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This work merges two different types of many-electron ensembles, namely, the Theophilou-Gross-Oliveira-
Kohn ensembles of ground and neutrally excited states, and the more recent N-centered ensembles of neutral and
charged ground states. On that basis, an in-principle exact and general, so-called extended N-centered, ensemble
density functional theory of charged and neutral electronic excitations is derived. We revisit in this context the
concept of density functional derivative discontinuity for neutral excitations, without ever invoking nor using the
asymptotic behavior of the ensemble electronic density. The present mathematical construction fully relies on
the weight dependence of the ensemble Hartree-exchange-correlation density functional energy, which makes
the theory applicable to lattice models and opens new perspectives for the description of gaps in mesoscopic

systems.

DOLI: 10.1103/PhysRevB.109.235113

I. INTRODUCTION

Kohn-Sham density functional theory (KS-DFT) [1] is
prominently used nowadays to obtain approximate but reli-
able ground-state electronic energies around the equilibrium
geometries of large systems with up to thousands of elec-
trons. To go beyond ground-state properties, time-dependent
extensions have been proposed, such as linear response time-
dependent DFT (TD-DFT), where the first-order KS response
function and the Hartree-exchange-correlation (Hxc) density
functional kernel allow for the extraction of excited-state en-
ergies [2], or real-time (or propagation) TD-DFT that relies
on the numerical propagation of the electronic equations of
motion and is not limited in principle to perturbations falling
into the linear regime [3]. Alternatively, and popularized in
condensed matter physics, the more involved many-body per-
turbation theory [4,5] within GW [6-8] together with the
Bethe-Salpeter equation, which relies on the two-particle
(frequency-dependent) Green’s function, can be used [9-11].
All the aforementioned methods are computationally more
demanding than KS-DFT. Even more problematic, linear
response TD-DFT does not generally give an accurate descrip-
tion of charge transfer excitations [12], and multiple excita-
tions are even absent from the spectra [13], when the popular
semilocal adiabatic approximation is employed [2,14].

During the last decade, increasing attention has been paid
to time-independent ensemble extensions of DFT (ensemble
DFT) [15-37], from which in-principle exact excitation en-
ergies can be inferred with the same computational cost as
regular (ground-state) KS-DFT. Such an extension was orig-
inally proposed by Theophilou [38,39], Gross, Oliveira, and
Kohn [40] for neutral excitation energies (i.e., difference of
energy between states of a system with N electrons) and is
referred to as TGOK-DFT, following the name of the authors.
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The use of TGOK ensembles in other settings than DFT, both
for the description of electronic and bosonic low-lying excited
states, has also become increasingly appealing [41-45].

Quite recently, the concept of N-centered ensemble [46,47]
has been introduced by analogy with TGOK-DFT to evaluate,
in principle exactly, charged excitation energies (i.e., excita-
tion energies between ground states corresponding to different
electron numbers). Importantly, N-centered ensemble DFT
shed a new light on the concept of density functional deriva-
tive discontinuity for charged excitations, which emerged
from the seminal work of Perdew, Parr, Levy, and Balduz
(PPLB) in the context of DFT for fractional particle number
[48,49]. Within the formulation of PPLB, it is in princi-
ple sufficient to extend the domain of definition of the Hxc
density functional to fractional electron numbers in order to
account for derivative discontinuities. However, it has been
argued that invoking a fractional number of electrons is maybe
not the correct route to pursue [50-54]. This debate aligns
with the approach taken in N-centered ensemble DFT, where
the derivative discontinuity is alternatively described through
weight derivatives of the ensemble density functional Hxc
energy at fixed ensemble density. Such derivatives are well
defined in the N-centered formalism since, by construction,
the ensemble density always integrates to the fixed and central
(integer) number of electrons N, hence the name of the theory.
Extensive discussions about the equivalence between weight
derivatives and derivative discontinuities for ground states can
be found in Ref. [37].

While a regular (so-called left in Ref. [47]) N-centered
ensemble consists of (N — 1)- and N-electron ground states,
we propose in this work to incorporate neutrally excited (i.e.,
N-electron excited) states into the ensemble, thus allowing,
for example, to decompose neutral excitation processes into
separate ionization ones, as originally suggested by Levy [55].

©2024 American Physical Society
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On that basis, exactifying KS orbital energies in the descrip-
tion of neutral excitations consists in exactifying both ground-
and excited-state KS ionization potentials, a procedure from
which derivative discontinuities emerge [S5]. As mentioned
previously, in N-centered ensemble DFT, the description of
derivative discontinuities (that connect to the piecewise-linear
behavior of the ground-state energy [48,49,56]) is recast
into the modeling of weight dependencies in the ensemble
Hxc density functional [37,57]. Even though its practical
advantage still needs to be assessed, in particular because
the incorporation of weight dependencies into regular den-
sity functional approximations is not straightforward when
the ensemble energy is evaluated variationally [32,37], the
N-centered strategy offers a mathematically elegant and sim-
plified alternative in describing how KS orbital energies are
affected by charged excitation processes. Our motivation is
to extend this strategy to neutral excitations. Even though
we do not exploit in this work the following possibility, the
formalism is flexible enough to include anionic states. The
resulting combined TGOK/N-centered ensemble formalism,
that we refer to as extended N centered, lays the foundations
of a unified and general ensemble density functional theory of
charged and neutral electronic excitations. Most importantly,
as shown in the following, this formalism sheds a different
light on the concept of derivative discontinuity for neutral
excitations [18,35,55,58], which is much less discussed in the
literature than for charged excitations.

The paper is organized as follows. After motivating in
Sec. II the decomposition of a neutral excitation process into
two ionization processes, and reviewing briefly TGOK-DFT
in Sec. III, we introduce the extended N-centered ensemble
density functional formalism in Sec. IV. On that basis, the
concept of derivative discontinuity in the context of neutral
excitation processes is revisited in Sec. V. The theory is then
applied to the two-electron Hubbard dimer, as a proof of
concept. The exact derivations and numerical tests are pre-
sented in Sec. VI. Conclusions and outlook are finally given
in Sec. VIL

II. PROBLEMATICS: ON THE EXACTIFICATION
OF KOHN-SHAM ORBITAL ENERGIES

The occupied and virtual orbital energies {e;};—; ... gen-
erated from a regular N-electron ground-state KS-DFT
calculation can be used to compute total ground- and excited-
state N-electron KS energies,

EN = "niei, (1)

where n/ € {0, 1,2} denotes the integer occupation of the
ith KS orbital in the vth KS state (v > 0) and ), ni = N.
It is well known that when it comes to describing neutral
excitation processes, the bare KS excitation energies and the
true interacting ones {w, },~o do not match:

w, =EN —E) #£&V - &Y. )

In the context of linear response TD-DFT, these two
quantities are connected through the Hxc kernel, i.e., the
density functional derivative of the (time-dependent) Hxc
potential. We focus in the following on in-principle exact

time-independent density functional approaches to neutral
electronic excitations and, more specifically, to ensemble
ones. At this point we should stress that, unlike in charged
processes, any constant shift in the Hxc potential and therefore
in the orbital energies,

& —> &t 3)
leaves neutral KS excitation energies unchanged:
EN & - (EY +Nc)— (&) +Ne) =&Y &), @»

From this standpoint, it seems impossible to exactify the KS
orbital energies in the description of neutrally excited states.
Nevertheless, as recalled in Sec. III, it is possible to de-
scribe exactly the deviation of the physical excitation energy
from the KS one by means of an ensemble-weight-dependent
Hxc density functional. A subtle but crucial point, which has
not been taken into account in Eq. (4), is the fact that the
KS orbital energies of the reference N-electron ground-state
KS-DFT calculation are not those that describe the (even
infinitesimally) excited system [58]. Interestingly, a similar
issue has already been discussed for the fundamental gap
problem in the context of N-centered ensemble DFT [57]
where, by construction, the ensemble Hxc potential is also
defined up to a constant, unlike in the more conventional
DFT for fractional electron numbers [37]. In fact, within
N-centered ensemble DFT, the fundamental and optical gap
problems have the exact same mathematical formulation [46].
What Ref. [57] revealed [in one dimension (1D)] is that, if the
N-centered ensemble Hxc potential is (arbitrarily) adjusted
such that it asymptotically approaches zero infinitely far from
the center of the system under study, by plotting the difference
in Hxc potentials between, on the one hand, the ensemble
that contains both ground N-electron and (N + 1)-electron
(with weight &) states, and, on the other hand, the regular
pure N-electron ground state (£, = O in this case), one can
see a plateau in the central region of the system that grows
in length as &, — 0. Ultimately, it looks as if the regular
Hxc potential for N electrons in the ground state had been
shifted, thus ensuring, in the present case, the exactification
of the KS electron affinity when &, — 0% (and of the KS
ionization potential when £, = 0). In summary, the KS orbital
energies are affected by the (even infinitesimal) occupation of
higher-energy orbitals and this is reflected by a shift in the Hxc
potential. A similar analysis has been performed by Kraisler
et al. [58] for neutral excitations, which is our main focus.

In this work, we follow a connected but slightly different
path. We propose to achieve a description of neutral exci-
tations through an exactification of the KS orbital energies
that exclusively relies on an appropriate (so-called extended
N-centered) ensemble weight-dependent Hxc density func-
tional, by analogy with the N-centered ensemble dealing with
the fundamental gap [37,57]. Based on the observation made
in Eq. (4) and the seminal work of Levy [55], the key idea
consists in evaluating a neutral excitation energy via two dif-
ferent charged processes, namely, the ionization of the ground
(v = 0) and the targeted excited (v > 0) N-electron states, i.e.,

EN —E) =1 -1V, §))
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where
(' =6""-E'} ., ©)

will be referred to as ground- and excited-state ionization
potentials (IPs).

