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ABSTRACT
Although selected configuration interaction (SCI) algorithms can tackle much larger Hilbert spaces than the conventional full CI method,
the scaling of their computational cost with respect to the system size remains inherently exponential. In addition, inaccuracies in describing
the correlation hole at small interelectronic distances lead to the slow convergence of the electronic energy relative to the size of the one-
electron basis set. To alleviate these effects, we show that the non-Hermitian, transcorrelated (TC) version of SCI significantly compactifies
the determinant space, allowing us to reach a given accuracy with a much smaller number of determinants. Furthermore, we note a significant
acceleration in the convergence of the TC-SCI energy as the basis set size increases. The extent of this compression and the energy convergence
rate are closely linked to the accuracy of the correlation factor used for the similarity transformation of the Coulombic Hamiltonian. Our
systematic investigation of small molecular systems in increasingly large basis sets illustrates the magnitude of these effects.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0217650

I. INTRODUCTION

Obtaining an accurate description of the electronic structure of
molecular systems remains one of the main challenges of theoretical
chemistry. The primary challenge stems from electronic correlation
effects driven by Coulomb’s repulsion among electrons. To address
this issue, wave function theory appears as a promising tool as it
allows for a systematically improvable solution of the Schrödinger
equation following two complementary directions: (i) an improve-
ment of the wave function method to get as close as possible to the
full configuration interaction (FCI) solution and (ii) an increase in
the size of the one-electron basis set toward the complete basis set
(CBS) limit. These two aspects are usually considered separately and
addressed by different approaches.

Regarding the basis set expansion, it was acknowledged long
ago1 that the slow convergence of properties with respect to the size
of the one-particle basis set, computed within wave function meth-
ods, arises from correlation effects when two electrons are close to
each other, that is, near the derivative discontinuity (the so-called
electron–electron cusp) that originates from the divergence of the
Coulomb repulsion as the interelectronic distance r12 → 0.2–6

To mitigate this issue, it was proposed to complement the
wave function with a two-electron function (or geminal) explicitly
depending on r12, leading to the so-called “R12” and the more mod-
ern “F12” methods.7–13 In the latter method, a correlation factor is
included to introduce short-range correlation effects, hence improv-
ing the shape of the correlation hole at small r12. This leads to faster
basis set convergence of ground-state properties.14–17 Nevertheless,
F12 methods do not use the full correlation factor per se but only
its orthogonal complement with respect to the space spanned by
the one-electron basis, leading to an operator that, by design, only
describes correlation effects that are absent of the one-electron basis
set. Therefore, F12 methods do not alter the expansion and potential
complexity of the wave function within the basis set.

Considering the approximations of the FCI wave function
and energy, there exist a wide variety of systematically improvable
approaches starting from the mean-field Hartree–Fock (HF) solu-
tion: perturbation theory (PT), CI expansions, coupled-cluster (CC)
theory,18–23 or matrix product states (MPS).24,25 Within this zoo of
wave function formalisms, one can classify them into two categories:
methods for which the wave function Ansatz is fixed by design (e.g.,
CC with single and double excitations), and adaptive methods where
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the wave function automatically adapts until reaching a given accu-
racy. The former has a clear advantage as their computational cost
scales polynomially with the system size, with the potential drawback
that the Ansatz might not always be adapted to the specific problem
under study.

Among the adaptive methods, one can mention the vast fam-
ily of selected configuration interaction (SCI)26–40 approaches whose
early stages originated in the late 1960s, the MPS approaches,41,42

which started in the late 1990s,24 or the more recent FCI quan-
tum Monte Carlo (FCIQMC),43,44 many-body expanded FCI (MBE-
FCI),45,46 full CC reduction (FCCR),47,48 and moment expansion CC
[CC(P,Q)].49–51 Although formulated in distinct ways, these adap-
tive methods are characterized by the idea of selecting the most
important components of the wave function among a very large
Hilbert space.

One of the particularities of FCIQMC and SCI is that they
both rely on a linear parameterization of the electronic wave func-
tion. The advantage of such linear expansions is certainly the ability
to rapidly and easily compute the Hamiltonian matrix elements
between the numerous Slater determinants involved in the SCI or
FCIQMC calculations. At the SCI level, this is further exploited for
the computation of a second-order PT (PT2) correction, which can
be then used to extrapolate the variational energy to the FCI limit,
as originally proposed by Holmes et al.52 and lately rationalized
by Burton and Loos.53 The resulting SCI + PT2 approach is now
regarded as powerful machinery to generate FCI-quality energies
for both ground and excited states.37,38,52,54–61 However, due to the
intrinsic exponential nature of the exact wave function, both SCI and
FCIQMC rapidly run out of steam as the size of systems and/or basis
sets increases. Therefore, being able to compactify the CI expan-
sion within a given basis set can substantially expand the range
of applicability, in terms of system size, of these state-of-the-art
approaches.

A potential solution allowing for simultaneous compactifica-
tion of the CI expansion and reduction of the basis set error is
to supplement the wave function with a correlation factor without
projection schemes.15,62–66 The two main families of projection-free
methods dealing with correlation factors are the transcorrelation
(TC) method of Boys and Handy,67 which is related to earlier
work by Hirschfelder,68 and the variational Monte Carlo (VMC)
approach.69 Importantly, while VMC treats the correlation factor
in a Hermitian framework, TC involves a similarity transforma-
tion of the Hamiltonian by the same correlation factor, leading to
a non-Hermitian effective Hamiltonian.

The main consequences are fourfold: (i) the VMC frame-
work being Hermitian, it necessarily provides variational ener-
gies unlike the TC formalism; (ii) the Baker–Campbell–Hausdorff
(BCH) expansion of the TC Hamiltonian naturally truncates at sec-
ond order with at most three-body terms, while the BCH expansion
of the effective VMC Hamiltonian does not truncate and, there-
fore, generates up to N-body terms; (iii) because TC involves at
most three-body terms, the corresponding matrix elements between
two Slater determinants can be computed in a deterministic way,
in contrast to VMC where one must rely on stochastic integra-
tion techniques to compute the N-body integrals and avoid the
curse of dimensionality; and (iv) the similarity transformation
of the TC Hamiltonian maintains the original overlap metric of

the Slater determinant basis while VMC necessarily introduces
nonorthogonality.

Despite these differences, for a given correlation factor and in
the limit of a complete basis, the right eigenvector of the TC Hamil-
tonian and the Slater part of the VMC trial wave function coincide,
resulting in identical TC and VMC energies.70–73 Because the TC
Hamiltonian can be written in second-quantized form, it can then
be employed in any post-HF methods, which nevertheless have to
be adapted to the non-Hermitian TC formalism. Transcorrelated
versions of most wave function Ansätze have been reported, start-
ing from the single-determinant formalism67,74–99 to PT,100–102 CI
and SCI,65,103–108 CC,73,109–113 FCIQMC,64,114–118 and MPS.119–121 In
a similar fashion, Ten-No recently introduced the so-called pro-
jected TC122 (pTC), which combines the similarity transformation
of the TC framework with an F12-type correlation factor. In contrast
to the correlation factors used in TC fulfilling only the singlet-pairs
cusp condition, the pTC allows for the fulfillment of the triplet-pairs
cusp condition at the price of using an orthogonal projector as in
F12, which, therefore, reduces the role of the correlation factor to
capturing correlation effects outside the basis set.

As mentioned in previous studies,15,62–66 the inclusion of a cor-
relation factor, either within the TC or VMC framework, allows for
the compactification of the determinantal part of the wave func-
tion. This key feature could potentially expand the applicability of
SCI while decreasing the finite basis set error. Moreover, the supe-
rior quality of TC energy differences has been previously reported
in several studies.106,108,112,113,116,121 The aim of the present work is
to focus on the improved convergence properties of TC-SCI with
respect to the standard SCI implementation for both absolute and
relative energies. More precisely, we aim to study the impact of the
correlation factor on three key aspects of the SCI algorithm: (i) the
convergence of the TC-SCI energy, (ii) the selection of the Slater
determinants, and (iii) the choice of the orbital set.

