit simulator, which is particularly useful in quan-
tum computing where it aids in the development and testing of
quantum algorithms tailored for fermionic systems. ipie pro-
vides the conversion between ipie’s MSD wavefunction and the
FQE wavefunction.

VI. CONCLUSIONS AND OUTLOOKS
This paper summarized the improvements and new features

added in ipie since its original release.17 These improvements

enhance modularity and computational efficiency and offer intuitive
user-end APIs. New features and interfaces aim to expand a broader
spectrum of AFQMC calculations in quantum chemistry.

We summarize the following key features we highlighted in this
paper:

1. Distributed Hamiltonians to remove the memory bottleneck.
We demonstrated ipie’s capacity for studying large sys-
tems deploying GPUs with significantly higher efficiency than
CPU-based implementations, exemplified in our case study
assessing the interaction energies in a benzene dimer.

2. GPU support for MSD trial wavefunctions. With cus-
tomized CUDA kernels, we enabled an efficient realization
of Wick’s theorem. Timing benchmarks for [Cu2O2]2+ and
[Fe2S2(SCH3)4]2− were shown to achieve more than an order
of magnitude speedup compared to our CPU implementation
for a large MSD trial.51

3. Support for complex-valued Cholesky vectors. ipie can han-
dle complex-valued Cholesky vectors that may arise when the
underlying basis functions are complex-valued.

4. Free-projection AFQMC. A numerically exact AFQMC
approach can be used to study small strongly correlated
systems.

5. Finite-temperature AFQMC. A finite-temperature AFQMC
algorithm based on the grand canonical ensemble was added.

6. Electron–phonon QMC. A QMC algorithm that computes the
ground state of electron–phonon problems was added.

7. Automatic differentiable AFQMC. We offer AFQMC property
calculations via automatic differentiation.

8. External package interfaces. ipie is now interfaced with
PySCF, Dice, TREXIO, and FQE.

ipie has been mainly designed for ab initio calculations, but more
supports for model Hamiltonians have been added and are under
active development, including the Hubbard–Holstein,15 Peierls, uni-
form electron gas models,12 etc. The embedding method is also an
interesting feature and currently not supported in ipie, but it has
been studied in the literature,73,74 where AFQMC was employed
as a solver for a model Hamiltonian in the embedding method.
With the improved modularity and usability, we believe it would be
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relatively straightforward to implement. We also note that ipie cur-
rently uses double precision arithmetic for all calculations; although
it also supports mixed precision, where single precision is used for
propagations and double precision is used for local energy estima-
tion, the stability and efficiency need to be further investigated. In
addition, there is indeed potential for further optimization in the
CPU implementation, particularly through enhancements with a
hybrid MPI/OpenMP programming strategy, and we will continue
to explore avenues along those lines.

We hope that ipie will serve as a community code base for
developing ab initio AFQMC methods and their applications. Fur-
thermore, as ipie is written mainly in Python, we anticipate its use
in machine learning and quantum computing11 communities will
also grow.

ACKNOWLEDGMENTS
The work by T.J. and J.L. was supported by the Department

of Energy (DOE) Office of Fusion Energy Sciences “Foundations
for quantum simulation of warm dense matter” project and by
Harvard University’s startup funds. Computations were carried out
partly on the FASRC cluster supported by the FAS Division of
Science Research Computing Group at Harvard University. This
work also used the Delta system at the National Center for Super-
computing Applications through allocation Grant Nos. CHE230032,
CHE230088, and PHY230192 from the Advanced Cyberinfrastruc-
ture Coordination Ecosystem: Services & Support (ACCESS) pro-
gram, which is supported by National Science Foundation Grant
Nos. 2138259, 2138286, 2138307, 2137603, and 2138296. P.F.L. and
A.S. have received financial support from the European Research
Council (ERC) under the European Union’s Horizon 2020 research
and innovation program (Grant Agreement No. 863481). A.S. was
also supported by the European Center of Excellence in Exascale
Computing (TREX), which has received funding from the European
Union’s Horizon 2020—Research and Innovation program—under
Grant Agreement No. 952165. S.F.U. acknowledges David Reichman
for his support. We acknowledge Yifei Huang and Dingshun Lv for
their GPU-MSD code contributions.51