Turning to the KS system, for each ionization process, a
specific shift can be applied to the Hxc potential (which is
unique up to a constant, as long as the number of electrons is
fixed to the integer N) in order to enforce the KS IPs to match
the true interacting ones, i.e.,

& — si+c =58,
ENN_gN eV g —e 21, (M
and
g — & +cy =8,
ENI N gV N e 2V, ®)

If, for example, the excited state of interest v is described by
a single-electron excitation (one hole, one particle) from the
highest occupied molecular orbital (HOMO) i = N to a virtual
one i(v) > N, then we automatically obtain from Egs. (5), (7),
and (8) what we consider as the exactification of the KS orbital
energies for neutral excitations, i.e.,

EY — E} = &) — . )

The question that is addressed in the rest of this work is
how such a construction can be derived, in principle exactly
(and with no need to invoke the asymptotic behavior of the
ensemble density infinitely far from the center of the system
under study, as will be discussed later), from a unified and
general ensemble density functional formalism in which both
charged and neutral excitation processes can be described
simultaneously.

II1. BRIEF REVIEW OF REGULAR TGOK ENSEMBLE DFT

TGOK-DFT is a time-independent ensemble extension of
standard ground-state DFT to neutral excited states where the
ground-state energy is replaced by the so-called ensemble en-
ergy, which is a convex combination of (N-electron) ground-
and excited-state energies,

p§ 9ok (1 —Z§£V>E6V+Z§£VE£V, (10)

v>0 v>0

where
TGOK [,y
S = {EV }v>0 (11)
is the collection of positive and independent ensemble weight
values that are assigned to the ordered-in-energy N-electron
excited states {W1'},-o, i.e.,

EY = W) A w) < £,

12)

The electronic Hamiltonian operator H of the system under
study reads as

~

ﬁ:f+Wee+Vexlv (13)

where T describes the kinetic energy, W.. is the two-electron
repulsion operator, Vegt = f dr vey (r)ii(r) is the external local
potential operator, and 7i(r) denotes the density operator at po-
sition r. Note that the weight &) assigned to the ground-state
energy E}' in Eq. (10) is such that the collection of weights
(including the ground-state one) is normalized:

s+ e TR (14)

v>0

This constraint, where 5(’;’ is an affine function of the inde-
pendent excited-state ensemble weights [59], ensures that the
total number of electrons is preserved when deviating from
the ground-state § = 0 limit of the theory, i.e.,

/drn‘s(r) =N, V& (15)
where
né(r) TOOK (1 - Z%‘y)n\pg(r) + Y Elngy(r)  (16)
>0 v>0

is the ensemble density, {nyn(r)},>o being the individual
N-electron ground- and excited-state densities. In the follow-
ing, we use the more compact notation

nf(r) = Tr[[¥ar)], (17)
where
pe et (1 - Zsf) |+ Y erewr| as)
v>0 v>0

is the ensemble density matrix operator and Tr denotes the
trace. Note that we have assumed, for simplicity, that both
ground and excited states are not degenerate but the for-
malism can be extended straightforwardly to ensembles of
multiplets [40].
The TGOK ensemble energy, as defined in Egs. (10) and
(12), can be determined variationally, i.e.,
Ef = min Tr[p*A] = Tr[[éH), (19)
v
where ¢ is a trial ensemble density matrix operator, pro-

vided that the ensemble weights are collected in decreasing
order [60]:

eV >EN,, v>o. (20)

On that basis, an ensemble KS-DFT of neutral excited states
can be derived [40], where the ensemble Hxc density func-
tional is defined exactly, as follows:
E} [n] = min Te[p5(T + Wee)] — min Tr[757]
PEon ot

ys—n
:= F¥[n] — T}[n], 1)

where Fé[n] (and its noninteracting analog Tf[n]) is sim-
ply the extension to ensembles (with given fixed ensemble
weight values &) of the Levy-Lieb functional [61,62]. The den-
sity constraint used in both minimizations reads as ng:(r) =
Tr[pa(r)] = n(r).

Note that the ensemble Hxc functional is both a functional
of the density n and a function of the ensemble weights &.
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The reason is that, unlike in ground-state DFT of open elec-
tronic systems, where the ensemble weight is deduced from
the fractional number of electrons, a TGOK ensemble cannot
be identified solely from its density. Indeed, a density » that
integrates to a given integer number N of electrons may be
both pure-ground-state and ensemble v representable at the
same time [see Eq. (37) in Ref. [63] and the discussion that
follows]. Without additional information about the ensemble
(namely, the ensemble weight values), the functional would
not “know” if it has to compute the Hxc energy of a pure
ground state (§ = 0) or that of an ensemble (§ > 0).

Finally, like in ground-state KS-DFT, the ensemble
density functional Hxc energy can be decomposed into
(weight-dependent) Hx and correlation contributions, which
read as [24]

F&%[n] — F5*=[n]

£ T
Ehon = iy

o
aF&n]
= — (22)
Jo
a=0t
and

Ein) = 5, [n] — Ef, [n], (23)

respectively, where
F59[n] = min Te[P5(T + aWee)] (24)

PE—n

is the analog for electrons that partially interact (through the
positive scaling « of the electronic repulsion) of the TGOK
Levy-Lieb functional F%[n] introduced in Eq. (21). Note that
F8=1[n] = F&[n] and F5°=[n] = T¥[n]. It is important
to stress that, unlike in regular pure ground-state KS-DFT,
neither the definition of the Hx energy nor its separation into
Hartree and exchange contributions are straightforward in the
context of ensemble DFT [16,29,32,37,64]. The latter point
will be discussed a bit further after Eq. (62).

In the context of TGOK-DFT, the variational ensemble en-
ergy expression of Eq. (19) can be recast into a minimization
over noninteracting ensemble density matrix operators

Ef = min{Tr{p5(F + Vo) + Efy [mgel), (25)
14

where the (weight-dependent [37]) minimizing KS wave
functions {<D€}U>0 fulfill the following self-consistent nonin-
teracting Schrodinger equation

[f‘ + Vo + / dr vf_[xc(r)ﬁ(r):| |d>§) = 55’@%), (26)

vﬁlxc(r) = 5E}E;xc[”]/5”(r)|n:n5 being the weight-dependent
Hxc potential. Equivalently, the orbitals from which the KS
ensemble is constructed fulfill the following ensemble KS
equations:

VZ
[—7‘ + Vex (1) + vixc(r)} oir) =efgim). @D

The latter differ from regular (ground-state) KS equations by
(i) the weight dependence of the Hxc potential, and (ii) the
fact that the KS orbitals, which reproduce the exact ensemble

density nt (r), are fractionally occupied, i.e.,

nfr) = Enge () =Y | D &l |[of(r)

v2>20 i v2>20

2

(28)

where 7!, is the occupation of the KS orbital <p;E in the KS ana-

log QD‘S of the pure state v. Note that the (weight-dependent)
total KS energies simply read as

EE = "nle. (29)

Turning to the problematic raised in Sec. II, we should first
recall that the exact deviation of the true interacting excitation
energies from the KS ones is given by the derivative with
respect to the ensemble weights (at fixed ensemble density)
of the ensemble Hxc density functional energy [40,59]:

O [n]

EN —EY — (8 -&) = ;s—N : (30)
Therefore, within regular TGOK-DFT, the exactification of
the ensemble KS orbital energies occurs only when the above
ensemble weight derivative vanishes, which may happen for
very specific (a priori unknown) weight values [18,22]. In
other words, such an exactification cannot, in general, be
achieved, unless we introduce intermediate ionization pro-
cesses, as suggested in Sec. II. The main challenge in this
case lies in the design of a unified ensemble density functional
formalism where both neutral and charged excitations can be
described. A solution to this problem is proposed in Sec. I'V.

As a side comment, which aims at preventing confusions
later on, we want to stress that, in principle, the Hxc ensemble
weight derivative [i.e., the KS excitation energy correction on
the right-hand side of Eq. (30)] and the Hxc density functional
derivative discontinuity [18,35,58] are two distinct concepts.
The latter, which affects the energy of the KS acceptor orbital
i(v) introduced in Eq. (9), appears in the § — 07 limit of
the theory, when comparison is made with regular N-electron
ground-state KS-DFT (where & = 0) from which the energy of
the HOMO is evaluated. The two concepts become equivalent
in this special case, as it will become clear from the upcoming
Egs. (60) and (61), once the extended N-centered ensemble
DFT formalism has been introduced. This is the purpose
of Sec. IV.

IV. EXTENDED N-CENTERED ENSEMBLE DFT

Senjean and Fromager [46] introduced some years ago
the so-called N-centered ensemble DFT formalism where the
fundamental gap of N-electron ground states is described with
the exact same mathematical language as in TGOK-DFT. The
approach also allows for a separate description of ionization
and affinity processes [37,46,47,57], which is essential in the
present context. The close resemblance of N-centered en-
semble DFT with TGOK-DFT is exploited in the following
in order to provide an in-principle exact ensemble density
functional description of ionized excited states. The resulting
ensemble formalism, where neutral excited states are incorpo-
rated into a regular (ground-state) N-centered ensemble, will
be referred to as extended N-centered ensemble formalism.
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A. Combining TGOK with N-centered ensembles

By analogy with regular N-centered ensemble DFT, where
the ensemble weights assigned to the (N — 1)- and (N + 1)-
electron ground states are allowed to vary independently [46],
we propose to combine TGOK and N-centered (Nc) ensem-
bles as follows:

R c N,
fre TOOEHY (1 -y ﬁ§v> [Wo) (Wol + ) & 1W,) (W, |,

v>0 v>0
(31

where Wy = W is the reference N-electron ground state to
which all possible excitation processes (neutral and charged,
including multiple-electron excitations) can be applied. In
other words, the integer number of electrons N, = [ dr ny, (r)
that is described by the excited-state wave function ¥, (v > 0)
is not necessarily equal to the (integer) number of electrons in
the ground state,

No = N, (32)

that is referred to as the central number of electrons. However,
by construction, the ensemble density still integrates to N, like
in TGOK-DFT [see Egs. (15) and (17)].

