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ABSTRACT
We derive the explicit expression of the three self-energies that one encounters in many-body perturbation theory: the well-known GW self-
energy, as well as the particle–particle and electron–hole T-matrix self-energies. Each of these can be easily computed via the eigenvalues
and eigenvectors of a different random-phase approximation linear eigenvalue problem that completely defines their corresponding response
function. For illustrative and comparative purposes, we report the principal ionization potentials of a set of small molecules computed at each
level of theory. The performance of these schemes on strongly correlated systems (B2 and C2) is also discussed.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0176898

I. THE STANDARD FORM OF HEDIN’S EQUATIONS
The quasiparticle picture is a central concept in quantum

many-body physics and chemistry as it provides a means to under-
stand the behavior of electrons within a material or a molecule.1–4 It
emerges as an effective mapping from the complex many-body sys-
tem to a simplified effective one-body system. Within the quasipar-
ticle framework, the effects of collective excitations are incorporated
by adding a dynamical correction to an effective one-body operator
obtained from a simpler system, such as the non-interacting system.
This correction, which contains Hartree (H), exchange (x), and cor-
relation (c) effects, is known as the self-energy and is denoted as Σ.
The famous Hedin equations, a self-consistent set of five integrod-
ifferential equations, provide a route to calculate this self-energy.5
Their conventional form is

Γ(123) = δ(12)δ(13) + Ξxc(12; 45)G(46)G(75)Γ(673) (1a)

P(12) = − iG(13)G(41)Γ(342) (1b)

W(12) = v(12) + v(13)P(34)W(42) (1c)

Σxc(12) = iG(14)W(1+3)Γ(423) (1d)

G(12) = GH(12) +GH(13)Σxc(34)G(42) (1e)

where P is the irreducible polarizability, W and v are the dynam-
ically screened and bare Coulomb interactions, Γ is the irreducible
three-point vertex which is completely defined by the four-point
exchange-correlation kernel

Ξxc(12; 1′2′) = δΣxc(11′)
δG(2′2) (2)

In these equations, integrals over repeated indices are assumed,
and, for instance, 1 = (r1, σ1, t1) is a space-spin-time variable and
1+ = (r1, σ1, t1 + δ) with δ → 0+. G and GH are the fully-interacting
and Hartree Green’s functions, respectively, and are linked by a
Dyson equation, Eq. (1e). The exchange-correlation part of the
self-energy is

Σxc = Σx + Σc = Σ − ΣH (3)
where the Hartree and exchange components are respectively
given by

ΣH(12) = − iδ(12)v(1+3)G(33+) (4a)

Σx(12) = + iv(1+2)G(12) (4b)

with δ the Dirac delta function.
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FIG. 1. Left: Hedin’s pentagon yielding the exact Green’s function G. Right: Hedin’s
pentagon yielding the GW approximation by setting Γ = 1 in the expression of P
and Σxc.

As shown schematically in Fig. 1, one can easily obtain the
GW form of the self-energy from Hedin’s equations by neglect-
ing the vertex corrections, i.e., by setting Γ(123) = δ(12)δ(13) in
Eq. (1a), yielding Σxc(12) = iG(12)W(12).6–9 The GW approxi-
mation is obtained by additionally setting Γ(123) = δ(12)δ(13) in
the expression of the irreducible polarizability given in Eq. (1b),
which reads Peh(12) = −iG(12)G(21). Diagrammatically, the GW
equations correspond to a resummation of the direct ring
(or bubble) diagrams3,10 and its central quantity is the two-
point dynamically screened Coulomb interaction W(12) = v(12)
+ v(13)Peh(34)W(42).

Other types of diagrams can be resummed, such as lad-
der diagrams.3,4 This alternative resummation defines the T-
matrix approximation that has the effective four-point interaction
T(12; 1′2′) as a key object.11–14 The two types of ladder diagrams,
electron–hole (eh) and particle–particle (pp), produce two differ-
ent channels for the T-matrix that one can write down in terms of
Dyson equations with a random-phase approximation (RPA)15–18

polarizability as a kernel. It is however not convenient to derive

the T-matrix approximation from the conventional form of Hedin’s
equations.