AUTHOR DECLARATIONS
Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Tong Jiang: Data curation (lead); Formal analysis (equal); Inves-
tigation (equal); Software (equal); Visualization (lead); Writing –
original draft (lead); Writing – review & editing (lead). Moritz K. A.
Baumgarten: Data curation (equal); Formal analysis (equal); Inves-
tigation (equal); Software (equal); Visualization (equal); Writing –
original draft (equal); Writing – review & editing (equal). Pierre-
François Loos: Data curation (equal); Formal analysis (equal);
Investigation (equal); Software (equal); Visualization (equal); Writ-
ing – original draft (equal); Writing – review & editing (equal).
Ankit Mahajan: Data curation (equal); Formal analysis (equal);

Investigation (equal); Software (equal); Visualization (equal); Writ-
ing – original draft (equal); Writing – review & editing (equal).
Anthony Scemama: Data curation (equal); Formal analysis (equal);
Investigation (equal); Software (equal); Visualization (equal); Writ-
ing – original draft (equal); Writing – review & editing (equal).
Shu Fay Ung: Data curation (equal); Formal analysis (equal); Inves-
tigation (equal); Software (equal); Visualization (equal); Writing –
original draft (equal); Writing – review & editing (equal). Jinghong
Zhang: Data curation (equal); Formal analysis (equal); Investigation
(equal); Software (equal); Visualization (equal); Writing – original
draft (equal); Writing – review & editing (equal). Fionn D. Mal-
one: Conceptualization (equal); Software (lead); Writing – review
& editing (equal). Joonho Lee: Conceptualization (lead); Data cura-
tion (equal); Formal analysis (lead); Funding acquisition (lead);
Investigation (lead); Software (lead); Writing – original draft (lead);
Writing – review & editing (equal).

DATA AVAILABILITY
The data that support the findings of this study are

openly available in our Zenodo repository at https://doi.org/
10.5281/zenodo.12522916.

REFERENCES
1S. Zhang, J. Carlson, and J. E. Gubernatis, “Constrained path quantum Monte
Carlo method for fermion ground states,” Phys. Rev. Lett. 74, 3652–3655 (1995).
2S. Zhang and H. Krakauer, “Quantum Monte Carlo method using phase-free
random walks with slater determinants,” Phys. Rev. Lett. 90, 136401 (2003).
3J. Lee, H. Q. Pham, and D. R. Reichman, “Twenty years of auxiliary-field quan-
tum Monte Carlo in quantum chemistry: An overview and assessment on main
group chemistry and bond-breaking,” J. Chem. Theory Comput. 18, 7024–7042
(2022).
4M. Motta and S. Zhang, “Ab initio computations of molecular systems by the
auxiliary-field quantum Monte Carlo method,” WIREs Comput. Mol. Sci. 8, e1364
(2018).
5W. J. Huggins, B. A. O’Gorman, N. C. Rubin, D. R. Reichman, R. Babbush, and
J. Lee, “Unbiasing fermionic quantum Monte Carlo with a quantum computer,”
Nature 603, 416–420 (2022).
6K. Wan, W. J. Huggins, J. Lee, and R. Babbush, “Matchgate shadows
for fermionic quantum simulation,” Commun. Math. Phys. 404, 629–700
(2023).
7M. Amsler, P. Deglmann, M. Degroote, M. P. Kaicher, M. Kiser, M. Kühn, C.
Kumar, A. Maier, G. Samsonidze, A. Schroeder et al., “Classical and quantum
trial wave functions in auxiliary-field quantum Monte Carlo applied to oxygen
allotropes and a CuBr2 model system,” J. Chem. Phys. 159, 044119 (2023).
8M. Kiser, A. Schroeder, G.-L. R. Anselmetti, C. Kumar, N. Moll, M. Streif, and
D. Vodola, “Classical and quantum cost of measurement strategies for quantum-
enhanced auxiliary field quantum Monte Carlo,” New J. Phys. 26, 033022 (2024).
9B. Huang, Y.-T. Chen, B. Gupt, M. Suchara, A. Tran, S. McArdle, and G. Galli,
“Evaluating a quantum-classical quantum Monte Carlo algorithm with Matchgate
shadows,” Phys. Rev. Res. (to be published) (2024).
10M. Kiser, M. Beuerle, and F. Simkovic IV, “Contextual subspace auxiliary-
field quantum Monte Carlo: Improved bias with reduced quantum resources,”
arXiv:2408.06160v2 (2024).
11T. Jiang, J. Zhang, M. K. A. Baumgarten, M.-F. Chen, H. Q. Dinh, A.
Ganeshram, N. Maskara, A. Ni, and J. Lee, “Walking through Hilbert space with
quantum computers,” arXiv:2407.11672v1 (2024).
12J. Lee, F. D. Malone, and M. A. Morales, “An auxiliary-field quantum Monte
Carlo perspective on the ground state of the dense uniform electron gas: An
investigation with Hartree–Fock trial wavefunctions,” J. Chem. Phys. 151, 064122
(2019).