As further discussed in Sec. V, the fact that the net number
of electrons in the ensemble does not vary with the ensemble
weights, unlike in the traditional PPLB-DFT of fractional
electron numbers [48], plays a central role in the exact de-
scription of derivative discontinuities in terms of ensemble
weight derivatives [37,57]. More precisely, the key feature of
N-centered ensemble DFT is the fact that ensemble weights
can vary while holding the ensemble density fixed [46]. In
PPLB-DFT, the Hxc functional has no weight dependence
(i.e., it is solely a functional of the density) simply because
the ensemble weight is itself a functional of the density [37]
which can be defined, for example, as the deviation of the
(fractional) electron number from its floor value. Hence, in
PPLB-DFT, any variation in weight automatically induces a
change in density.

Turning back to the extended N-centered ensemble of
Eqg. (31), we point out that the ensemble weights assigned to
the ground and excited states are positive,

N,
Eg=1- ;) ~E& =0 (33a)
£,>0, Yv>0 (33b)

and, most importantly, unlike in conventional TGOK or PPLB
ensembles, they do not sum up to 1, in general:

e =14y M (34)

N
v=0 v>0

In addition, within each subensemble containing all the states
with the same number N+ p (p=0,1,2,...,N) of elec-
trons, we impose the following weight ordering constraints
[see Eq. (20)]:

N‘,=N,,+1=N:‘:p
& Z (35)

in order to be able to exploit, if necessary, the TGOK vari-
ational principle within each (N =+ p)-electron sector of the

Fock space. This simply ensures that the fully extended
N-centered ensemble of interest can be determined variation-
ally, thus allowing for an in-principle-exact density functional
description of its energy. Note that, in this work, the constraint
of Eq. (35) will be used only for N-electron states (i.e., p = 0)
while the (N — 1) sector will be reduced to ground states. The
(N + 1) sector will not be used. These choices are motivated
by the problem raised in Sec. II and are by no means a
limitation of the present ensemble formalism, which is very
general.

Let us finally turn to the extended N-centered ensemble
energy,

EE TGO§+NC (1

- %a)& +Y &E,.  (36)

v>0 v>0

where Ey = E} is the reference N-electron ground-state en-
ergy and E, is an N,-electron eigenvalue of the electronic
Hamiltonian, i.e.,

HIV,) =E,|¥,), v>0 (37

with N, € {N,N £1,N £2,...}. Like in TGOK-DFT [59],
the linearity of the ensemble energy in the ensemble weights,

N (38)
allows for a straightforward extraction of individual energy
levels (and, therefore, of the excitation energies) through first-
order differentiations. Indeed, since both ground-state (v = 0)
[see Eq. (32)] and excited-state (v > 0) energies can be ex-
pressed as

N, N;,
E = o+Zaxu<EA—ﬁEo> (39)
A>0
where, according to Eq. (36),
OB g Mg (40)
oE, ko
and
Ey=Ef - Za (41)
>0

we immediately obtain the following compact expression in
terms of the ensemble energy (and its first-order derivatives):

aEE
— £ E —
Ev v;() N E + (CSAU ) %_ (42)

>0

Note that Eq. (42) generalizes expressions that have been
derived previously and separately in regular TGOK [59] (for
neutral excited states) and N-centered [37,46] (for charged
excited states) ensemble theories. As shown in the follow-
ing section, once a KS density functional description of the
extended N-centered ensemble energy Ef is established, it
becomes possible to relate formally any charged or neutral KS
excitation energy to the true physical one.

B. Density functionalization of the approach

According to both regular (ground-state) Rayleigh-Ritz
and TGOK [38,60] variational principles, the extended
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N-centered ensemble energy of Eq. (36) can be determined
variationally, thus allowing for its in-principle-exact ensemble
density functional description. The exact same formalism as
in TGOK-DFT can actually be used [see Egs. (25)—(29)].
The only difference is that we are now allowed to consider
occupations in the KS wave functions [see Eq. (29)] that do
not necessarily sum up to N:

>l =N, (43)

By rewriting the ensemble energy as [see Eqgs. (25), (26),
and (28)]

Ef = nggf + Ef [nf] — / drof, (Onf(r),  (44)

v=0

and applying the Hellmann-Feynman theorem to its varia-
tional expression in Eq. (25), which leads to
§
a_EE — gE _ &55 + 8Ech[n]
0 N8

we deduce from Eq. (42) the following exact expression for
any individual energy level included into the ensemble:

E, =&+ %(Eﬁxc[né] - / dr vﬁlxc(r)ng(r)>

N, .\ 9Ef, [n]
+ Z (5)\1) - ﬁ&\) g, n

where, in the second term on the right-hand side, we rec-
ognize the analog for ensembles of the Levy-Zahariev shift
in potential [46,59,65]. Note in passing that a similar shift
was actually recovered in an earlier work by Kraisler and
Kronik [56] where the authors described the piecewise-linear
behavior of the ground-state energy within ensemble DFT for
fractional electron numbers. At this point we should make an
important observation that will be exploited later on, namely,
that the above expression is invariant under constant shifts in
the ensemble Hxc potential vf_,x (r) — vﬁlxc (r) + ¢, since [see
Eqgs. (15), (29), and (43)]

) (45)

n=né

, (40)
=nf

N,
&t~ ~ / dr vi (r)né(r)

= (55 +ch) - % / dr (vlg_lxc(r) + c)ng(r), (47)

even though the ensemble may contain states that describe
different numbers of electrons. This major difference between
(extended or not) N-centered ensemble DFT and the conven-
tional DFT for fractional electron numbers originates from the
fact that, in the former theory, the number of electrons is arti-
ficially held constant and equal to the integer N [see Eq. (15)].
This flexibility allows us to recover, in the N-electron ground-
state limit of the theory [in this case, the ensemble weights
are set to £ =0 in Eq. (46)], the Hxc potential of regular
N-electron ground-state KS-DFT, which is also uniquely de-
fined up to a constant. This point is more thoroughly discussed
for the fundamental gap problem in Refs. [57] and [37]. It is
also important to note that setting & = 0 in Eq. (46) consists
in fact in taking the limit § — 0% of extended N-centered

ensemble KS-DFT because infinitesimal deviations from the
zero weight limit & = 0 [which does correspond to regular
N-electron ground-state KS-DFT, according to Egs. (25),
(36), and (38)] are needed to evaluate weight derivatives of
the ensemble Hxc density functional [second line of Eq. (46)].
This is how any (charged or neutral) excited-state energy level
can be described, in principle exactly, through the extended N-
centered ensemble formalism (i.e., by considering the § — 0
limit), on the basis of regular DFT (¢ = 0), which provides a
variational description of the N-electron ground-state energy
only.

We finally conclude from Eq. (46) that the energy asso-
ciated to any (charged or neutral) excitation v — « can be
expressed exactly in terms of its KS analog as follows:

E.—E, =& - &
N, =N,
+ % (Efm[n&] - / dr vﬁlxc(r)n‘s(r)>

(Ne = Ny) .\ OEE, [n]
+ (5,\K—5,\v - 5\) 2
2 Vo) o

=nt
(48)

Equation (48) is our first key result. It generalizes the neutral
excitation energy expression of TGOK-DFT [40,59] that was
recalled in Eq. (30).

V. REVISITING DENSITY FUNCTIONAL
DERIVATIVE DISCONTINUITIES INDUCED
BY NEUTRAL EXCITATIONS

In order to achieve an exactification of the KS orbital ener-
gies along the lines of Sec. II, we apply the general formalism
of Sec. IV to a particular type of extended N-centered en-
semble which includes only the neutrally excited N-electron
states, with weights {él’\v }2>0, and the ionized (N — 1)-electron
ground state, with weight £_ := év ~!. Therefore, in this spe-
cial case, the collection of ensemble weights reduces to

E= (&) }-0. ), (49)

and Eq. (48), where the summation in A > 0 (last term on the
right-hand side) runs over both the neutral excited states W'
(to which the weights é}{\' are assigned) and the ground ionized
state \116\' ~! simply labeled as “A = —” (to which the weight
&_ is assigned), becomes

E.—E, =& - &

+ w <E§IXC[n€] - f dr vﬁm(r)nﬁ(r)>

(Ne —N,) '\ 9EL, [n]
L3 (s - D) 2
A>0 N 85)\ n=nt
+ 87’( - 57]} - (NK — N‘J)$7 aEfIXC[n]
N 08 |,

(50)
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If, in the above expression, we choose for k the ground ionized
state (i.e., 8;, = O in the third line, §_, = 1 in the fourth line,
Ne=N-—1,E =E) ", and & = Y"M" &8), and for v > 0,
any ground or excited N-electron state (i.e., _, = 0 in the
fourth line, N, = N, and E, = Eﬁv), then we can express any
ground- or excited-state IP as Iﬁv =E, — E, [see Eq. (6)].
This gives the following more explicit exact expression

N—-1
1
I‘I)V \J;O 21: Sf B SE - N ( ch[ng] /dl‘ UEIXC(I')HE(I‘)>

athc[n]
+ Z ( Skv N ) aék

A>0 n=nt
£\ OEL [n]
1 —Hxel ] , 51
+< ) e B Gbh
thus leading to
1
1 = el — N(Eéxc[ - / drv;m@)ns(r))
£\ 0B, [n]
1 XC
+( ¥ ) e B
gV g [n]
25 X¢ , 52
o3 (5 o) T (52
A>0 n=nt

where, along the lines of Sec. II, we assumed, for simplicity
and clarity, that within the KS ensemble, the neutral excited
states v > 0 of interest are described by a single-electron ex-

citation from the HOMO (pf\, =: gof(o) to a higher-energy orbital

that we denote (,0:.E v [where the index i(v) > N of the acceptor
orbital depends on the excited state of interest v > 0], i.e., its
energy reads as follows in terms of the KS orbital energies,
&= Z EE + 5,@)’ the HOMO energy being 815\, = 8;&(0)-

The descrlptlon of both single excitations from lower-
energy orbitals and double excitations [36,66,67] within the
present formalism, as well as how excitations in the true
interacting system are connected to those occurring in the
noninteracting KS ensemble, is discussed in a separate work
[68]. Still, it is important to stress that, whatever the nature of
the neutral excitation v > 0 under study, Eq. (48), from which
excited-state IPs can be evaluated, remains exact. The possible
mixture of single and double (or even higher) excitations in
the true interacting states, which may not appear explicitly in
the KS states, will be recovered, energywise, via the ensemble
Hxc functional and its weight derivatives [see the second and
third lines of Eq. (48)].