II. AN ALTERNATIVE FORM OF HEDIN’S EQUATIONS
Following Romaniello and co-workers19 (see also Refs. 20

and 21 for an alternative derivation), one can recast Hedin’s equa-
tions in a more convenient way by considering the Dyson equation
that links the non-interacting two-body correlation function

L0(12; 1′2′) = G(12′)G(21′) (5)

to the full two-body correlation function

L(12; 1′2′) = L0(12; 1′2′) + L0(14; 1′3)Ξ(35; 46)L(62; 52′) (6)

with

Ξ(12; 1′2′) = δΣ(11′)
δG(2′2) = ΞH(12; 1′2′) + Ξxc(12; 1′2′)

= − iV(12; 1′2′) + Ξxc(12; 1′2′) (7)

where it is convenient to introduce, at this stage, the four-point
version of the bare and dynamically screened Coulomb interactions

V(12; 1′2′) = δ(11′)δ(22′)v(12) (8a)

W(12; 1′2′) = δ(12′)δ(1′2)W(12) (8b)

Equation (6) is the Bethe–Salpeter equation of the two-body
correlation function which completely defines the dynamically
screened interaction via

W(12; 1′2′) = V(12; 2′1′) − iV(13; 2′3′)L(34; 3′4′)V(42; 4′1′)
(9)

The latter equation is the four-point extension of the two-
point expression W(12) = v(12) + v(13)χ(34)v(42), with χ(12)
= −iL(12; 1+2+) the response function, which can be obtained from
Eq. (1c) through the link −iL = (1 − vP)−1P. Together with Eqs. (6)
and (7), we obtain a more compact form of Hedin’s equations (see
Fig. 2):

Σc(12) = iG(13)Ξ(35; 26)L(64; 54)v(14) (10a)

FIG. 2. Left: Hedin’s “square” yielding the exact Green’s function G. Center: Hedin’s square yielding the GW approximation by setting Ξ = −iV . Right: Hedin’s square yielding
the T-matrix approximation by setting L = L0 and Ξ = iT .
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G(12) = GHx(12) +GHx(13)Σc(34)G(42) (10b)

A different derivation of the standard and alternative forms
of Hedin’s equation is presented in Appendix A based on the
equation-of-motion formalism.

III. DYSON EQUATIONS
We are now in a position to explain how to obtain the GW

and T-matrix expressions of the self-energy building on the work
of Romaniello et al.19 (see also Ref. 4). Our goal is to approximate
the expression of Σc given in Eq. (10a). There are basically two
ways of doing this: approximating the kernel Ξ and/or the two-body
correlation function L.

First, let us show how to recover the GW form that we have
derived in Sec. I. In GW, one assumes a simple local form for the
kernel by setting Ξ = ΞH = −iV in Eq. (10a). Hence, one gets

Σc(12) = iG(12)v(13)χ(34)v(42) = iG(12)Wc(12) (11)

where Wc = vχv is the correlation part of W.
The GW approximation is obtained by setting Ξ = ΞH = −iV in

the expression of the propagator, which yields, thanks to Eq. (9), the
following Dyson equation for the dynamically screened Coulomb
interaction

W(12; 1′2′) = V(12; 2′1′) + V(13; 2′3′)Peh(34′; 3′4)W(42; 1′4′)
(12)

with

Peh(12; 1′2′) = − iL0(12; 1′2′) = − iG(12′)G(21′) (13)

the four-point version of the eh-RPA polarizability. Equations (12)
and (13) are the key equations of the GW formalism and we will
further discuss how to calculate these quantities in Sec. IV.