This paper is organized as follows: In Sec. II, we recall the the-
oretical background of the various methods employed here. The
general theory of TC is summarized in Sec. II A. Then, the biorthog-
onal basis set representation of the TC Hamiltonian is presented in
Sec. II B, and its application to orbital optimization is in Sec. II C.
The working equations for the normal-ordering approximation of
the three-body interaction are gathered in Sec. II D, the general
TC-SCI algorithm is presented in Sec. II E, and the correlation factor
is described in Sec. II F. In Sec. II G, we discuss the computation
of the various additional integrals required within the TC formal-
ism, while Sec. II H analyzes the main computational bottleneck
associated with TC calculations. Then, Sec. III presents the main
numerical results for atomic and molecular systems. Section III A
gathers the computational details. Considering the water molecule
as an example, we carry out a detailed investigation of (i) the role of
the correlation factor and orbital optimization on the distribution
of the determinant weights in the TC-SCI expansion (Sec. III B),
(ii) the convergence of the non-variational TC-SCI energy and
its extrapolation toward the FCI limit (Sec. III C), and (iii) the
compactification of the determinant expansion provided by the
TC formalism (Sec. III D). We also study, in Secs. III E and III F,
the convergence of total energies and ionization potentials (IPs)
obtained within the TC-SCI approach. Comparisons with the best
estimates from the literature and CBS values are reported. Finally,
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our conclusions are drawn in Sec. IV. Unless otherwise stated,
atomic units are used throughout.

II. THEORETICAL FRAMEWORK
From hereon, the indices p, q, r, s, . . . denote arbitrary spin-

orbitals, while i, j, k, . . . and a, b, c, . . . designate the occupied and
virtual spin-orbitals, respectively. Moreover, the indices μ, ν, λ, σ, . . .
represent the basis functions, i.e., atomic orbitals.

A. Transcorrelated approach
The central concept of the TC theory is to apply a similarity

transformation

ĤTC ≡ e−τ̂ Ĥeτ̂ (1)

to the bare Coulombic Hamiltonian

Ĥ = −∑
i

∇2
i

2
−∑

i
∑

A

ZA

riA
+∑

i<j

1
rij

, (2)

where ri represents the position of electron i, the index A runs over
the nuclei of charge ZA, riA is the distance between the ith electron
and the Ath nucleus, and rij = ∣ri − rj∣. The similarity transformation
defined in Eq. (1) involves a correlation (or Jastrow) factor,

τ̂ ≡∑
i<j

uij, (3)

where the two-electron function uij ≡ u(ri, rj) is symmetric with
respect to the exchange of two electrons, i.e., uji = uij.

The two Hamiltonians, Ĥ and ĤTC, defined in Eqs. (2) and (1),
respectively, share the same spectrum of eigenvalues on a complete
basis. The similarity transformation allows the transfer of physical
effects from the correlation factor to the TC Hamiltonian. There-
fore, by incorporating correlation effects and exact conditions in τ̂,
such as the electron–electron cusp, one would anticipate the eigen-
values and eigenvectors of ĤTC to converge faster toward the CBS
limit when employing finite basis sets.

Using the BCH expansion, which here truncates naturally in
second order, one can show that the TC Hamiltonian reads

ĤTC = Ĥ −∑
i<j

K̂ ij − ∑
i<j<k

L̂ijk, (4)

where the two-electron operator K̂ ij and the three-electron operator
L̂ijk are explicitly given by

K̂12 ≡ (∇1u12) ⋅∇1 + (∇2u21) ⋅∇2 + 1
2
∇

2
1u12

+ 1
2
∇

2
2u21 + 1

2
(∇1u12)2 + 1

2
(∇2u21)2 (5)

and

L̂123 ≡ (∇1u12) ⋅ (∇1u13) + (∇2u21) ⋅ (∇2u23)
+ (∇3u32) ⋅ (∇3u31). (6)

Clearly, ĤTC is the non-Hermitian and includes three-electron
operators. These notable features will be thoroughly examined and
addressed in the subsequent sections.

B. Biorthogonal representation
Given that the eigenvectors of a non-Hermitian Hamiltonian

are generally not orthogonal, the biorthogonal framework123,124

emerges as the most natural approach to handle ĤTC.96–99,101–103,108

By introducing two sets of one-electron functions, {ϕ̃p} and {ϕp},
satisfying the biorthogonality condition

⟨ϕ̃p∣ϕq⟩ = δpq, (7)

one can define direct and dual creation and annihilation operators
by their actions on the true vacuum ∣0⟩, as follows:123

a†
p ∣0⟩ = ∣ϕp⟩, ã†

p ∣0⟩ = ∣ϕ̃p⟩. (8)

The biorthogonal condition (7) ensures that the creation and anni-
hilation operators satisfy the anticommutation relations within the
context of biorthogonality, that is,

{ãp, a†
q} = δpq, {a†

p , a†
q} = 0, {ãp, ãq} = 0. (9)

Hence, in the second-quantization formalism, ĤTC can be decom-
posed as a sum of one-, two-, and three-body terms, with explicit
forms

ĤTC =∑
pq

hp
qa†

p ãq + 1
2!∑pqrs

Vpq
rs a†

pa†
q ãsãr

+ 1
3! ∑pqrstu

Lpqr
stu a†

pa†
qa†

r ãuãt ãs, (10)

where

hp
q = ⟨ϕ̃p∣ĥ∣ϕq⟩, (11a)

Vpq
rs = ⟨ϕ̃pϕ̃q∣r−1

12 − K̂12∣ϕrϕs⟩, (11b)

Lpqr
stu = ⟨ϕ̃pϕ̃qϕ̃r ∣ − L̂123∣ϕsϕtϕu⟩. (11c)

C. Self-consistent field procedure
Unless one aims to perform a FCI calculation, the choice of

the underlying orbitals considered to build the multideterminant
expansion for a given approximated correlated treatment may have
a significant impact on the overall accuracy and convergence prop-
erties. In the case of standard ground-state SCI calculations, one
usually relies on mean-field HF orbitals as a starting point, which
guarantees the fulfillment of Brillouin’s theorem. Regarding TC-SCI
calculations, as ĤTC differs from the bare Coulomb Hamiltonian, the
usual HF orbitals are not optimal with respect to the TC effective
potential. Relying on non-optimal orbitals may impact the com-
putation of energy differences when enforcing the versatile frozen-
core approximations108 and can also deteriorate the convergence of
TC-SCI calculations, as we will discuss in Sec. III C.
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To address these challenges, the Brillouin theorem is gen-
eralized to the non-Hermitian case,96–99,101–103 which implies two
distinct left and right conditions. In the case of a closed-shell system,
Brillouin’s theorem translates into finding a pair of Slater determi-
nants, Φ̃0 and Φ0, built with the occupied orbitals of the sets {ϕ̃p}
and {ϕp}, respectively, fulfilling the following conditions:

⟨Φ̃0∣a†
i ãaĤTC∣Φ0⟩ = 0, (12a)

⟨Φ̃0∣ĤTCa†
a ãi∣Φ0⟩ = 0. (12b)

The sets of orbitals {ϕ̃p} and {ϕp} are necessarily biorthogonal
and can be obtained through the TC self-consistent field (SCF)
procedure as detailed in Ref. 99.