As pointed out previously [see Eq. (47)], the IP expression
of Eq. (52) is invariant under any constant shift in the ensem-
ble Hxc potential. Therefore, we can always adjust the latter
potential in order to exactify Koopmans’ theorem for a given
ground or excited N-electron state v and a given choice of
ensemble weight values &:

N _ &
I, »50 €im)

&
/ dr vyt (0) = Ef [nf] = (N + &) %
- n=né
IE}
+Z(N5Av—$fl);§;fvm
#>0 A n=né
(53)

Equation (53), which is the second key result of this work,
uniquely defines (not up to a constant anymore) the Hxc
potential. Interestingly, unlike in traditional DFT approaches
to electronic excitations [69], this alternative and explicit ad-
justment procedure of the Hxc potential does not rely on the
asymptotic behavior of the density (see Refs. [37,57] for a
comparison of the two formalisms in the ground state), which
means that it is not only applicable to ab initio molecular
systems but it should also be transferable to finite-size lattice
models or extended systems, in principle.

Finally, in order to revisit the concept of derivative dis-
continuity within the present ensemble density functional
formalism, let us have a closer look at the ionization of both
the ground N-electron state (first scenario) and a specific vth
neutral excited state (second scenario), separately. For that
purpose, we should first realize that, in order to reach the
latter state v variationally, we only need to include into the
ensemble the neutral states that are lower in energy than v, i.e.,
we can set to zero the ensemble weights & corresponding to
A > v. In this case, the collection of ensemble weights further
reduces to

£=(£,0,0,...,0,&), (54)
where (note the bold font)
£ =8, ... &) (55)

is a shorthand notation for the v nonzero and monotonically
decreasing (TGOK) ensemble weights. In the first scenario,
we adjust the Hxc potential such that Koopmans’ theorem
is fulfilled for the ground state (v = 0). As neutral excited
states are not involved at all in this case, the ensemble can
be reduced to a regular N-centered ensemble [46] where the
TGOK ensemble weights are strictly set to zero:

£ =(8=000....0¢& >0). (56)

On the other hand, in the second scenario (ionization of the
vth excited state), assigning an infinitesimal weight to the
ionized ground state, in addition to strictly positive and mono-
tonically decreasing weights in )‘;‘11:’ , is sufficient, i.e.,

és(£7>0,0,0,...,0,s_—>0+)’ 67

so that the ensemble weight derivative E)EliXC [n]/0&_ in
Eq. (53) can still be evaluated, like in the first scenario. As
a consequence of Eq. (53), we finally reach from Eq. (5),
and without ever invoking fractional electron numbers nor
referring to the asymptotic behavior of the ensemble density,
the desired exactification of the KS orbital energies

A O (58)
where i(v) > N, with a clear and explicit construction of the
corresponding Hxc potentials.
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Equation (58) generalizes Levy’s exact formula for the
optical gap [55]. It also offers a different perspective on its
more recent extension to higher neutral single-electron exci-
tations [35]. Most importantly, the first and second scenarios
have a connection point which is reached when £_ — 0" and
EC’ — 07, respectively, and which corresponds to the regu-
lar N-electron ground-state formulation of DFT (the density
equals nyy in this case). If we use the shorthand notation

g = (&),0,0,.

v .
notation

0,62 > 0%), (59)

then equating, at this connection point, the Hxc potentials
associated with these two scenarios via Eq. (53) leads to our
third key result:

N_ 0+ N_O
EY —EY =& " —ep ™ (60)

where
dr / g0t £'=0
N (vch (r) — v (l')>n\p{;’ (r)

aElixc [anf)v]

ey (61)

£)=0

If we use the following decomposition of the ensemble Hxc
energy in terms of the regular weight-independent Hartree
functional and the weight-dependent xc functional,

Euln] + EX [n], (62)

which is formally convenient but problematic in practice, be-
cause of the ghost interaction errors it may induce [37,64],
then all Hartree terms can be removed from Eq. (61). Thus we
recover, from a completely different (N-centered) ensemble
perspective a feature that was originally highlighted by Levy
[55], namely, that the exactification of neutral KS excitation
energies is conditioned by the appearance of a derivative dis-
continuity in the xc potential, once the excitation of interest
has been incorporated into the ensemble. Moreover, as readily
seen from Eq. (61), that derivative discontinuity matches the
weight derivative (taken at :‘;‘C’ = 0) of the ensemble Hxc func-
tional, which, on the other hand, corresponds to the deviation
in excitation energy between the physical and KS systems [see
Eq. (30)]. The equivalence of the two concepts in this special
limit, already mentioned at the end of Sec. IIl, is recovered
from Egs. (60) and (61).

Equation (60) echoes Eq. (1) of Ref. [35] taken in the
so-called “w — 0% limit, which is the foundation of per-
turbative ensemble DFT (pEDFT) [35]. It explains how
exact neutral excitation energies can be evaluated from ex-
tended N-centered ensemble limits towards regular N-electron
ground-state DFT. From a practical point of view, Eq. (60)
offers an alternative approach, in the evaluation of gaps, to
the still challenging design of weight-dependent density func-
tional approximations [31]. While the latter would in principle
allow for a straightforward evaluation of the former from a
single ensemble DFT calculation [see Eq. (30) and Ref. [59]],
two different limits towards regular DFT need to be consid-
ered instead. In both of them, the N-centered ensemble weight
&_ infinitesimally deviates from zero. Revisiting pEDFT in

ch [n ]

the present context deserves further attention. This is left for
future work.

VI. APPLICATION TO THE HUBBARD DIMER

The present section is a proof of concept, illustrating how
derivative discontinuities emerge for neutral electronic exci-
tations in the context of extended N-centered (eN-centered)
ensemble DFT. For this purpose, the eN-centered ensem-
ble formalism is applied to both symmetric and asymmetric
Hubbard dimer models [70].

A. Key features of the model

The Hubbard dimer has become in recent years a model
of choice for assessing density functional approximations
in various contexts but also for exploring new concepts
[26,37,59, 66,70-78]. In the (second-quantized) Hamiltonian
H=T+U+ Ve of the Hubbard dimer model, the kinetic
energy, electron repulsion, and local (external) potential oper-
ators are simplified as follows:

A

T=—t > (&, +¢,60), (63a)
o=t}
1
U=UY i, (63b)
i=0
X AVext .
Vext 2”“ (i — fg), (63c)

where i € {0, 1} labels the two atomic sites, 7i;, = é;fa Cio 18 the
spin-site occupation operator, and #1; = ZU=T, | fio plays the
role of the density operator. While the difference in external
potential Avey controls the asymmetry of the model, the ratio
U/t of the onsite electronic repulsion parameter U to the
hopping parameter ¢ can be used to tune electron correlation
effects in the model. In the following, the central number of
electrons in the eN-centered ensemble is set to N = 2. With
this choice, the ensemble electronic density {n; = (1;)}i=0.1
reduces to a single variable n with site occupations equal to
ng =n and n; = 2 — n [see Eq. (15)]. Note that n = 1 in the
symmetric dimer.

As for the construction of the eN-centered ensemble, we
consider the singlet N-electron ground state, which also de-
termines the choice for the (N — 1)-electron ground state,
that is, the one-electron ground state of the noninteracting
(U = 0) Hamiltonian. We also include into the ensemble the
lowest singlet N-electron (neutral) excited state which, in the
noninteracting limit, is described by a single-electron (HOMO
to LUMO) excitation. The collection & = (§,&_) of eN-
centered ensemble weights consists of the weight & assigned
to the neutral (two-electron) excited state and the weight
&_ that is assigned to the one-electron ground state. According
to Eq. (33a), the eN-centered ensemble weight assigned to
the reference two-electron ground state (N = 2 in this case)
reads as

(N —D§_ 3

fo=6@) =1-—1— —$=1—7_—§. (64)
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Note that the ensemble weight constraints of Egs. (33) and
(35) read as

£

fo=1-7-§20, (65a)
£ 20, (65b)
and
28620, (66)
respectively, or, equivalently [according to Egs. (65a)
and (66)]

1 - % —§2¢ (67)

and [according to Egs. (65a) and (65b)]
0<é-<2(1-9), (68)

thus leading to 0 < & < % — (&_/4) for £_ varying in 0 <
&_ < 2. The eN-centered KS ensemble is described by two
fractionally occupied orbitals that we simply refer to as
HOMO and LUMO in the following, as we use the two-
electron ground state as reference in the ensemble. Their
expansions in the site basis as well as their energies can
be obtained by diagonalizing the following one-electron KS
Hamiltonian matrix [see Eq. (63)]:

7KS _% —t
[h (Av)] = |: _ i| (69)

r+A

In Eq. (69), Av corresponds to the ensemble density func-
tional KS potential difference whose exact expression is given
later in Eq. (76) [see the proof that follows Eq. (A9) in
Appendix A 1 a]. According to Eq. (64), the fractional occupa-
tions nf (i =H or L) of the HOMO and LUMO are controlled
by the ensemble weights & as follows [see Eq. (28)]:

n=EE) X2+E x1+Ex1=2—¢§  (70)
and

n = EE) Xx0+E xO0+EXT=§, (71

respectively. Note finally that, for a given choice of &, we can
arbitrarily shift the external potential (or the KS potential)
introduced in Eq. (63) by a constant, i.e.,

+o s+ (72)

without modifying the eN-centered ensemble under study. As
further discussed in the following, the adjustment of the latter
constant in the KS potential will be essential for satisfying
exact Koopmans’ theorems and, consequently, observing Hxc
derivative discontinuities.