J. Chem. Phys. 161, 162502 (2024); doi: 10.1063/5.0225596 161, 162502-15

Published under an exclusive license by AIP Publishing

 25 O
ctober 2024 10:32:22

https://pubs.aip.org/aip/jcp
https://doi.org/10.5281/zenodo.12522916
https://doi.org/10.5281/zenodo.12522916
https://doi.org/10.1103/physrevlett.74.3652
https://doi.org/10.1103/physrevlett.90.136401
https://doi.org/10.1021/acs.jctc.2c00802
https://doi.org/10.1002/wcms.1364
https://doi.org/10.1038/s41586-021-04351-z
https://doi.org/10.1007/s00220-023-04844-0
https://doi.org/10.1063/5.0146934
https://doi.org/10.1088/1367-2630/ad2f67
https://arxiv.org/abs/2408.06160
https://arxiv.org/abs/2407.11672
https://doi.org/10.1063/1.5109572


The Journal
of Chemical Physics SOFTWARE pubs.aip.org/aip/jcp

13J. Lee and D. R. Reichman, “Stochastic resolution-of-the-identity auxiliary-field
quantum Monte Carlo: Scaling reduction without overhead,” J. Chem. Phys. 153,
044131 (2020).
14J. Lee, M. A. Morales, and F. D. Malone, “A phaseless auxiliary-field quantum
Monte Carlo perspective on the uniform electron gas at finite temperatures: Issues,
observations, and benchmark study,” J. Chem. Phys. 154, 064109 (2021).
15J. Lee, S. Zhang, and D. R. Reichman, “Constrained-path auxiliary-field quan-
tum Monte Carlo for coupled electrons and phonons,” Phys. Rev. B 103, 115123
(2021).
16J. Lee, F. D. Malone, M. A. Morales, and D. R. Reichman, “Spectral func-
tions from auxiliary-field quantum Monte Carlo without analytic continuation:
The extended Koopmans’ theorem approach,” J. Chem. Theory Comput. 17,
3372–3387 (2021).
17F. D. Malone, A. Mahajan, J. S. Spencer, and J. Lee, “Ipie: A python-based
auxiliary-field quantum Monte Carlo program with flexibility and efficiency on
CPUs and GPUs,” J. Chem. Theory Comput. 19, 109–121 (2023).
18S. K. Lam, A. Pitrou, and S. Seibert, in Proceedings of the 2nd Workshop on the
LLVM Compiler Infrastructure in HPC. LLVM’15, 2015.
19C. J. Cramer, M. Włoch, P. Piecuch, C. Puzzarini, and L. Gagliardi, “Theoretical
models on the Cu2O2 torture track: Mechanistic implications for oxytyrosinase
and small-molecule analogues,” J. Phys. Chem. A 110, 1991–2004 (2006).
20P. R. Kent, A. Annaberdiyev, A. Benali, M. C. Bennett, E. J. Landinez Borda,
P. Doak, H. Hao, K. D. Jordan, J. T. Krogel, I. Kylänpää et al., “QMCPACK:
Advances in the development, efficiency, and application of auxiliary field and
real-space variational and diffusion quantum Monte Carlo,” J. Chem. Phys. 152,
174105 (2020).
21S. Sharma, A. A. Holmes, G. Jeanmairet, A. Alavi, and C. J. Umrigar,
“Semistochastic heat-bath configuration interaction method: Selected configu-
ration interaction with semistochastic perturbation theory,” J. Chem. Theory
Comput. 13, 1595–1604 (2017).
22L. Hehn, P. Deglmann, and M. Kühn, “Chelate complexes of 3d transition metal
ions—A challenge for electronic-structure methods?,” J. Chem. Theory Comput.
20, 4545 (2024).
23V. P. Vysotskiy, C. Filippi, and U. Ryde, “Scalar relativistic all-electron and
pseudopotential ab initio study of a minimal nitrogenase [Fe(SH)4H]− model
employing coupled-cluster and auxiliary-field quantum Monte Carlo many-body
methods,” J. Phys. Chem. A 128, 1358 (2024).