This non-linear optimization process is carried out iteratively
by diagonalizing the non-symmetric TC Fock matrix, which reads

Fp
q ≡ hp

q +∑
i

V̄ ip
iq +

1
2∑ij

L̄ijp
ijq, (13)

where we have introduced the antisymmetrized set of integrals,

V̄pq
rs ≡ Vpq

rs − Vpq
sr , (14a)

L̄pqr
stu ≡ Lpqr

stu − Lpqr
sut + Lpqr

tus − Lpqr
tsu + Lpqr

ust − Lpqr
uts . (14b)

At the convergence of the TC-SCF procedure, the left and right TC-
SCF orbitals are the left and right eigenvectors of the non-Hermitian
TC Fock matrix defined in Eq. (13).

D. Normal-ordering with biorthogonal orbitals
Storing three-electron integrals poses a significant computa-

tional burden, demanding extensive memory resources in practice.
To handle the three-electron interaction term in ĤTC (see Sec. II A),
we apply the normal-ordering technique to the three-body operator,

L̂ = 1
3! ∑pqrstu

Lpqr
stu a†

pa†
qa†

r ãuãt ãs, (15)

written in a biorthogonal basis, thus generalizing recent work
performed in the context of an orthogonal basis.125

In our case, the Slater determinants Φ̃0 and Φ0 obtained
through the previous TC-SCF procedure are defined as the Fermi
vacua. More specifically, we have

(16)

where

(17)

and the normal-ordered term is defined such that

⟨Φ̃0∣N [a†
pa†

q ⋅ ⋅ ⋅ ãrãs ⋅ ⋅ ⋅ ]∣Φ0⟩ = 0. (18)

In Eq. (17), one can recognize the transition density matrix γ p
q ,

which is the equivalent of the usual density matrix in Hermitian
calculations.

By applying the following identity:

(19)

considering all possible single, double, and triple contractions, along
with the following relationships:

N [a†
p ãq] = a†

p ãq − γ p
q , (20a)

N [a†
pa†

q ãsãr] = a†
pa†

q ãsãr − γp
r a†

q ãs + γq
r a†

p ãs

− γq
s a†

p ãr + γp
s a†

q ãr − γq
r γp

s + γq
s γp

r , (20b)

one ends up with the following form for the three-body operator:

L̂ = L̂ (0) + L̂ (1) + L̂ (2) + L̂ (3), (21)

with

L̂ (0) = 1
6∑ijk

(Lijk
ijk + 2Lijk

kij − 3Lijk
k ji), (22a)

L̂ (1) =∑
pq

L̃p
qa†

p ãq, (22b)

L̂ (2) = 1
2∑pqrs

L̃pq
rs a†

pa†
q ãsãr , (22c)

L̂ (3) = 1
6 ∑pqrstu

Lpqr
stu N [a†

pa†
qa†

r ãuãt ãs], (22d)

and

L̃p
q = −1

2∑ij
(Lpij

qij − Lpij
q ji + 2Lpij

ijq − 2Lpij
jiq), (23a)

L̃pq
rs =∑

i
(Lipq

irs − Lipq
ris − Lipq

sri ), (23b)

where we have used the fact that, in the case of single-determinant
Fermi vacua, the only non-zero elements of the transition den-
sity matrix are γi

i = 1. Therefore, the three-body operator can be
written as a sum of a scalar quantity, L̂ (0) = ⟨Φ̃0∣L̂∣Φ0⟩, one- and
two-body operators, L̂ (1) and L̂ (2), together with a three-body oper-
ator involving normal-ordered annihilation and creation operators.
Since, by definition, ⟨Φ̃0∣L̂ (3)∣Φ0⟩ = 0, a reasonable assumption is
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that the effect of the pure three-body normal-ordered operator L̂ (3)

is negligible. Therefore, the normal-ordered approximation,

L̂ ≈ L̂ (0) + L̂ (1) + L̂ (2), (24)

typically results in small errors and effectively reduces the TC
Hamiltonian to a two-body operator,

ĤTC = L̂ (0) +∑
pq

h̃p
qa†

p ãq + 1
2!∑pqrs

Ṽpq
rs a†

pa†
q ãsãr , (25)

with new effective one- and two-body integrals defined as

h̃p
q = hp

q + L̃p
q, Ṽpq

rs = Vpq
rs + L̃pq

rs , (26)

where L̃p
q and L̃pq

rs are given by Eqs. (23a) and (23b), respectively.

E. Selected configuration interaction algorithm
In the TC framework, the optimal ground-state coefficients for

a selected space of Slater determinants, referred to as the SCI wave
function, are simply the ground-state left and right eigenvectors of
the matrix representation of ĤTC within this space. This approach
offers several advantages over other optimization schemes, such as
those based on the expensive and noisy VMC method, making the
TC theory highly appealing. Furthermore, an intriguing possibility
is to go a step further and directly tailor the space of determinants to
adapt to the correlation factor. This can be achieved through TC-SCI
algorithms, which extend standard SCI versions.

The “Configuration Interaction using a Perturbative Selec-
tion made Iteratively” (CIPSI) algorithm27 is highly efficient
for constructing the space of determinants and providing accu-
rate estimates of the FCI energy with compact wave functions.
Recently, we extended the CIPSI method to accommodate the
TC Hamiltonian.106,108 In this section, we outline the TC-CIPSI
algorithm, summarizing its key steps as follows:

1. Begin with a zeroth-order wave function ∣Ψ0⟩ = ∑I ∈ I cI ∣DI⟩
within a selected space of determinants I , along with its dual
⟨Ψ̃ 0∣ = ∑I ∈ I c̃I⟨D̃I ∣, satisfying the following conditions:

HTC∣Ψ0⟩ = E(0)TC ∣Ψ0⟩, (27a)

H†
TC∣Ψ̃ 0⟩ = E(0)TC ∣Ψ̃ 0⟩, (27b)

⟨Ψ̃ 0∣Ψ0⟩ = 1, (27c)

where HTC is the matrix representation of ĤTC in the
biorthogonal basis of selected determinants.

2. Compute the energetic contributions of all determinants
outside I ,

e(2)α = ⟨Ψ̃
0∣ĤTC∣Dα⟩⟨D̃α∣ĤTC∣Ψ0⟩
E(0)TC − ⟨D̃α∣ĤTC∣Dα⟩

, (28)

which all together form the PT2 energy,

E(2)TC =∑
α∉ I

e(2)α . (29)

This second-order perturbative energy is computed using an
efficient stochastic implementation, as proposed in Ref. 126.
Because we rely on the normal-ordering approximation of
Eq. (24), ĤTC remains a two-body operator, and therefore, in
practice, the determinants ∣Dα⟩ and ∣D̃α⟩ for which e(2)α ≠ 0
correspond to the singly and doubly excited determinants
with respect to any selected determinant, as in usual SCI
calculations.

3. Choose a new ensemble of determinants A, identified by the
largest energy contributions ∣e(2)α ∣. Furthermore, when opting
for a particular determinant, all other determinants within the
corresponding configuration state function are automatically
incorporated, ensuring pure spin states.127

4. Update the zeroth-order space I ← I ∪ A, and apply a non-
symmetric Davidson algorithm128 to update Ψ̃ 0, Ψ0, and
E(0)TC .

5. Repeat steps 2–4 until convergence is achieved.

We would like to highlight some of the subtleties of the TC-SCI
algorithm that arise from the non-Hermitian character of ĤTC. First,
regarding the set of determinants {DI} and {D̃I}, it is important
to note that both are constructed from determinants with identi-
cal orbital occupancies. As a consequence, when working with a
unique set of orthogonal orbitals, {DI} and {D̃I} are strictly iden-
tical, whereas when using a couple of biorthogonal orbital sets,
they differ as each set of determinants is built with a different
set of orbitals. Nevertheless, the biorthogonality relation between
orbitals implies a biorthogonality relation between the determinants
(see Ref. 108 for a more detailed discussion). Second, as shown in
Ref. 106, the use of e(2)α [see Eq. (28)] corresponds to a balanced
selection criterion for both the left and right eigenvectors as it
involves both the left and right zeroth-order wave functions Ψ̃ 0 and
Ψ0. Third, the use of the absolute value of e(2)α as a selection crite-
rion is mandatory, as the expression of Eq. (28) is not necessarily
negative, contrary to the Hermitian case.