One can also include internal and/or external vertex corrections
by improving the approximation of Ξ in Eqs. (6) and (10a), leading
to various more involved and expensive approximations.19,21–43

Let us explore the derivation of the T-matrix self-energy from
the alternative form of Hedin’s equations. The main idea is to rely
on a rough approximation, L = L0 in Eq. (6), for the response of
the system but concentrate on a clever approximation of Ξ. In other
words, one neglects the screening effects rather than the (external)
vertex corrections. To this end, we introduce an effective four-point
interaction T, such that

Σ(12) = iG(43)T(13; 24) (14)

where, at this stage, T is an unknown four-point generalized effec-
tive interaction that is linked to the kernel through the functional
derivative of Σ [see Eq. (7)] as follows

Ξ(12; 1′2′) = iT(12; 1′2′) + iG(34)δT(14; 23)
δG(2′2) (15)

Additionally, we neglect the variation of T with respect to G, i.e.,
δT/δG = 0, as it is usually done in the Bethe–Salpeter equation for-
malism,44 which yields Ξ = iT. Using Eqs. (4a), (4b), and (10a), the
self-energy then becomes an integral equation for T:

Σ(12) = iG(43)T(13; 24)
= ΣHx(12) − v(16)G(13)G(46)G(65)T(35; 24) (16)

Since iG(43)T(13; 24) cannot be directly inverted to find T, several
choices for T yield a suitable form for Σ. More explicitly, by factoriz-
ing one of the Green’s functions stemming from L0 or the other, i.e.,
G(46) or G(65) in Eq. (16), one generates the two channels of the
T-matrix: the particle–particle T-matrix, Tpp, or the electron–hole
T-matrix, Teh. [By setting T(35; 24) = −v(35)δ(32)δ(54) in the
right-hand side of Eq. (16) and by factorizing G(12), one would

FIG. 3. Schematic view of an electron attachment in the case of a closed-shell many-body system. The spin-up electron added to the system (gray) creates electron–hole
pairs (wavy lines) in the spin-up and spin-down channels. The three different correlation channels that correspond to three-particle propagations are represented. Left: At the
GW level (red), the effective interaction is created by the propagation of the electron–hole pairs. Center: At the pp T-matrix level (yellow), the effective interaction is created
by the propagation of the added electron and the spin-up or spin-down excited electron. Right: At the eh T-matrix level (green), the effective interaction is created by the
propagation of the added electron and the spin-up or spin-down hole.
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recover the GW form of the self-energy.] More explicitly, they are
defined via two distinct Dyson equations that read

Tpp(12; 1′2′) = −V(12; 1′2′) + 1
4

V(12; 34)Ppp(34; 56)Tpp(65; 1′2′)
(17a)

Teh(12; 1′2′) = −V(12; 1′2′) − V(12′; 34)P eh(36; 45)Teh(52; 1′6)
(17b)

where

V(12; 1′2′) = V(12; 1′2′) − V(12; 2′1′) (18)

is the four-point antisymmetrized Coulomb operator, and

Ppp(12; 1′2′) = + i[G(11′)G(22′) −G(12′)G(21′)] (19a)

P eh(12; 1′2′) = − iG(12′)G(21′) (19b)

are the pp-RPA45 and an eh-RPA-like polarizabilities, respectively.
At this stage, the two eh-RPA polarizabilities reported in Eqs. (13)
and (19b) have the same expression. However, as we shall see later
on, they will enter W and Teh with different spin structures. Note
that Eq. (17a) is a symmetrized version of the standard Dyson
equation for Tpp given, for example, in Ref. 19. It is obtained
by exploiting the symmetry of the Bethe–Goldstone equation for
G2 with respect to the exchange of the two particles. In other
words, the four terms that arise from VPpp on the right-hand
side of Eq. (17a) are topologically equivalent, which justifies the
prefactor 1/4.

One can show that Ppp and Peh have the same spin structure, but
different time structures, while Peh and P eh have the same time struc-
ture, but different spin structures (see Fig. 3).4,19 Equations (17a),
(17b), (19a), and (19b) are the key equations of the T-matrix formal-
ism, and we shall discuss in Sec. IV how to explicitly compute their
respective response functions and self-energies.