A key feature of the model is that all individual energy
levels have exact analytical expressions in terms of ¢, U,
and Awvey [22,37,46,70], thus allowing for the evaluation
(to any arbitrary numerical accuracy) of ensemble density
functional Hxc energies. More precisely, the eN-centered en-
semble noninteracting kinetic energy and the ensemble exact
Hartree-exchange (simply denoted EEXX) functionals have

the following exact closed-form expressions:
TE(n) = —213/(1 =67 — (1 = nP, (73a)

U _ N\/1-n\>
Ef,x(n):3|:1+§—%+<1—3§—%><1_;> ]

(73b)

As readily seen from Eq. (73a), Ts‘s(n) does not vary with
the weight £_ assigned to the ground ionized state, unlike
the EEXX functional, which exhibits such a variation through
the weight &y(&) assigned to the two-electron ground state [see
Eq. (A14)]. This is a consequence of the fact that the KS
orbitals occupancies within the ensemble are independent of
&_ [see Egs. (70) and (71), and Eq. (A9) from Appendix A
1 a]. Note that EEXX will refer later on to the following
EEXX-only approximation:

EXX

£ EEXX &
Ech(n) ~ EHx(n)‘ (74’)

The missing ensemble density functional correlation energy
Ef(n) = F&(n) — TE(n) — Ef, (n) [see Eq. (21)] can be evalu-
ated from the eN-centered ensemble extension F(n) of Lieb’s
functional [22,46,62]. The detailed computation of the exact
ensemble Hxc density functional and its ensemble weight
derivatives is discussed in further detail in Appendix A.

On that basis, the exact ensemble Hxc potential can be
computed within the Hubbard dimer model, as further dis-
cussed in the following. First, the Hxc potential difference
(between sites 1 and 0) is obtained from the exact ensemble
density functional KS potential difference [see Eq. (76)]. The
last step consists of shifting the values of the Hxc potential
on sites 0 and 1 [see Eq. (72)] such that the exact Koopmans’
theorem of the key Eq. (53) is fulfilled, either for the two-
electron ground state [v = O in this case and the associated
weight is &y(§)] or the first (singlet) neutral excited state
(v = 1 in this case and the associated weight is &). The com-
putation of the appropriate shift requires the evaluation of the
eN-centered ensemble density functional Hxc energy [first
term on the right-hand side of Eq. (53)], which has been dis-
cussed previously, as well as the derivatives with respect to &_
and & of the ensemble Hxc functional [second and third terms
on the right-hand side of Eq. (53), where “g‘f\’ = £]. The corre-
lation part of the latter derivatives can be determined via the
Hellmann-Feynman theorem from the variational Legendre-
Fenchel expression of F(n) [see Eqs. (Al1) and (A12) in
Appendix A 1 a].

B. Observation of derivative discontinuities

Let us first summarize the key findings of Appendix A. For
a given choice of U, t, and Ave, as well as given ensem-
ble weight values &, the ensemble Hxc potential difference
(between sites 1 and 0) can be expressed exactly as follows:

AUli’ilxc = Avlg(s(ns) - Avext, (75)

where the ensemble density functional KS potential difference
(see Appendix A and Ref. [22])

e i) 2(n—1)
M= = a1
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is a continuous function of both the density n (in the range
& <n<2—-¢) and the ensemble weight & assigned to the
neutral excited state, and né denotes the true interacting en-
semble density (on site 0). The ensemble Hxc potential on site
i can be expressed as [see Eq. (72)]

AvE

£ 1 Avy £
Uch,i = ( )l 2 — 7 = H’ch’

i=0,1 )
where the uniform shift ,uilxc is determined, for a given ion-
ization process, from Eq. (53).

We now turn to the results and their discussion. All the
calculations, exact and approximate, have been carried out
with t = % For convenience, EEXX results have been gen-
erated without density-driven errors. In other words, exact
interacting ensemble densities have been employed in con-

junction with Eq. (75). Therefore, the EEXX approximation

has been used only when evaluating ,uilxc through the neglect

of the ensemble correlation density functional and its weight
derivatives in Eq. (53).

Figure 1 shows the variation of the ensemble Hxc potential
on site 1 with respect to the ensemble weights for two sepa-
rate physical processes (see Appendix A 2 a for the detailed
derivation of the potential in both cases). The first one (red
curve in Fig. 1) corresponds to the ionization of the two-
electron ground state (0 < £ < 2 and £ = 0 in this case). In
the second process (blue curve in Fig. 1), the neutral excitation
is included into the ensemble (0 < & < %) where the ionized
ground state contributes infinitesimally. In other words, en-
semble weight derivatives are evaluated for £_ = 0 in this
case. As readily seen from Fig. 1, the exact Hxc potential,
constructed according to Eq. (53), does exhibit a discontinuity
when switching from one process to the other, whether the
dimer is symmetric or not. As expected from Egs. (30) and
(61), this Hxc derivative discontinuity, which reduces to a
xc derivative discontinuity if the regular weight-independent
Hartree functional is employed, equals

AO o =070 | =00

Hxc *— %Hxc,1 ch 1
_ ., (E=07,07) (£€=0,0%)
— YHxc,0 - vch,O

0
8EIfI§xc )(n\l"év)
=z | (78)
£=0

and corresponds to the deviation of the regular KS gap from
its exact interacting optical counterpart.

As readily seen from Egs. (75)—(77), the derivative discon-
tinuity is solely induced by the readjustment of the constant
shift in the Hxc potential when moving from the ionization of
the ground state to the neutral excitation process, i.e.,

(£=0,0") M(§—>0+ 0+) (79)

0
Ach 1% Hxc Hxc

This appears clearly in the symmetric dimer, for which nf =

1, thus leading to Avflxc = Avext = 0 and, therefore, vflxc’l.

- ,uf{xc. In this special case, the eN-centered ensemble Hx and
correlation energies read as [see Egs. (73b) and (A36)]

Eb )| _ = U<1+s—€—),

(80a)

t=05U=1
1.2 T
Ne=o
osft € 0"
Derivative

0.6 ,discontinuity;

0.2
0.75

0.60

Hxc potential on site 1

0.030 4

0.015 A7 e,
0.6 1

0.000
0.000

0.025

$0.050

T

0.0 0.5 1.0 1.5 2.0

(& or¢)

ensemble weight

[
VHxe

FIG. 1. Exact Hxc and EEXX-only (Hx) potentials on site 1 of
the Hubbard dimer plotted as functions of the ensemble weights
[£_ for the ionization (in red) of the two-electron ground state and
& for the neutral excitation process (in blue)] for U = 2t = 1 and
various external potential values. The derivative discontinuity that
occurs when switching from one excitation process to the other
is highlighted in green. The vertical black line at & = % (dotted)
indicates the TGOK equiensemble.

E(i’:(n)|n 1 (1_§_E_> c

respectively, where E. = 2f — —vU 2+ 16t% is the regular
ground-state correlation energy of the symmetric two-electron
Hubbard dimer. Consequently, for the ionization of the excited
state, the Hx and correlation contributions to the right-hand
side of Eq. (61) can be simplified as follows (we recall that
N =2):

(80b)

£ OB () £ (1) per
) — (¥ 6 v gy O Ein() 0 o= 0,
(81a)
&
Ef(n)— (N + & >3E;”)+<N s>aE§(”) =
(81b)
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respectively. If, instead, we consider the ionization of the two-
electron ground state, we obtain

§
ERCRaRaE: Tl A

& 3E§ (n) n=1
E:(n)—(N+§&_) = 2E., (82b)
0&_
£=0
respectively. As a result, we deduce the following weight-
independent Hxc potential expressions (with the same value
on both sites) for each excitation process (see Appendix

A2b), 005 = (U + 4 — VUZ + 1617)/2 with £ > 0 and

+ . .
vl(_fx’f ) = U with £ > 0, respectively. Thus, we recover the

derivative discontinuity expression of Ref. [22], i.e., AV =
(U — 4t + v U? 4+ 16t2)/2. As the ratio Avey /U (and, there-
fore, the asymmetry of the model) increases for a fixed U
value, the derivative discontinuity decreases (see the central
and bottom panels of Fig. 1), as expected for a system where
electron correlation becomes weaker.