To conclude this section, we briefly present the extrapolation
scheme used in the context of TC-SCI, allowing us to estimate the
TC-FCI energy.108 The procedure is the direct application of the
scheme initially proposed in Ref. 52 for the Hermitian case. For small
enough E(2)TC values, one can approximate the TC-FCI energy by

ETC−FCI ≈ E(0)TC + E(2)TC , (30)

the TC-FCI limit being effectively and rigorously reached when
E(2)TC = 0. This implies that, as E(2)TC → 0, the zeroth-order energy E(0)TC
becomes a linear function of the second-order energetic correction
E(2)TC . At each TC-SCI iteration, we compute both E(0)TC and E(2)TC , and
when the linear regime is reached, ETC-FCI is estimated by linearly
fitting the former as a function of the latter.

The main difference with the usual SCI extrapolation is the
presence of both positive and negative contributions in E(2)TC , which
implies that the latter is not necessarily negative. Therefore, E(0)TC is
not necessarily a monotonic function of E(2)TC . In some cases, these
two aspects can lead to situations where it is difficult to accurately
estimate the TC-FCI energy, as shall be exemplified below.
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F. Correlation factor
Various forms of correlation factors have been proposed in

the literature, from the simplest universal two-body correlation fac-
tor based on Gaussian geminals100,129,130 to more elaborate forms
including electron–electron–nucleus terms.62,67,99,131 In the present
investigation, we consider the correlation factor proposed by Boys
and Handy,67 which we re-express as follows:

uij =∑
A

PA

∑
pA=1

CnpA
mpA

cpA[ fαA(rij)]ℓpA gmpA npA
βA

(riA, rjA) (31)

with

fα(x) = αx
1 + αx

, (32a)

gmn
α (x, y) = [ fα(x)]m[ fα(y)]n + [ fα(y)]m[ fα(x)]n. (32b)

For each nucleus, we employ a total of PA terms, each term pA
being characterized by three positive integers (ℓpA , mpA , npA) and a
coefficient cpA .

Following the work of Schmidt and Moskowitz,132 we set
αA = βA = 1 for all nuclei. In addition, we have

Cn
m =
⎧⎪⎪⎨⎪⎪⎩

1/2, if m = n,

1, otherwise.
(33)

Furthermore, we enforce the electron–electron cusp by systemati-
cally including in the parameterization the term characterized by
m1 = n1 = 0 and ℓ1 = 1, with the corresponding coefficient c1 = 1/2
(see Ref. 132 for more details).

It is important to highlight the three complementary effects
introduced by the parameterization of Eq. (31). First, the
terms characterized by ℓ > 0 and m = n = 0 correspond to pure
electron–electron terms, which explicitly depend on the inter-
electronic distances. Their main purpose is to model the cor-
relation hole, that is, the lowering of the probability of finding
two electrons close together due to electron correlation effects.
Second, for ℓ = m = 0 and n > 0 (or ℓ = n = 0 and m > 0), one
introduces pure electron–nucleus terms, which provide flexibility
to the one-electron density for its adjustment to accommodate
the presence of the correlation hole. Third, components associ-
ated with ℓ > 0, m > 0, and n ≥ 0 (or ℓ > 0, m ≥ 0, and n > 0)
include electron–electron–nucleus terms, effectively coupling the
electron–electron and electron–nucleus terms previously men-
tioned. These three-body terms facilitate an even more accurate
representation of the correlation hole.

In the present study, we rely on the parameterization of the
correlation factor, optimized within a VMC framework at the
single-determinant level, as reported in Refs. 132 and 133.

G. Integral evaluation
In this section, we focus on the computation of integrals neces-

sary for TC calculations. In addition to the standard one- and two-
electron integrals, one must also compute the following additional
set of two-electron integrals:

Kpq
rs ≡ −⟨ϕ̃pϕ̃q∣K̂12∣ϕrϕs⟩, (34)

where K̂12 is defined in Eq. (5). In addition, three-electron integrals,
as defined in Eq. (11c), must be computed.

The two-electron integrals are computed in the atomic orbital
basis {χμ}, as follows:

Kμν
ηζ ≡ −⟨χμ χν∣K̂12∣χη χζ⟩. (35)

These integrals are subsequently transformed into orbital bases to
obtain Eq. (34).

By exploiting the symmetry of the operator K̂12 with respect to
electron exchange (K̂12 = K̂21) and employing integration by parts,
we obtain

Kμν
λσ = Kμν

λσ + Kνμ
σλ, (36)

where we introduce

Kμν
λσ =

1
2 ∫ dr[χμ(r)∇χλ(r) −∇χμ(r)χλ(r)] ⋅Gν

σ(r)

+ 1
2 ∫ drχμ(r)χλ(r)Jν

σ(r). (37)

The three-dimensional integrals Gν
σ and the scalar integrals Jν

σ are
defined by

Gν
σ(r1) ≡ ∫ dr2χν(r2)χσ(r2)∇1u12, (38a)

Jν
σ(r1) ≡ ∫ dr2χν(r2)χσ(r2)[∇1u12]2. (38b)

The three-electron integrals (11c) are computed directly in the
orbital basis and are given by

Lpqr
stu =∫ dr[ϕ̃p(r)ϕs(r)Gq

t (r) ⋅Gr
u(r)

+ ϕ̃q(r)ϕt(r)Gp
s (r) ⋅Gr

u(r)
+ ϕ̃r(r)ϕu(r)Gp

s (r) ⋅Gq
t (r)]. (39)

Note that Gp
q(r) corresponds to the potential (38a) in the orbital

basis.
As the integrals previously defined cannot be obtained in closed

form except for specific forms of correlation factors,65,134 we com-
pute these integrals numerically using Becke’s quadrature grid.135,136

Nevertheless, as the integrands in Eqs. (37) and (39) are much
smoother than those appearing in the definition of the potentials in
Eqs. (38a) and (38b), we employ two distinct grids: one for evaluat-
ing integrals over r2 [as in Eqs. (38a) and (38b)], which is denser
than the one used for evaluating integrals over r [as in Eqs. (37)
and (39)]. This approach allows for an efficient computation of two-
and three-electron integrals via dense matrix–matrix multiplications
using BLAS routines.

H. Computational cost
Here, we discuss some considerations regarding the computa-

tional overhead associated with a TC-SCI calculation compared to
its Hermitian version.

Regarding strictly the SCI part, the dominant computational
costs stem from the evaluation of the PT2 correction and the

J. Chem. Phys. 161, 084104 (2024); doi: 10.1063/5.0217650 161, 084104-6

Published under an exclusive license by AIP Publishing

 22 August 2024 16:47:33

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Davidson diagonalization. These steps are limited by two opera-
tions: (i) applying the Slater–Condon rules between determinants
(i.e., finding the particle–hole excitation operators together with the
fermionic phase factor) and (ii) accessing and combining the inte-
grals needed for the computation of matrix elements. Thanks to
the normal-ordering approximation presented in Sec. II D, ĤTC
remains a two-body operator. Therefore, the Slater–Condon rules
are unchanged and can be very efficiently computed.137 In the
present implementation, the left and right eigenvectors are com-
puted separately, leading to an overall increase in computational
time by a factor of 2.