IV. RESPONSE FUNCTIONS
As derived in Sec. III, the dynamically screened Coulomb inter-

action W, Eq. (12), and the pp and eh T-matrices, Eqs. (17a) and
(17b), are given in terms of Dyson equations, with a RPA polariz-
ability P as kernel [see Eqs. (13), (19a), and (19b)]. However, they
can be alternatively expressed in terms of a corresponding RPA
response function χ. This provides a formulation for the self-energy
in terms of the eigenvalues and eigenvectors of the RPA matrix. This
expression is textbook knowledge for W and it has been recently
derived for Tpp.46–50 However, to the best of our knowledge, it is
unknown for Teh. In the following, we provide such an expression
through a derivation that puts the three approximations on an equal
footing. Details regarding the derivation of Teh are provided in the
supplementary material.

Let us explain the procedure symbolically by considering
generic quantities. We start by writing a general effective interaction
Θ as a function of the irreducible polarizability via a Dyson equation,
i.e.,

Θ = Ṽ + Ṽ ′PΘ (20)

where Ṽ and Ṽ ′ can be equal to ±V or ±V , and P = Peh, Ppp, or P eh.
From Eq. (20), one easily gets

Θ = ϵ−1Ṽ (21)

where ϵ = 1 − Ṽ ′P is a generalized dielectric function. Substituting
the expression of Θ in the right-hand side of Eq. (20) by its expres-
sion given in Eq. (21), we obtain the expression of the effective
interaction as a function of the response function, that is,

Θ = Ṽ + Ṽ ′χṼ (22)

where χ = Pϵ−1, from which

χ−1 = P−1 − Ṽ ′ (23)

This is the key equation to compute the RPA response function χ for
the three channels. In practice, the inversion of χ−1 is performed by
investigating the eigensystem of its matrix representation. This is the
aim of Sec. V.

V. SELF-ENERGIES
Throughout this paper, we assume real spinorbitals {φp(x)},

where the composite variable x = (r, σ) gathers space and spin vari-
ables. The indices i, j, k, and l are occupied (hole) orbitals; a, b,
c, and d are unoccupied (particle) orbitals; p, q, r, and s indicate
arbitrary orbitals; and m and n label single excitations/deexcitations
and double electron attachments/detachments, respectively. The
one-electron energies, {ϵp}, are quasiparticle energies and

vpqrs =∬
φp(x1)φq(x2)φr(x1)φs(x2)

∣r1 − r2∣
dx1dx2 (24)

are the usual bare two-electron integrals in the spinorbital basis. For
any two-electron operator O, we follow the same convention for its
projection in the spinorbital basis, i.e.,

Opqrs =∬ φp(x1)φq(x2)O(x1, x2)φr(x1)φs(x2)dx1dx2 (25)

A. GW self-energy
As stated previously, the eh polarizability Peh defined in Eq. (13)

used to compute W within the GW approximation [see Eq. (12)]
is the usual eh-RPA polarizability where one performs a resumma-
tion of all direct ring diagrams. The corresponding response func-
tion χeh is constructed via the eigenvalues and eigenvectors of the
eh-RPA linear system defined in the basis of excitations (i→ a) and
deexcitations (a→ i) as follows:

⎛
⎜
⎝

Aeh Beh

−Beh −Aeh

⎞
⎟
⎠

⎛
⎜
⎝

Xeh Yeh

Yeh Xeh

⎞
⎟
⎠
=
⎛
⎜
⎝

Xeh Yeh

Yeh Xeh

⎞
⎟
⎠

⎛
⎜
⎝

Ωeh 0

0 −Ωeh

⎞
⎟
⎠
(26)
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where the diagonal matrix Ωeh gathers the positive eigenvalues and
the normalization condition is