Turning finally to the EEXX-only approximation, we ob-
tain for the symmetric dimer the exact ensemble Hxc potential
associated to the neutral excitation v](igoﬂ = v](_fx’gﬂ =U,asa
consequence of Eq. (81b). However, EEXX overestimates the
N-centered ensemble Hxc potential associated to the ioniza-
tion of the two-electron ground state, giving vl(ff‘) =U/2,
so that the Hx contribution to the derivative discontinuity is
AV = U/2. These results are in perfect agreement with the
top panel of Fig. 1. In the asymmetric case, EEXX is still
able to model (approximately) the derivative discontinuity
because the EEXX functional is ensemble weight dependent.
When comparing the EEXX-only and exact Hxc ensemble
potentials that describe the neutral excitation, in the particular
case where U = Avg = 1 (see the solid and dotted blue
lines in the central panel of Fig. 1), it becomes clear that
electron correlation can drastically change the variation in the
TGOK ensemble weight & of the Hxc potential. In this specific
correlation regime, the Hx potential decreases drastically as &
approaches % unlike the full Hxc potential. This feature orig-
inates from the Hx contribution to Koopmans’ theorem [see
Eq. (53)], from which the Hx potential is uniquely defined.
This contribution reads as in the left-hand side of Eq. (81a)
and can be simplified as follows, according to Eq. (73b):

£ () — BB M) gy 2B
Ej (n) — (N +§&-) oE + (N -¥) T
—n)? —
&émUP+ald2§; ﬁ]:pgm) (83)

By expressing the Hx potential (on site 1) as follows, accord-
ing to Egs. (75) and (77),
+
vflx = v](f,;f)l ) = %(Avf(s(né) — Avext) - /Lf{x, (84)

where, according to Koopmans’ theorem of Eq. (53) and the
notation introduced in Eq. (83),

(Avg(nf) — Avex ) (1 — 1) — 25, = Df, (),  (85)

we obtain the final expression

s_”é

D5 (nf)
Ui = o (Avks(n°) — Avey) + ——

(86)

When U = Avey = 1, the ensemble density varies weakly
with £ in the range 1.4 < n® < 1.5 [22], so that the con-
tribution Df_lx(ns) to the Hx potential varies essentially as
£(38 —5)/(1 — &), which decreases with £ over the range
0 < & < 1/2, in agreement with the middle panel of Fig. 1.
On the other hand, in the more pronounced Avey/U =5
asymmetric regime (see the bottom panel of Fig. 1), the
ensemble density varies as n® &~ 2 — £ [22]. Consequently,
the prefactor (1 —nf)> ~ (1 —£)? in the second term of
Dilx(ng) [see Eq. (83)] does now contribute to the weight
dependence of the Hx potential, thus leading to a variation
as £(3¢ — 5)/(1 — &) and, therefore, a substantially different
behavior (still decreasing though) when approaching & = %
The increase of the Hx potential observed in the vicinity of
&= % (see the bottom panel of Fig. 1) can be related to the
KS and external potentials as well as to the variation in & of
the ensemble density [see Eqs. (76) and (86)]. Indeed, in the
limit Avext/(2t) = Avext/U — +00, which is taken in order
to better understand the strongly asymmetric Avey /U =5
regime depicted in the bottom panel of Fig. 1, the ensemble
density is essentially a noninteracting one,

- _ g2
nf%l_i_mw — _u’ (87)
V (Avex)? + 412 (Avex)

which can, in this form, be introduced into the KS density
functional expression of Eq. (76), thus leading to the Hx
potential contribution

né 12

(Avkg(nf) — Avey) ~ ——— (@2 — ), (88)

2 Avexy

which increases with &.

C. Connection with regular ground-state DFT

In order to establish a clearer connection with conventional
N-electron ground-state DFT (i.e., the & = 0 limit of the the-
ory), we adopt in this section a different perspective by using
the general and exact IP expressions of Eq. (52), where the
ensemble Hxc potential is defined up to a constant. Unlike
in Sec. V, and the previous section, we do not impose any
constraint on the latter constant. According to Eq. (52) [see
also Eqgs. (A17) and (A18)], the IPs of the N-electron (N = 2
here) ground and first neutral singlet excited states can be
expressed as follows when & = 0:

IES [nygy]
IV = —&y + _THxel W 1 ) (89a)
9E
£ =0
ES, [nyy] EL, [nyy]
IV = -3 + Trixel Ty 1 _ TFHxelPug ] . (89b)
T 9E
£ =0 £=0

respectively, in terms of the regular (defined up to a con-
stant) KS HOMO and LUMO energies ¢; to which we have
applied the Levy-Zahariev (LZ) density functional shift in
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FIG. 2. Top: Variation of ground-state (red) and excited-state
(blue) IPs with the onsite repulsion U in the asymmetric two-electron
Hubbard dimer (N = 2 and Avey/t = 2). EEXX-only results (dotted
lines) are shown for analysis purposes. Bottom: Decomposition of
the excited-state IP into LZ-shifted KS LUMO energy and ensemble
weight derivatives contributions [see Eq. (89b)].

potential [65]

_ Epxe[n] — fdl’ VHxe (T)7(T)
N )

where Eyy.[n] and vyy(r) are the regular Hxc functional and
potential, respectively:

(90)

& —>8=¢+ C[n\p(z]v]. ©1n

The nice feature of LZ-shifted orbital energies is that they
are invariant under constant shifts in the Hxc potential. In
the present two-electron Hubbard dimer model [see Egs. (76),
(A6), and (A8)], the unshifted KS energies are ey = —¢, =

EH[Av%O(nq,gz )] and

C(n) = [Epxe(n) — (1 — n) Avpye(n)]. (92)

The top panel of Fig. 2 shows the variations in U of
the ground-state and first-excited-state IPs at the exact and
approximate EEXX levels of calculation in the asymmet-
ric Avey/t = 2 case. The trends of the ground-state IP in
Fig. 2 are qualitatively the same as in Fig. 4 of Ref. [46]
(where Ave/t = 5). As long as electron correlation is weak
or moderately strong (U/t < 2), EEXX performs very well.
In the stronger correlation regime, the relatively good per-

formance of EEXX in the description of the excited-state IP
was expected since, as readily seen from the following energy
expressions [22],

EY 4 1\’ t\’

U T ey \u) TON\G) |
(%) -1

EY | _Bvw, 2 (1 2+0 2%

u U 1 — A \U u)

(93b)

(93a)

for U > Avex > t, the first (singlet) excited state has essen-
tially no correlation energy. This is not the case for the ground
state, which explains the poor performance of EEXX in the
description of the ground-state IP when electron correlation is
strong.

For completeness (the following analysis has already been
done for the ground-state IP in Ref. [46]), the decomposi-
tion into LZ-shifted KS LUMO energy and ensemble Hxc
weight derivatives of the excited-state IP [see Eq. (89b)] is
plotted as a function of the interaction strength U in the
bottom panel of Fig. 2. As U increases, the Hxc ensem-
ble weight derivatives dominate while the LZ-shifted LUMO
energy essentially tends to the hopping parameter ¢, which
is the expected result for a perfectly symmetric dimer. In-
deed, the ground-state density approaches the value n =
1 when U/Ave becomes large [22,26]. Note that, at the
EEXX level of approximation, the LZ-shifted LUMO en-
ergy is overestimated while the (absolute value of the) total
weight derivatives contribution is underestimated, so that the
errors mostly cancel out when evaluating the total excited-
state IP (see the top panel of Fig. 2). Let us stress that,
in the present case, being able to model the weight depen-
dence of the ensemble density functional exchange energy is
essential.

For analysis purposes, we finally consider deviations from
regular ground-state DFT that are more than infinitesimal
by increasing the weight assigned to the ionized ground
state (§- > 0) while remaining infinitesimally close to the
ground-state limit (i.e., & — OT) for the description of the
excited state. The impact on the evaluation of both ground-
and excited-state IPs, as well as the optical gap, is shown in
Fig. 3. In the symmetric case (top panels), I(’,V =—f— %(U —

VU? + 162), which gives the lower value I} ~ — % (ie.,
I ~ 0 in Fig. 3, since U = 2¢) within the EEXX-only ap-
proximation, where the correlation energy of the two-electron
ground state is missing. Since the exact excited-state IP I}V =
—t — U is recovered at the EEXX level in this case, the un-
derestimation of the optical gap is solely due to the missing
correlation in the ground state.

Turning on asymmetry (Avey, = 1) while remaining in the
same moderately correlated regime (U = 2t) introduces cur-
vature in £_ for both ground- and excited-state approximate
EEXX IPs (see the middle left panel of Fig. 3). Note that, in
the present case (U = Avex = 2t = 1), a perfect, and prob-
ably fortuitous, compensation of errors on both IPs occurs
when computing the EEXX optical gap for the specific weight
value of £_ & 1.3. In the stronger correlation regime (U = 5),
the curvature of EEXX IPs is further enhanced and perfect
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FIG. 3. Left panels: Exact and EEXX-only IPs for the ground state (red curves) and the excited state (blue curves) plotted as functions of
the ionization ensemble weight £_ in the limit £ = O for the symmetric (top), and two asymmetric (middle, bottom) Hubbard dimers. Right
panels: Exact and EEXX-only optical gaps plotted as the difference between the two IPs for the same three Hubbard dimers.

error cancellation does not occur anymore (see the bottom
panels of Fig. 3). Unlike in the exact theory, the EEXX density
functional corrections to the bare weight-dependent KS IPs
[see Eq. (52)] do not lead to weight-independent physical
IPs. Nevertheless, as shown analytically in Appendix B, the
EEXX functional succeeds in reversing, through its weight
dependence, the variations in £_ of both ground- and first-
excited-state KS IPs, thus avoiding a further underestimation
of the excited-state IP as &_ increases (see the bottom left
panel of Fig. 3). As expected in such a strongly correlated
regime, a sensible optical gap can only be obtained by retriev-
ing the weight-dependent ensemble correlation energy, which
is completely neglected at the EEXX level of approximation
(see the bottom right panel of Fig. 3).