Except for the nonsymmetric Davidson diagonalization for
large determinant spaces, the computation of the two- and three-
electron integrals is the main computational bottleneck of the
TC-CIPSI approach. To avoid storing these integrals, which would
require ON6 storage (where N is the number of basis functions),
they are computed on the fly and contracted to form the operators
defined in Eqs. (22a), (22b), and (22c). L̂ (0), L̂ (1), and L̂ (2) require
O3, O2N2, and ON4 integrals, respectively, while the construction of
the TC Fock operator involves O2N2 integrals [see Eq. (13)], where
O is the number of occupied orbitals. To compute Lpqr

stu , one first
evaluates the potentials Gq

p(r) on each grid point for each pair of
orbitals, which necessitates KN2 storage (where K is the number of
grid points). Then, these values are employed in Eqs. (22a), (22b),
and (22c) to compute the required integral batches.

III. RESULTS AND DISCUSSION
A. Computational details

The calculations reported in this paper were performed with the
QUANTUM PACKAGE.39 In the subsequent calculations, we employ
either the 6-31G split-valence basis sets138–140 or Dunning’s cc-
pVXZ and cc-pCVXZ basis sets, where X denotes D, T, Q, and
5.141,142 The molecular geometries were extracted from the QUEST
database59,143,144 or experimental data145 and are provided in the

supplementary material. Unless otherwise stated, calculations are
performed in the frozen-core approximation.

The Jastrow parameters were obtained from two sources:
Refs. 132 and 133. In particular, for atoms, we utilized the para-
meters outlined in Table VI of Ref. 132, whereas for molecules,
the Jastrow parameters were sourced from Table 2 of Ref. 133.
Mean-field calculations on closed-shell systems are performed in
the restricted formalism, while the restricted open-shell formalism
is employed for open-shell systems.99 For the latter case, an aver-
age of integrals corresponding to spin-up and spin-down densities
is employed in the normal-ordering procedure. In the calculations
presented herein, we use a grid with 30 radial and 50 angular points
for each atom over r and 70 radial and 266 angular points over r2.
These grid configurations ensure the stability of energy calculations
to within at least 0.1 mEh. All calculations were carried out on a
single dual-socket node equipped with 36 Intel Skylake 6140 cores,
each running at 2.3 GHz.

B. Weights of the Slater determinants
We begin this study by comparing the weight c2

I of a given Slater
determinant I (built with HF orbitals) in the ground-state FCI wave
function and the pseudo-weight ∣c̃IcI ∣ of the same determinant in
the ground-state TC-FCI wave function. As a first example, we con-
sider the H2O molecule in the 6-31G basis set, as this relatively small
basis set enables the calculation of both the FCI and TC-FCI wave
functions.

We report in the left panel of Fig. 1 the FCI weights c2
I associated

with the 500 most important Slater determinants sorted by decreas-
ing weights, as well as the corresponding TC-FCI pseudo-weights
∣c̃IcI ∣. In addition, the level of excitation with respect to the reference
determinant is indicated by different colors. An important obser-
vation is that the pseudo-weights do not decrease monotonically,
unlike the weights. This indicates that when using the TC Hamil-
tonian, the determinants are not selected in the same order as with
the standard Hamiltonian when using the CIPSI algorithm. In addi-
tion, the pseudo-weights are globally smaller than the FCI weights,

FIG. 1. Weights (c2
I ) of the FCI wave function (solid black line) and pseudo-weights (∣c̃IcI ∣) of the TC-FCI wave function (colored markers) for H2O in the 6-31G basis

set. The excitation degree of each determinant with respect to the mean-field reference determinant is indicated by the following color code: red, blue, green, and purple for
single, double, triple, and quadruple excitations, respectively. The left panel displays the weight distribution of the determinants sorted by c2

I , using HF orbitals to construct
the determinants. The right panel reports similar quantities, but TC-SCF orbitals are employed for constructing the TC-FCI wave function.
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except for the single excitations, which are typically much larger in
the TC wave function. The latter observation can be explained by the
fact that while HF orbitals fulfill the Brillouin theorem for the stan-
dard Hamiltonian, it is no longer the case for the TC Hamiltonian as
the effective interaction is no longer the bare Coulomb repulsion.

We report, in the right panel of Fig. 1, the weight distribution
of the TC wave function using TC-SCF orbitals, which, therefore,
fulfills both the left and right Brillouin conditions [see Eqs. (12a)
and (12b)]. Consequently, the pseudo-weights of the single exci-
tations are significantly reduced. For the sake of completeness, we
should mention that in the latter case, as the orbitals are different, the
determinants in the FCI and TC-FCI wave functions are no longer
the same, but here we simply match a given determinant from the
two wave functions with its orbital occupation, assuming that the
physical meaning of the orbitals weakly changes with the TC-SCF
optimization (which is clearly the case here).

More quantitatively, there are 2590 determinants with a weight
larger than 10−7 in the FCI wave function, while there are only 1998
and 1704 determinants with a pseudo-weight larger than 10−7 in the
TC wave function using the HF and TC-SCF orbitals, respectively.

FIG. 2. Weights (c2
I ) or pseudo-weights (∣c̃IcI ∣) of the first 5000 determinants

composing the CIPSI (left) and TC-CIPSI (right) wave functions, sorted with
respect to their corresponding (pseudo) weights, for H2O in the cc-pVTZ basis
set. For the sake of readability, one point out of 10 is represented. The excitation
degree of each determinant with respect to the mean-field reference determinant
is indicated by the following color code: red, blue, green, and purple for single,
double, triple, and quadruple excitations, respectively.

This shows that the correlation factor has the effect of lowering
the number of determinants that significantly contribute to energy.
This is the first evidence of the compactification of the determinant
expansion brought about by the TC approach.

Figure 2 shows similar quantities but in a larger basis set
(cc-pVTZ) and computed at the CIPSI and TC-CIPSI levels employ-
ing HF and TC-SCF orbitals, respectively. In this case, the deter-
minants are sorted with respect to their corresponding (pseudo)
weights in their corresponding wave functions. The same color code
is used to indicate the excitation degree of the determinants. In addi-
tion, to study the impact of the form of the correlation factor, we
performed calculations using the simple correlation factor intro-
duced previously by some of the authors.107 The latter form consists
of a universal two-body correlation factor designed for valence elec-
trons multiplied by atom-centered Gaussian envelopes, suppressing
the effect of the correlation factor in the core regions. The nuclear
parameters for the Gaussian envelopes, used for these calculations
were taken from Ref. 108. These complementary results are reported
in the supplementary material.

Three key observations can be made: (i) as above, the pseudo
weights are systematically lower than the weights; (ii) triple and
higher excitations enter much earlier in the TC-CIPSI expansion,
which demonstrates that the correlation factor allows for a signifi-
cant reduction of the weights of doubly excited determinants; and
(iii) the above effects are considerably less pronounced with the
simpler correlation factor, highlighting the importance of flexible
functional forms.

C. Convergence of the zeroth-order energy
and its extrapolation

A critical aspect of the TC-SCI scheme is the convergence of the
zeroth-order energy E(0)TC based on the criterion employed to select
Slater determinants, a smooth convergence facilitating its extrapo-
lation toward the TC-FCI limit. Here, we would like to investigate
two distinct selection procedures that evidence the impact of the
correlation factor: (i) selecting determinants via the second-order
contribution computed with the TC Hamiltonian using both left and
right eigenvectors [see Eq. (28)] (TC-CIPSI selection), or (ii) per-
forming a standard selection based on the bare Hamiltonian (CIPSI
selection).