⎛
⎜
⎝

Xeh Yeh

Yeh Xeh

⎞
⎟
⎠

⊺
⎛
⎜
⎝

Xeh Yeh

−Yeh −Xeh

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

(27)

The matrix elements of the (anti)resonant block Aeh and the
coupling block Beh read

Aeh
ia, jb = (ϵa − ϵi)δijδab + vibaj (28a)

Beh
ia, jb = vijab (28b)

Note that, in Eqs. (28a) and (28b), only the direct Coulomb terms,
vibaj and vijab, are present. Hence, the RPA eigenvalue problem (26)
is often referred to as direct RPA (dRPA) in contrast to RPA with
exchange (RPAx) where the corresponding exchange terms, −vibja
and −vijba, are also included.51

Using these quantities, one can compute the elements of the
dynamically screened Coulomb interaction as

Wpqrs(ω) = vpqrs +∑
m
[ Meh

pr,nMeh
qs,m

ω −Ωeh
m + iη

− Meh
pr,nMeh

qs,m

ω +Ωeh
m − iη

] (29)

where the screened two-electron integrals (or transition densities)
read

Meh
pq,m =∑

jb
vpjqb(Xeh

jb,m + Yeh
jb,m) (30)

and η is a positive infinitesimal. Performing the final convolution
of the Green’s function and the dynamically screened interaction,
the elements of the correlation part of the GW self-energy are found
to be

Σeh
c,pq(ω) =∑

im

Meh
pi,mMeh

qi,m

ω − ϵi +Ωeh
m − iη

+∑
am

Meh
pa,mMeh

qa,m

ω − ϵa −Ωeh
m + iη

(31)

In the popular one-shot scheme, known as G0W0 in the case of
the GW approximation,52–58 one often considers the diagonal part of
the self-energy and performs a single iteration of Hedin’s equations.
Considering a Hartree–Fock (HF) starting point, the quasiparticle
energies are thus obtained by solving the non-linear quasiparticle
equation for each orbital p:

ω − ϵHF
p − Re[Σeh

c,pp(ω)] = 0 (32)

It is also practically convenient to compute the renormalization
factor Zeh

p that gives the spectral weight of the corresponding
quasiparticle solution ϵp:

(Zeh
p )−1 = 1 − ∂Re[Σeh

c,pp(ω)]
∂ω

∣
ω=ϵp

(33)

which can easily be shown to be strictly restricted between 0 and 1
in the case of GW. When the so-called quasiparticle approximation
holds, the weight of the quasiparticle equation is close to unity, while

the remaining weight is distributed among the satellite (or shake-up)
transitions.

B. Particle–particle T -matrix self-energy
The pp response function, χpp, is built using the eigenvalues and

eigenvectors of the pp-RPA problem, a non-Hermitian eigenvalue
problem expressed in the basis of double electron attachments (ee)
and double electron detachments (hh):45,59,60

⎛
⎜
⎝

Aee Bee,hh

−(Bee,hh)⊺ −Chh

⎞
⎟
⎠

⎛
⎜
⎝

Xee Yhh

Yee Xhh

⎞
⎟
⎠
=
⎛
⎜
⎝

Xee Yhh

Yee Xhh

⎞
⎟
⎠

⎛
⎜
⎝

Ωee 0

0 Ωhh

⎞
⎟
⎠

(34)

where the diagonal matrices Ωee and Ωhh collect the double elec-
tron attachment and double electron removal energies, and the
normalization condition is

⎛
⎜
⎝

Xee Yhh

Yee Xhh

⎞
⎟
⎠

⊺
⎛
⎜
⎝

Xee Yhh

−Yee −Xhh

⎞
⎟
⎠
=
⎛
⎜
⎝

1 0

0 −1

⎞
⎟
⎠

(35)

The matrix elements of the different blocks are

Aee
ab,cd = (ϵa + ϵb)δacδbd + vabcd (36a)

Bee,hh
ab,i j = vabij (36b)

Chh
i j,kl = −(ϵi + ϵj)δikδjl + vijkl (36c)

where vpqrs = vpqrs − vpqsr are the antisymmetrized two-electron
integrals.