VII. CONCLUSIONS AND OUTLOOK

TGOK-DFT [38,40] and the more recent N-centered en-
semble DFT [46,47] have been merged, thus allowing for
an in-principle exact and simultaneous density functional de-
scription of both charged and neutral electronic excitation
processes [see the general excitation energy expression of
Eq. (48)]. The resulting unified theory is referred to as ex-
tended N-centered ensemble DFT. Unlike in conventional
DFT, in extended N-centered ensemble DFT, the number of
electrons is artificially held constant and equal to the integer
(so-called central) number of electrons N of the reference
ground state, even when the ensemble under study contains
charged excited states in addition to neutral ones, hence the
name of the theory. Therefore, and most importantly, the Hxc
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potential is always defined up to a constant shift within the
present formalism.

The concept of derivative discontinuity for neutral excita-
tions, which is much less discussed in the literature [18,35,55]
than for charged excitations, has been revisited in this context.
When adjusting, for each ground and excited N-electron states
separately, the constant shift in the Hxc potential, such that
each of them satisfies an exact ionization Koopmans’ theorem
[see Eq. (53)], a jump (the so-called derivative discontinuity)
is indeed observed when switching from the ground to the
excited state of interest [see Eq. (61)].

Unlike in previous works, the asymptotic behavior of
the density is never invoked nor used in the mathematical
construction of the derivative discontinuities. It fully relies,
instead, on the weight dependence of the extended N-centered
ensemble Hxc density functional energy. This allows for a
straightforward application of the theory to lattice models (the
Hubbard dimer in this work). It may also open new perspec-
tives in the description of gaps in mesoscopic systems [79]. In
principle, the present density functional formalism is general
enough to describe excitonic effects (through the inclusion of
anionic states into the ensemble), as well as the challenging
multiple-electron neutral excitation processes.

Finally, efforts should now be put into the design of
weight-dependent density functional approximations, which
is essential for turning the theory into a reliable computa-
tional method. The (in-principle orbital-dependent) ensem-
ble exact-exchange functional that we studied within the
Hubbard dimer model nicely incorporates weight depen-
dencies but it obviously needs a proper (weight-dependent)
correlation counterpart whose construction is far from trivial
[27,28,31]. Exploring further the extension of ensemble DFT
to the time-dependent linear response regime [29], for exam-
ple, could be a source of inspiration for this task. Work in
these directions is currently in progress.
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APPENDIX A: TECHNICAL DETAILS ABOUT THE
APPLICATION OF eN-CENTERED ENSEMBLE DFT ON
THE HUBBARD DIMER

1. Ensemble functionals

In this Appendix, the exact and EEXX-approximate den-
sity functionals of the Hubbard dimer are systematically
derived for the eN-centered ensemble in Sec. VI.

a. Exact functionals

We first consider the universal eN-centered ensemble
density functional of the interacting system. As stated in
Sec. VIA, the central number of electrons was set to
N = 2. For this particular choice, all individual N- and
(N — 1)-electron energies of the Hubbard dimer have

analytical expressions, which are available in, for example,
Refs. [22,46].
The eN-centered ensemble energy reads as

E5(Avew) = (1 - %‘

+ E_EY T (Avex) + EEY (Avex),

- 5>E{)V (Avext)
(A1)

where the dependence of individual energies on ¢ and U
has been omitted for clarity, which will also be the case for
other expressions dependent on ¢t and U. The corresponding
ensemble density reads as

&
nt = nf(Avey) = (1 — 5 & |y (Ave)

+ g—n\p(’)"‘l (Avext) + Snw{V(Avexl)7 (A2)
where individual N- and (N — 1)-electron densities can be
straightforwardly obtained from first-order derivatives of in-
dividual energies with respect to the external potential. If we

introduce the counting operator N = Z i—o 1y, it follows from
Eq. (63c) and the Hellmann-Feynman theorem that

= ('] ')

1 .
= (w2 20|

AE} (Avext)
0 Avex

0H (Avey)
0 Aveyy

=5 = n\lJlM(AUext)» (A3)

2
where M =N —1orN,and I =0or 1.

In the practical calculations reported in Sec. VI, we rely
on the Legendre-Fenchel transform definition of the univer-
sal eN-centered ensemble density functional, which can be
obtained by analogy with TGOK-DFT [22] and N-centered
eDFT [46]:

F%(n) = sup{E*(Av) + Av(n — 1)}. (A4)
Av

In the above equation, the maximizing potential Avé(n) is
equal to the derivative of F&(n) with respect to the density,

dFE(n)

= Avi(n).
™ v*(n)

(AS)
Despite lacking a closed-form expression as a function of the
density, the value of Fé(n) can still be computed to arbitrary
accuracy for any given density from Eq. (A4) via Lieb maxi-
mization. However, for the exact ensemble density n¥ which is
used in all calculations in Sec. VI, the maximizing potential is
simply equal to the external potential Avé(n¥) = Avey, and
FE(n) = E5(Avext) + Aveyi[n5(Avex) — 1] is an analytical
function of Avgy.

Next, we consider the noninteracting (KS) system which
reproduces the eN-centered ensemble density of the interact-
ing system. From the KS Hamiltonian

Av
T+ —(nl — ),

AXS(Av) = (A6)
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we obtain the eN-centered ensemble energy as

E(Av) = (1 —&— %)5{}@1))

+&.E7 N (Av) +£EY (Av), (A7)
with the N- and (N — 1)-electron ground-state energies, and
the N-electron excited-state energy written as S(’)V (Av) =
2en(Av), E)7'(Av) = ey(Av), and EV(Av) =0, respec-
tively, where

Av2
242

en(Av) = — 1

(A8)
Similarly to the universal functional in Eq. (A4), the

noninteracting kinetic energy Tf(n) can be written as a
Legendre-Fenchel transform, which reads as
Ti(n) =

sup{2(1 — &)en(Av) — Av(l — n)}. (A9)
Av

Since Eq. (A9) is explicitly independent of the ensemble
weight for the (N — 1)-electron ground state &_, it follows
that the maximizing KS potential corresponding to the non-
interacting eN-centered ensemble is the same one as in
TGOK-DFT [22]. Hence, it can be expressed as

2t(n — 1)
VA g7 =1 —n?

which implies that a given density n is noninteracting
eN-centered ensemble v representable iff [n — 1| < 1 — €. By
plugging Eq. (A10) into Eq. (A9), we obtain the expression for
the noninteracting kinetic energy functional ng (n), as given in
Eq. (73a).
Finally, the ensemble weight derivatives of Hxc functional
HXC(n) Fé(n) — TSE(n), which are key ingredients for ob-
taining exact expressions for the IPs and the optical gap, are
obtained as follows:

AVSSE(n) = AVESE(n) =

(A10)

&
8E“8xg(”) EN[Av(n)] — EN[AvE(n)]
2(1 — &)
- (A11)
VA —£2 — (1 —n)?
and
OES () i EY[Avi(n)]
b =B A - e e N

b EEXX functional

The eN-centered ensemble exact (Hartree) exchange
(EEXX) functional can be obtained from the formal expres-
sion of the Hx energy:

IFE(n)

Ef.(n)=U U

) (A13)

where we have, according to Eq. (A4),

aFE(n) _ (1 &_ 5) 8E(I)V(Av)
U . 2 aU U=0, Av=Avig(n)
OEN (A
iU U:O,Av:Auis('l)

and, according to Egs. (A8) and (A10), and Eq. (A7) in [22],

AEN (Av)
oU

U=0, Av:Auf(S (n)

I+1 1—n\>
=T|:1+(1—2I)<1_$> }

for I =0 or 1. Finally, inserting Eq. (Al5) into Eq. (A13)
gives, after some rearrangements of various terms, the follow-
ing expression for Hx energy of Eq. (73b):

£ EN[1-n)
E(n) = [1+s——+<1—3§—7><1_$> ]

(A16)

(A15)

2. Derivative discontinuity in the Hubbard dimer from the
eN-centered ensemble perspective

a. General expressions

Within the formalism of extended N-centered ensembles,
the derivative discontinuity can be shown to appear in the
Hubbard dimer. Starting from Eq. (52), we derive expressions
for the IPs of the ground and the first-excited states

E(I)V ! E(ZJV_ _SH__< ch(ng)_Zvchz z)

E_\ IEf, ()
* (1 " 7> e

n=nt

3 IEL, .(n)

T (A17)

n=né

and

N—1 N £
EO _El == - _<Ech(n£) - Zvchz 1)

(14 2

2 85_ n=né
£ ) P
4 (2 1) I

where the integral f dr vgxc(r)né (r) has been replaced by a
summation over lattice sites. For the purpose of displaying the
derivative discontinuity, the KS Hamiltonian of the Hubbard
dimer is written with the KS potential determined up to a
constant as follows:

ARSE = F 4 oK% 1 oSS, (A19)
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where
(—1y"!
U;(S’E = 2 AUKS’E o 'u'f{xc’ (AZOa)
AvESE = an(n)/Bn|n:n§ = Avext + AUIE-[xc’ (A20b)

and ¢ is the exact eN-centered ensemble occupation of site 0.
The total Hxc potential on site i reads as

¢ (l)zl

Uch i 2 —A EIXC M’ilxc . (A2 1)
The constant shift — /LHX is determined to fulfill the constraint

for exactification of Koopmans’ theorem in Eq. (53).