To illustrate this point, we rely on the same representative
example, the H2O molecule in the cc-pVTZ basis set. We report the
convergence of E(0)TC with respect to the number of Slater determi-
nants in Fig. 3 with the CIPSI and TC-CIPSI selection procedures
discussed above. We observe that starting from the HF reference
determinant, the CIPSI selection leads rapidly (∼3000 determinants)
to an energy that is below the estimated TC-FCI energy, while, for
expansions larger than 600 000 determinants, E(0)TC rises to eventu-
ally reach this limiting value. If one selects the determinants using
the TC-CIPSI algorithm instead, we observe that, from about 20
determinants, the zeroth-order energy monotonically decays and
remains above the TC-FCI energy. This clearly highlights the impact
of the correlation factor on the selection of the determinants. In
addition, Fig. 3 illustrates the convergence of E(0)TC using TC-SCF
orbitals as opposed to HF orbitals, highlighting the impact of orbital
optimization in the TC framework. One can see that although the
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FIG. 3. Convergence of E(0)
TC as a function of the number of selected determi-

nants (top) or E(2)
TC (center and bottom) for H2O computed on the cc-pVTZ basis

and obtained via the CIPSI and TC-CIPSI selection procedures. In the case of
TC-CIPSI, HF or TC-SCF orbitals are employed. The bottom panel corresponds to
a zoom of the central panel near the origin.

TC-SCF reference determinant is higher in energy, E(0)TC rapidly and
monotonically decays toward the TC-FCI energy.

In Fig. 3, we also report the evolution of E(0)TC as a function of
the second-order energy correction E(2)TC [see Eq. (29)] for the vari-
ous cases investigated here. This helps us to appreciate the different
behaviors of E(0)TC from the perspective of its extrapolation. On the
one hand, we observe that the erratic behavior of E(0)TC obtained from
the CIPSI selection makes it hard to extrapolate E(0)TC to the TC-FCI
energy, due to the presence of a “turning” point stemming from the
interplay between the positive and negative contributions of E(2)TC , as
mentioned in Sec. II E. On the other hand, using the TC-CIPSI selec-
tion leads to a globally linear curve. However, when one employs HF

orbitals, we observe a sudden change in slope as E(2)TC → 0, leading
also to a possible untrustworthy extrapolation. However, using
TC-SCF orbitals, E(0)TC has a consistent linear behavior on a larger
range of E(2)TC , allowing us to estimate the TC-FCI energy more safely.
It is worth mentioning the small difference (roughly 0.4 mEh) in the
TC-FCI limiting values obtained with HF and TC-SCF orbitals,
which is due to the normal-ordering approximation that necessarily
creates a weak dependence on the orbitals.

We can then conclude that the best strategy to perform a
TC-SCI calculation is to rely on TC-SCF orbitals in combina-
tion with the TC-CIPSI algorithm for the determinant selection.
In such a way, one obtains rapidly and monotonically convergent
zeroth-order energies that permit a reliable extrapolation to the
TC-FCI limit. From hereon, TC-CIPSI calculations are systemati-
cally performed with TC-SCF orbitals.

D. Compactification of the CI expansion
To demonstrate the disparity in convergence rate between ener-

gies computed via the CIPSI and TC-CIPSI methods, we conduct
calculations on the water molecule using increasingly large Dunning
basis sets (cc-pVDZ, cc-pVTZ, and cc-pVQZ). In order to quantify
the acceleration brought by the TC approach, we primarily focus
on two indicators of convergence. The first criterion corresponds
to the number of determinants required to reach a specified value
of the second-order energies, E(2) for CIPSI and E(2)TC for TC-CIPSI.
The second criterion involves achieving stable extrapolations toward
the FCI and TC-FCI limits, respectively, through fitting functions
represented as

E(0)(E(2)) = aE(2) + b, (40a)

E(0)TC (E(2)TC ) = aTCE(2)TC + bTC. (40b)

The data associated with the following analysis can be found in the
supplementary material.

The convergence behavior of the zeroth-order energies, E(0)

and E(0)TC , is depicted in Fig. 4. The corresponding extrapolated FCI
and TC-FCI energies, EFCI and ETC-FCI, are presented by shaded
lines. These plots illustrate that, as the number of selected determi-
nants increases, E(0)TC converges toward ETC-FCI at a notably faster rate
compared to the convergence of E(0) toward EFCI. A similar trend
is observed for the second-order perturbative energies, as shown in
Fig. 5, where we report the evolution of E(2) and E(2)TC as functions of
the number of determinants.

More quantitatively, achieving chemical accuracy, which corre-
sponds to values of EPT2 below 1.5 mEh, requires ∼96 883, 3 105 054,
and 23 609 437 determinants in the cc-pVDZ, cc-pVTZ, and
cc-pVQZ basis sets, respectively. Conversely, in the TC case, reach-
ing ETC

PT2 ≈ 1.5 mEh occurs much earlier, with ∼12 195, 148 821, and
781 281 determinants in these bases, indicating a compactification of
the CI expansion by factors of ∼8, 21, and 30, respectively.

In Fig. 6, we depict the evolution of E(0) as a function of E(2),
as well as E(0)TC as a function of E(2)TC . We perform a linear fit of these
data using Eqs. (40a) and (40b) to target the FCI and the TC-FCI
energies, respectively. Across all three basis sets, both CIPSI and
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FIG. 4. Zeroth-order energies, E(0) (red) and E(0)
TC (blue), as functions of the num-

ber of selected determinants for H2O on the cc-pVDZ (top), cc-pVTZ (center), and
cc-pVQZ (bottom) basis. The shaded horizontal lines represent the extrapolated
FCI (red) and TC-FCI (blue) energies.

TC-CIPSI demonstrate stable and smooth linear extrapolations.
However, upon closer examination, we observe that the TC-CIPSI
extrapolation converges significantly faster.

In Fig. 7, we assess the error on the extrapolated energies as
additional iterations are performed (or, equivalently, more deter-
minants are added) with each extrapolation conducted using five
consecutive iterations of the CIPSI or TC-CIPSI algorithm. The
comparison is carried out for cc-pVDZ, cc-pVTZ, and cc-pVQZ.
We establish convergence over extrapolation when performing an
additional CIPSI (TC-CIPSI) iteration no longer alters the estimated

FIG. 5. Second-order perturbative energies, E(2) (red) and E(2)
TC (blue), as functions

of the number of selected determinants for H2O in the cc-pVDZ (top), cc-pVTZ
(center), and cc-pVQZ (bottom) basis. The shaded yellow region corresponds to
1.5 mEh accuracy.

FCI (TC-FCI) energy by more than 1.5 mEh. Under this criterion,
the conventional CIPSI extrapolation necessitates ∼2834, 9821, and
22 248 determinants to achieve convergence, while TC-CIPSI
requires only 729, 3085, and 3063 in the cc-pVDZ, cc-pVTZ, and
cc-pVQZ bases, respectively.

Next, we compare the computational costs of CIPSI and
TC-CIPSI calculations. Figure 8 illustrates the convergence rates of
the second-order energies as a function of the elapsed wall time (in
seconds) for the same collection of basis sets (cc-pVDZ, cc-pVTZ,
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FIG. 6. Linear extrapolations of E(0) (red) and E(0)
TC (blue) toward the FCI and

TC-FCI limiting energies for H2O on the cc-pVDZ (top), cc-pVTZ (center), and
cc-pVQZ (bottom) basis.

and cc-pVQZ). In the smallest cc-pVDZ basis set, TC-CIPSI initially
appears slower than CIPSI due to the time required for preparing
the normal-ordered intermediates, as defined in Eqs. (22a), (22b),
and (22c). However, across all basis sets, TC-CISPI demonstrates a
faster convergence to chemical accuracy compared to CIPSI. In par-
ticular, CIPSI takes 15 s, 22 min, and 14.6 h to reach a chemically
accurate energy in cc-pVDZ, cc-pVTZ, and cc-pVQZ, respectively.
These times are reduced in the case of TC-CIPSI, requiring only
11 s, 3 min, and 49 min, respectively. Consequently, the overall
gain in wall time for chemically accurate energies using TC-CIPSI
compared to CIPSI is 1.4, 8, and 18, respectively.