As derived by Zhang et al., the elements of the pp T-matrix
are48

Tpp
pqrs(ω) = vpqrs +∑

n
[ Mee

pq,nMee
rs,n

ω −Ωee
n + iη

− Mhh
pq,nMhh

rs,m

ω +Ωhh
n − iη

] (37)

where

Mee
pq,n =∑

c<d
vpqcdXee

cd,n +∑
k<l

vpqklY
ee
kl,n (38a)

Mhh
pq,n =∑

c<d
vpqcdXhh

cd,n +∑
k<l

vpqklY
hh
kl,n (38b)

while the corresponding self-energy elements read

Σpp
c,pq(ω) =∑

in

Mee
pi,nMee

qi,n

ω + ϵi −Ωee
n + iη

+∑
an

Mhh
pa,nMhh

qa,n

ω + ϵa −Ωhh
n − iη

(39)

with the renormalization factor fulfilling 0 ≤ Zpp
p ≤ 1. As in Sec. V A,

one denotes the one-shot scheme as G0Tpp
0 .

C. Electron–hole T -matrix self-energy
The eh response function, χ eh, is obtained from a distinct RPA

problem that is very similar to the usual eh-RPA problem discussed
above [see Eq. (26)]. However, one has to consider index exchanges
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between the two coupled single (de)excitations (see Fig. 3). More
explicitly, it reads

⎛
⎜
⎝

A eh B eh

−B eh −A eh

⎞
⎟
⎠

⎛
⎜
⎝

X eh Y eh

Y eh X eh

⎞
⎟
⎠
=
⎛
⎜
⎝

X eh Y eh

Y eh X eh

⎞
⎟
⎠

⎛
⎜
⎝

Ω eh 0

0 −Ω eh

⎞
⎟
⎠

(40)

with a similar normalization condition as in Eq. (27), and where

Aeh
ia, jb = (ϵa − ϵi)δijδab − vibja (41a)

Beh
ia, jb = −vijba (41b)

One would notice that it is exactly the “exchange” version of the
usual eh-RPA problem defined in Eq. (26). After a careful deriva-
tion (see the supplementary material), one eventually ends up with
the following expression for the elements of the eh T-matrix

Teh
pqrs(ω) = vpqrs −∑

m
[ Leh

ps,mReh
rq,m

ω −Ωeh
m + iη

− Leh
sp Reh

qr,m

ω +Ωeh
m − iη

] (42)

which has the peculiarity of having numerators composed of two
different sets of transition densities:

Leh
pq,m =∑

jb
(vpjbqXeh

jb,m + vpbjqYeh
jb,m) (43a)

Reh
pq,m =∑

jb
(vpjbqXeh

jb,m + vpbjqYeh
jb,m) (43b)

which are not symmetric with the exchange of the indices p and q.
The resulting elements of the correlation part of the eh T-matrix self-
energy are

Σeh
c,pq(ω) =∑

im

Leh
ip,mReh

iq,m

ω − ϵi +Ωeh
m − iη

+∑
am

Leh
pa,mReh

qa,m

ω − ϵa −Ωeh
m + iη

(44)

Equation (44) is the central result of the present manuscript. The
spin-adapted expression of the eh T-matrix self-energy is given
in Appendix B. We denote the corresponding one-shot scheme as
G0Teh

0 .
The renormalization factor associated with the eh T-matrix

self-energy is expressed as follows:

Zeh
p =

1
1 − Re[Σeh

c,pp(ω)]ω∣ω=ϵp

(45)

It is important to note that, unlike in GW and pp T-matrix, Zeh
p is not

confined within the interval of 0–1, and its values can extend beyond
this range, including values below 0 and above 1. Indeed, while the
values of the self-energy derivate are always positive for GW and
GTpp, negative values can be reached in the GTeh formalism. This
can be traced back to the eigenvectors of the eh-RPA-like matrix.
Notably, in the work by Müller et al.,61 it is mentioned that the
spectral function of the eh T-matrix can assume negative values as
observed in cases like iron. This phenomenon, linked to the violation
of causality, directly arises due to the absence of certain self-energy

diagrams. It is acknowledged that these extreme renormalization
effects should be regarded as unphysical.