In order to derive the derivative discontinuity, we consider
two specific ensembles. The first ensemble is the regu-
lar N-centered ensemble, where the ensemble weights take
the values of £ =0 and 0 < &_ < 2, describing the ioniza-
tion process from the two-electron ground state, with the
IP [l = E)~' — E}. To fulfill Koopman’s theorem for the
ground-state IP, we set all the terms on the right-hand sides
of Eq. (A17) to zero, except the HOMO energy. This gives
the following constraint for the Hxc potential in the Hubbard
dimer:

1
0.6) & (n)
g = B - @ e gg ,
i=0 - n=n—
(A22)
where nf- =n©8) and E =E{S). By inserting
0,6-)

Eq. (A21) into the above equation, and solving for — .,
we get

0.6 _

1
_/’Lch 2 (AUHXC [l’l§7 ] + EEI;(C (I’léf ))

245 BE ()

, A23

2 - |, (A23)

where, according to Egs. (75) and (76), Avf{m =
Av ) (nf-) = Avd ().

The second ensemble is the extended N-centered ensemble
from Sec. VI, with the full weight range for the neutral excita-
tion (0 < & < %), and the infinitesimal limit for the ionization
from the two-electron ground state, i.e., & — 07. The latter
weight limit is imposed so that Koopmans’ theorem for the
excited-state IP IV = EY~™' — EN can still be fulfilled. By
setting all the terms on the right-hand side of Eq. (A18) to
zero, except the LUMO energy, we get

I
+ Eg.(n)
il = B )+ - )
i=0 n=nt
FEE) e
0B ) (A24)
9t
£=0
where nf =n®® and ES_ =ESY. After inserting

Eq. (A21) into the above equation, and solving for —uﬁxg ),

we get
o1
_/’Lgxg = E(Avlixc[nE —1] +EEIXC(n§))
2—§ dEE(n) AEL ) (n)
2 0E | 08 |,

(A25)

where AvfIxc = Av}(_i;g) n5). Considering now Eq. (A23), the
limit £ — 0% determines the value of the constant Hxc shift
for the two-electron ground state

+ 1
ngco "= ) (AUch[n\pN — 1]+ Ech(nlI,N ))

DEx: (nyy)

T (A26)

£.=0

In the case of Eq. (A25), the limit & — 0" returns the value
of the Hxc shift for the TGOK ensemble with an infinitesimal
amount of neutral excitation from the two-electron ground
Sstate

—ie” ) = ;(Avﬂxc[nw = 1+ Eine(n))
S P S
(A27)

By subtracting Eq. (A26) from Eq. (A27) and using
Eq. (A21), we obtain the following expression for the deriva-
tive discontinuity:

(£—0%,0%) (£=0,0") _  (£=0,0%) (£—0%,0%)
Hxc,1 ~ UHxe, 1 — MHxc — MHxc
ES (ngn)
= (A28)
3 o

This is an exact result for the derivative discontinuity in the
Hubbard dimer, which is shown in Fig. 1.

b. Symmetric Hubbard dimer

In the symmetric dimer, the Hxc potential and the
derivative discontinuity have closed-form expressions. Start-
ing from the formulas for individual N- and (N —

1)-electron energies, EY (Avey = 0) = %(U —JU? 4+ 16¢2),
EN(Aveyy =0)=U, and E) " '(Avex = 0) = —t, the uni-

versal and the noninteracting kinetic energy eN-centered
ensemble density functionals are derived as follows:

Fé(n=1) = E4(Avey = 0)

_ _ 2 1 2
:(1_5__5>—U I eivev
(A29)
and
TEn=1)=-2t(1— &), (A30)
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while the EEXX functional reads as

U £
éx(n=1>=5< ——+s)

For the regular N-centered ensemble (£ =0 and
0 < &_ < 2), the Hxc functional reads as

(A31)

—JU? + 1612
ch(n =1)= <1 — 7) > — &t + 2,
(A32)
which can also be expressed as
IES (n=1)
=1 =-Q-g)=er——  (A3)

Inserting the above expression into Eq. (A23), and taking into
account that Avs’ = 0, we obtain from Eq. (A21) that

0.6 IEq (n=1) U+4t—JUT+ 1612
vch,l =-2 8$7 = ) .
(A34)

Using the EEXX functional [see Eq. (A31)] instead of the
exact Hxc functional clearly gives the wrong result:

vy = U/2. (A35)

Upon inclusion of the neutral excitation into the ensemble
0 <& %), we observe that the EEXX-only and the exact
Hxc ensemble potentials coincide in the symmetric dimer. To
demonstrate this, we first isolate the eN-centered ensemble
correlation functional from Egs. (A29)-(A31):

Ein=1)=Fi(n=1)-Tin=1)—E,,(n=1)

/T2 + 1612
= ( _& _g>#’ (A36)
which can also be expressed as
o _ §
Bo=n=-0-5"0 =Dy oy =0
3 98-
(A37)

In the particular case when £&_ — 0%, we have

IES (n= 1)+ 28Eéé”$)(n= i)

Ern — _
Ecn=1)= Py 9E

-(2-8)

£.=0
(A38)

By inserting the above expression into Eq. (A25), we can
see that the correlation part in the ch(n = 1) functional is

canceled out by its weight derivatives, which implies that
(£,0%)

only exchange terms contribute to vHx’g , giving the following
result:
0t ,07)
l(-lgxc,l = UI(—lgx,l
_ l(g N 2aEfIX(n - 1)) _0Ej (n=1)
2\ 2 o0& & — ¢ o
=U. (A39)

Hence, according to Eqs. (A34) and (A39), the exact deriva-
tive discontinuity in the symmetric dimer reads as

U — 4t + U2+ 1612

et " Vet = > . (Ad0)
while the EEXX-only approximation, obtained from
Egs. (A35) and (A39), reads as
0t.0t —0.0F U
G2t e

which is always lower than the exact derivative discontinuity.

APPENDIX B: EEXX APPROXIMATION APPLIED TO THE
HUBBARD DIMER WITHU >» Ave =2t =1

In the strongly correlated regime U >> Avex = 2t = 1, the
ground-state density is very close to 1 [22], while the one-
electron ground-state density -1 (we recall that the central

number of electrons is N = 2 in the present model) fulfills,
according to Eqgs. (A3) and (AS),

0eH(Avext) _ Avex — l(] —2n N,l)
3 Avext 2+ (A2 /4 2 A
(B1)

or, equivalently, nyy-1 = %(1 +
lowing expression for the ensemble density under study:
- _ p6=05)

(1-5) erre 21+ )

=14+ == (B2)

\/%), thus leading to the fol-

n

As a result, the ensemble KS potential varies with £_ as
follows [see Eq. (76)]:

- _
20(n — 1) - -

\/1 (nt —1)° \/8—537

and the KS HOMO/LUMO energies read as

A vf{s

(2%) v

—sfy =i =P+ = et (B4)

Therefore, the bare KS ground-state (excited-state) IP in-
creases (decreases) with the ensemble weight £_, unlike the
approximate interacting EEXX one (see the bottom left panel
of Fig. 3).

In order to identify the origin of the latter trend we need to
consider the decomposition of both IPs as given in Eq. (52).
The Hxc potential term, which contributes to both IPs,
reads as

Ave & (Avgs — Avew)
2 —2nb)=—
oy BT = N
L = i ®5)
B 42 8 — g2 -
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since N = 2. Note that, as we approach the £_ = 2 limit, the
above contribution decreases with &_. Therefore, the weight
dependence of the approximate EEXX excited-state IP orig-
inates from the remaining ensemble Hx energy term and its
weight derivatives. The contribution that is common to both
ground- and excited-state IPs reads as

Ef () £\ OES, (n)}
Iy = + <1 + —) . (B
o |: N ag_ n=nb-

where [see Eq. (73b)]
. U &
Efi () = 3<1 - 7)[1 +(n— 172,

thus leading to
u £2
—— 14+ —=]. B8
2( + 8) (B8)

The above contribution is therefore responsible for the net
decrease of the EEXX ground-state IP as the ensemble weight
&_ increases.

Turning to the excited-state IP, we need to consider the
following additional contribution [see Eq. (52)]:

(B7)

U
Fin= =511+ 05 =D =

E(S & )(n)

—AE =
Hx as

£=0,n=né-

—%[1 1P+ £

_g[l g0+ s_)}

2 8 ®9)

which, when it is added to the remaining Hx contribution of
Eq. (BS8), gives the total Hx term

. v g
Igl-lx Ag]—lx = _E<2’_ ?)

The above contribution is therefore responsible for the net
increase with &_ of the EEXX excited-state IP.

(B10)

In summary, at the EEXX level of approximation and in
the considered U > Avex = 2t = 1 regime, the ground- and
first-excited-state IPs read as

et fime)-Y1+E) Bl
0 4[ 2 8

1 8+ &2 U g3
N~ — e ———— | —-=—[2-2=])., (Bllb
A R s 2( 8) 1D

respectively, thus leading to the following expression for the
optical gap:

2(1+ &
s I{V%\/%—k%[l—#} (B12)

As aresult, we obtain in the limiting £ = 0 and £_ = 2 cases
the following expressions:

=01 U
N~ - — =, B13
0 272 (B132)
£=0 1
N~ ——+U, (B13b)
= U
-1~ 1+5, (B13c)
and
£=2 1 3U
N~ — - (Bl4a)
£= 1 U
N~ —— - (B14b
1 \/E 2 )
Ny oy E=2 U
-1~ f_Z’ (Bl4c)

respectively, which are in very good agreement with the val-
ues obtained numerically for U = 5 (see the bottom panels
of Fig. 3). Note that in the latter case, the EEXX optical
gap equals v/2 — 3 &2 0.16 when £_ = 2, which confirms the
dramatic underestlmatlon of the optical gap that is observed
in the bottom right panel of Fig. 3 as £_ increases.
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