FIG. 7. Error in extrapolated energies as additional iterations (or selected deter-
minants) are performed. The shaded yellow region corresponds to 1.5 mEh
accuracy.

Similar calculations were conducted for Li2, Be2, NH3,
CH4, and H2CO molecules (the corresponding figures and
tables are provided in the supplementary material), yielding
comparable findings. The convergence behavior across differ-
ent basis sets and the comparative analysis of the zeroth-order,
second-order, and extrapolated energies between the CIPSI and
TC-CIPSI methods consistently yielded similar results for these
molecules.
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FIG. 8. Second-order perturbative energies, E(2) (red) and E(2)
TC (blue), as func-

tions of the elapsed wall time (in seconds) for H2O on the cc-pVDZ (top), cc-pVTZ
(center), and cc-pVQZ (bottom) basis. The shaded yellow region corresponds to
1.5 mEh accuracy.

E. Total energies
Estimating the total nonrelativistic electronic energy of atomic

and molecular systems presents significant challenges for standard
CI techniques due to the need for very large basis sets to achieve
chemical accuracy. However, at the TC-CI level, it is possible to
considerably reduce the basis set error. We perform TC-CIPSI calcu-
lations without the frozen-core approximation using the cc-pVDZ,

cc-pVTZ, and cc-pVQZ basis sets for the neutral atoms from
Z = 2 to Z = 10 (Table I) and for the following molecules reported in
Table II: Li2, Be2, H2O, NH3, CH4, and H2CO. The TC-FCI energies
are obtained through extrapolation of the TC-CIPSI energies, ensur-
ing convergence of at least four digits (0.1 mEh). It is worth noting
that we opted for calculations in cc-pVXZ rather than cc-pCVXZ
basis sets, as we observed that with sufficiently large basis sets (typ-
ically when X > 3), the TC-FCI energies obtained in cc-pVXZ and
cc-pCVXZ are very close thanks to the effect of the correlation
factor. For instance, the energy difference between cc-pVQZ and
cc-pCVQZ for systems such as Be, Ne, and H2O is only 0.1 mEh,
0.6 mEh, and 0.2 mEh, respectively. Such differences are significantly
smaller than those observed at the standard FCI level, often by two
or three orders of magnitude.

The exact total energies for atomic systems, as estimated in
Ref. 146, are also presented in Table I. A remarkable agreement
between the TC-FCI and reference energies is observed, particu-
larly with the cc-pVQZ basis set. The mean absolute errors are
32.5 mEh, 9.2 mEh, and 0.9 mEh in cc-pVDZ, cc-pVTZ, and
cc-pVQZ, respectively. It is noteworthy that our results closely align
with those obtained in Ref. 116 using the TC-FCIQMC algorithm,
where three-electron integrals are treated exactly, that is, without
normal-ordering. This suggests that the normal-ordering approxi-
mation outlined in Sec. II D introduces minimal bias, even in the
case of open-shell systems.

Finding exact estimates of nonrelativistic total energies for
molecular systems in the literature is significantly more challenging,
with very few exceptions. All-electron fixed-node diffusion Monte
Carlo (FN-DMC) calculations for the nonrelativistic ground-state
energy of H2O have been reported in Ref. 56 using the cc-pCVXZ
basis set family. Consequently, we conducted additional calcula-
tions on the water molecule using these basis sets. The comparison
between FCI,147 TC-FCI, and FN-DMC56 calculations is presented
in Table III and visualized in Fig. 9, with the reference exact energy
considered as −76.4389 Eh.148 It is evident that while the stan-
dard FCI energy converges very slowly, the TC-FCI energy is found
to be very close to the FN-DMC energy in cc-pVTZ and nearly
identical in cc-pVQZ. We should nevertheless mention that, in the
case of H2O molecules, the results obtained with the CCSDT-R12
method149 in the aug-cc-pVXZ basis sets using a correlation factor
fulfilling both the singlet and triplet cusp150 are significantly closer,
for a given cardinal number X, to the estimated exact energy than the
present TC-FCI results in the cc-pCVXZ basis sets. As the TC-FCI
fulfills only the singlet cusp condition, the larger error found in our
TC-FCI could be the signature of the lack of a triplet cusp con-
dition, which, according to the work of Kutzelnigg and Morgan,15

is directly related to the next order of the convergence rate of CI
calculations.

F. Ionization potentials
In this section, we address the convergence of IPs (defined as

the difference between the cation and neutral ground-state energies)
as the one-electron basis set is enlarged. Concerning the computa-
tion of IPs within the TC formalism, the optimal approach would be
to optimize the Jastrow parameters in a state-specific way. While not
ideal, we have employed an alternative, cheaper strategy where the
same Jastrow parameters are used for both the neutral and cationic
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TABLE I. Total energies (in Eh) obtained from TC-FCI calculations (without frozen-core approximation) in the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets for the neutral atoms
from Z = 2 to Z = 10. For the sake of comparison, estimated exact energies are also provided.

Atom He Li Be B C N O F Ne

cc-pVDZ −2.8975 −7.4771 −14.6681 −24.6451 −37.8275 −54.5569 −75.0163 −99.6586 −128.8375
cc-pVTZ −2.9033 −7.4781 −14.6681 −24.6499 −37.8390 −54.5795 −75.0527 −99.7139 −128.9099
cc-pVQZ −2.9037 −7.4785 −14.6676 −24.6527 −37.8443 −54.5880 −75.0658 −99.7329 −128.9360
Exacta −2.9037 −7.4781 −14.6674 −24.6539 −37.8450 −54.5892 −75.0673 −99.7339 −128.9376
aValues extracted from Ref. 146.

TABLE II. Total energies (in Eh) obtained from TC-FCI calculations (without frozen-core approximation) in the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets for Li2, Be2, H2O,
NH3, CH4, and H2CO.

Molecule Li2 Be2 H2O NH3 CH4 H2CO

cc-pVDZ −14.9776 −29.3245 −76.3775 −56.5162 −40.5031 −114.4012
cc-pVTZ −14.9888 −29.3268 −76.4234 −56.5566 −40.5211 −114.4835
cc-pVQZ −14.9918 −29.3395 −76.4367 −56.5655 −40.5207 −114.5097

TABLE III. Total energies (in Eh) computed at the FCI, TC-FCI, and FN-DMC levels
of theory for the water molecule in the cc-pCVXZ family of basis sets. The estimated
exact energy is −76.4389 Eh.148

FCIa TC-FCIb FN-DMCc

cc-pCVDZ −76.2829 −76.3884 −76.41571(20)
cc-pCVTZ −76.3902 −76.4286 −76.43182(19)
cc-pCVQZ −76.4212 −76.4365 −76.43622(14)
cc-pCV5Z −76.4311 −76.4371 −76.43744(18)
aValues extracted from Ref. 147.
bThis works.
cValues extracted from Ref. 56.

systems. (Here, we rely on the optimized parameters of the neutral
system.)