24M. S. Chen, J. Lee, H.-Z. Ye, T. C. Berkelbach, D. R. Reichman, and T. E.
Markland, “Data-efficient machine learning potentials from transfer learning of
periodic correlated electronic structure methods: Liquid water at AFQMC, CCSD,
and CCSD(T) accuracy,” J. Chem. Theory Comput. 19, 4510–4519 (2023).
25T. Jiang, B. O’Gorman, A. Mahajan, and J. Lee, “Unbiasing fermionic auxiliary-
field quantum Monte Carlo with matrix product state trial wavefunctions,”
arXiv:2405.05440v1 (2024).
26The ipie package (v0.7.1), https://github.com/JoonhoLee-Group/ipie (2024).
27A. Mahajan and S. Sharma, “Taming the sign problem in auxiliary-field quan-
tum Monte Carlo using accurate wave functions,” J. Chem. Theory Comput. 17,
4786–4798 (2021).
28E. Vitali, P. Rosenberg, and S. Zhang, “Calculating ground-state properties of
correlated fermionic systems with BCS trial wave functions in Slater determinant
path-integral approaches,” Phys. Rev. A 100, 023621 (2019).
29C.-C. Chang, B. M. Rubenstein, and M. A. Morales, “Auxiliary-field-based trial
wave functions in quantum Monte Carlo calculations,” Phys. Rev. B 94, 235144
(2016).
30“Plum: Multiple dispatch in Python,” https://github.com/beartype/plum.
31Q. Sun, T. C. Berkelbach, N. S. Blunt, G. H. Booth, S. Guo, Z. Li, J. Liu,
J. D. McClain, E. R. Sayfutyarova, S. Sharma et al., “PySCF: The python-based
simulations of chemistry framework,” WIREs Comput. Mol. Sci. 8, e1340 (2018).
32A. A. Holmes, N. M. Tubman, and C. Umrigar, “Heat-bath configuration
interaction: An efficient selected configuration interaction algorithm inspired by
heat-bath sampling,” J. Chem. Theory Comput. 12, 3674–3680 (2016).
33E. Posenitskiy, V. G. Chilkuri, A. Ammar, M. Hapka, K. Pernal, R. Shinde,
E. J. Landinez Borda, C. Filippi, K. Nakano, O. Kohulák, S. Sorella, P. de Oliveira
Castro, W. Jalby, P. L. Ríos, A. Alavi, and A. Scemama, “TREXIO: A file format
and library for quantum chemistry,” J. Chem. Phys. 158, 174801 (2023).

34N. C. Rubin, K. Gunst, A. White, L. Freitag, K. Throssell, G. K.-L. Chan, R.
Babbush, and T. Shiozaki, “The fermionic quantum emulator,” Quantum 5, 568
(2021).
35Z. Li and G. K.-L. Chan, “Spin-projected matrix product states: Versatile tool
for strongly correlated systems,” J. Chem. Theory Comput. 13, 2681–2695 (2017).
36A. Mahajan, J. S. Kurian, J. Lee, D. R. Reichman, and S. Sharma, “Response
properties in phaseless auxiliary field quantum Monte Carlo,” J. Chem. Phys. 159,
184101 (2023).
37J. Hubbard, “Calculation of partition functions,” Phys. Rev. Lett. 3, 77 (1959).
38R. Stratonovich, “On a method of calculating quantum distribution functions,”
Sov. Phys. Dokl. 2, 416–419 (1958), https://zbmath.org/?q=an:0080.19804.
39J. Ren, W. Li, T. Jiang, Y. Wang, and Z. Shuai, “Time-dependent density matrix
renormalization group method for quantum dynamics in complex systems,”
WIREs Comput. Mol. Sci. 12, e1614 (2022).
40H. Flyvbjerg and H. G. Petersen, “Error estimates on averages of correlated
data,” J. Chem. Phys. 91, 461–466 (1989).
41A. Mahajan, J. Lee, and S. Sharma, “Selected configuration interaction wave
functions in phaseless auxiliary field quantum Monte Carlo,” J. Chem. Phys. 156,
174111 (2022).
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