We have computed the TC-FCI energies of the same set of
atoms as in Sec. III E, both with and without the frozen-core approx-
imation, using the cc-pVXZ basis sets (where X = D, T, and Q). The
total energies are provided in the supplementary material, while the
resulting IPs, expressed in eV, are depicted in Table IV. The abso-
lute deviation caused by the frozen-core approximation is ∼1 meV
on average. This suggests that the frozen-core approximation can
be effectively employed in TC-CI calculations to reduce the size of
the Hilbert space without deteriorating the precision. Furthermore,
upon comparison with the exact IP estimates reported in Ref. 146,
we observe mean absolute errors of 0.22, 0.02, and 0.03 eV for the
cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets, respectively. A slight
increase in error is observed between cc-pVTZ and cc-pVQZ, which
we attribute to the imbalance in accuracy between the neutral and
cation species. Indeed, on the cc-pVQZ basis, the total energy of
the neutral systems is nearly exact, while the energy of the cations
is comparatively less precise. In addition, we report in Table IV the
IPs computed at the FCI level for the same family of basis sets. The
mean absolute errors are 0.37, 0.14, 0.06, and 0.03 eV for the cc-
pVDZ, cc-pVTZ, cc-pVQZ, and cc-pV5Z basis sets, respectively. In

FIG. 9. Error (in mEh) in the total energy of H2O computed at the FCI, TC-FCI,
and FN-DMC levels with the cc-pCVXZ family of basis sets with respect to the
estimated exact energy (−76.4389 Eh). The shaded yellow region corresponds to
1.5 mEh accuracy.

conclusion, while cc-pVTZ is sufficient to achieve chemical accuracy
at the TC-FCI level, one must employ cc-pV5Z at the FCI level.

In Table V, we have conducted FCI and TC-FCI calculations,
with or without the frozen-core approximation, to estimate the IP
of the following molecules: Li2, Be2, H2O, NH3, CH4, and H2CO.
Similar to the case of atoms, the mean absolute deviation induced
by the frozen-core approximation is negligible (3 meV). To produce
CBS estimates, we have extrapolated the IPs obtained at the FCI
level using an inverse cubic parameterization across the cc-pVXZ
basis sets (where X = T, Q, and 5). Considering the CBS estimates
as references, the mean absolute errors are 0.40, 0.15, 0.06, and
0.03 eV at the FCI level for the cc-pVDZ, cc-pVTZ, cc-pVQZ, and
cc-pV5Z basis sets, respectively. These errors are reduced to 0.17,
0.05, and 0.02 eV at the TC-FCI level for cc-pVDZ, cc-pVTZ, and
cc-pVQZ, respectively. Therefore, similar conclusions hold for the
case of molecules. To further illustrate this, we present, in Fig. 10,
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TABLE IV. IPs (in eV) computed at the FCI and TC-FCI levels with or without frozen-core (FC) approximation for the neutral atoms from Z = 2 to Z = 10. For the sake of
comparison, estimated exact IPs are also provided.

He Li Be

FCI TC-FCI FCI TC-FCI FCI TC-FCI

cc-pVDZ 24.33 24.60 5.35 5.13 9.29 9.29
cc-pVTZ 24.53 24.61 5.35 5.40 9.29 9.32
cc-pVQZ 24.56 24.59 5.37 5.40 9.30 9.33
cc-pV5Z 24.58 5.38 9.31
Exacta 24.59 5.39 9.32

B C N

FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI

cc-pVDZ 8.07 8.15 8.15 10.98 11.08 11.08 14.19 14.33 14.33
cc-pVTZ 8.22 8.31 8.31 11.17 11.27 11.28 14.43 14.56 14.56
cc-pVQZ 8.24 8.30 8.30 11.21 11.27 11.27 14.49 14.56 14.56
cc-pV5Z 8.25 11.22 14.51
Exacta 8.30 11.26 14.53

O F Ne

FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI

cc-pVDZ 12.85 13.13 13.13 16.71 17.09 17.08 20.89 21.22 21.22
cc-pVTZ 13.32 13.58 13.58 17.13 17.45 17.45 21.30 21.62 21.62
cc-pVQZ 13.48 13.63 13.62 17.30 17.49 17.48 21.47 21.67 21.67
cc-pV5Z 13.55 17.37 21.54
Exacta 13.62 17.42 21.56
aValues extracted from Ref. 146.

TABLE V. IPs (in eV) computed at the FCI and TC-FCI levels with or without frozen-core (FC) approximation for Li2, Be2, H2O, NH3, CH4, and H2CO. The CBS estimates are
obtained by extrapolation based on the FCI data.

Li2 Be2 H2O

FCI TC-FCI FCI TC-FCI FCI (FC) TC-FCI (FC) TC-FCI

cc-pVDZ 5.19 5.18 7.44 7.47 11.96 12.44 12.43
cc-pVTZ 5.22 5.26 7.45 7.50 12.49 12.72 12.71
cc-pVQZ 5.24 5.27 7.47 7.50 12.66 12.76 12.76
cc-pV5Z 5.25 7.48 12.73
CBS 5.25 7.49 12.80

NH3 CH4 H2CO

FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI FCI (FC) TC-FCI (FC) TC-FCI

cc-pVDZ 10.32 10.68 10.68 14.20 14.42 14.40 10.44 10.76 10.76
cc-pVTZ 10.76 10.92 10.91 14.36 14.47 14.47 10.80 10.95 10.95
cc-pVQZ 10.89 10.96 10.96 14.40 14.44 14.44 10.92 10.98 10.98
cc-pV5Z 10.95 14.41 10.95
CBS 11.00 14.43 11.00
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FIG. 10. Error (in eV) in the IP of H2O computed at the FCI and TC-FCI levels with
the cc-pVXZ family of basis sets with respect to the CBS estimate (12.80 eV). The
shaded yellow region corresponds to 1.5 mEh accuracy.

the difference between the CBS estimate (12.80 eV) and the IP val-
ues obtained at the FCI and TC-FCI levels across the cc-pVXZ basis
sets in the case of the water molecule. While chemical accuracy is
nearly attained at the TC-FCI/cc-pVTZ level, the error is three times
larger at the FCI/cc-pVTZ level.

IV. CONCLUSION
In the present study, we investigated how incorporating a

correlation factor in the Hamiltonian within the TC framework
markedly accelerates the convergence of SCI methods. To illustrate
these results, we systematically studied the total energies and IPs
in increasing large Dunning basis sets using optimized Jastrow fac-
tors available from the literature in the case of neutral atoms with
2 ≤ Z ≤ 10 together with the Li2, Be2, H2O, NH3, CH4, and H2CO
molecules. This acceleration has been demonstrated quantitatively
through both the reduction in the size of the one-electron basis func-
tions and the decrease in the number of important determinants in
the Hilbert space.

Although the TC Hamiltonian exhibits certain difficulties
related to three-electron terms and non-Hermiticity, the working
equations derived here for TC-SCI demonstrate a scaling similar to
that of SCI methods. Nonetheless, as our numerical analysis reveals,
TC-SCI effectively increases the sparsity of the Slater determinant
space when a flexible enough Jastrow factor is employed. This
enhancement enables faster and more stable convergence toward the
FCI limit within a given basis set.

By comparing with the best estimates (when available for total
energies) or CBS values reported here for IPs, we have shown that
achieving near-exact results, i.e., within chemical accuracy, is pos-
sible in TC-SCI using basis sets significantly smaller than those
required in standard SCI calculations.

Expanding the applicability of TC-SCI methods to arbitrary
systems necessitates the ability to optimize Jastrow factors at a rea-
sonable cost. While this challenge has been considered in prior
studies, it is widely acknowledged to be both difficult and expen-
sive. In our upcoming efforts, we will explore how to systematically
optimize Jastrow factors at a reasonable cost.

SUPPLEMENTARY MATERIAL

The supplementary material of the present paper contains (i)
the molecular geometries used for all molecules studied in the
present work, (ii) a detailed analysis of the decay of the weights of
Slater determinants using two different types of correlation factors,
(iii) the various curves studying the compaction of the CI expan-
sion (similar to Sec. III D) for Li2, Be2, NH3, CH4, and H2CO, (iv) a
detailed study of the convergence of the IP’s with respect to both the
basis set and the size of the CI expansion, and (v) the total energies
for all atomic and molecular systems studied here.
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