In the context of solids, the eh T-matrix approximation is
often used to study electron–magnon scattering processes in fer-
romagnetic systems.61–64 However, to the best of our knowledge,
calculations of quasiparticle energies in realistic molecular systems
within the eh T-matrix approximation have never been reported in
the literature

VI. RESULTS AND DISCUSSION
In this study, we exclusively employ the restricted formal-

ism due to all investigated systems possessing a closed-shell singlet
ground state. Our calculations are initiated from Hartree–Fock (HF)
orbitals and energies. We focus on a set composed by charged exci-
tations where we specifically consider principal ionization potentials
(IPs). This set consists of 20 atoms and molecules, known as the
GW20 set, which is part of the GW100 test set65 and has been previ-
ously explored in Refs. 35, 66, and 67. The geometries for the GW20
set are extracted from Ref. 65.

Using the def2-TZVPP basis, we employ the three one-shot
schemes discussed in the present paper to compute the IPs: G0W0,

TABLE I. Principal IPs (in eV) of the GW20 set computed at various levels of theory
using the def2-TZVPP basis. The corresponding renormalization factor is reported
in parenthesis. The mean absolute error (MAE), mean signed error (MSE), root-
mean-square error (RMSE), and maximum error (Max) with respect to the reference
ΔCCSD(T) values are reported.

Mol. G0W0 G0Tpp
0 G0Teh

0 ΔCCSD(T)

He 24.60(0.96) 24.75(0.99) 24.26(0.91) 24.51
Ne 21.35(0.95) 21.02(0.96) 18.69(0.83) 21.32
H2 16.48(0.95) 16.26(0.99) 17.26(0.86) 16.40
Li2 5.29(0.92) 5.04(0.98) 4.76(0.61)a 5.27
LiH 8.15(0.92) 8.14(0.98) 7.35(0.46) 7.96
HF 16.17(0.94) 15.65(0.95) 13.23(0.76) 16.03
Ar 15.73(0.95) 15.52(0.97) 16.03(0.83) 15.54
H2O 12.82(0.94) 12.28(0.95) 10.48(0.73) 12.56
LiF 11.31(0.92) 10.88(0.94) 7.98(0.69) 11.32
HCl 12.77(0.95) 12.50(0.96) 13.21(0.79) 12.59
BeO 9.76(0.91) 9.20(0.93) 7.94(0.33) 9.94
CO 15.00(0.93) 14.44(0.95) 15.42(0.24) 14.21
N2 16.30(0.93) 15.69(0.94) 14.72(0.69) 15.57
CH4 14.74(0.94) 14.27(0.96) 14.46(0.79) 14.37
BH3 13.64(0.94) 13.30(0.97) 13.87(0.81) 13.28
NH3 11.14(0.94) 10.64(0.95) 9.87(0.73) 10.68
BF 11.26(0.94) 10.91(0.98) 16.18(0.65) 11.09
BN 11.69(0.92) 11.11(0.94) 13.29(0.14)a 11.89
SH2 10.48(0.94) 10.17(0.96) 11.28(0.76) 10.31
F2 16.27(0.93) 15.36(0.93) 11.19(0.71)a 15.71

MAE 0.26 0.25 1.59
MSE 0.22 −0.17 −0.45
RMSE 0.34 0.32 2.11
Max 0.79 0.78 5.09

aCalculation of Teh performed in the Tamm–Dancoff approximation due to triplet
instabilities.
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FIG. 4. Error (in eV) with respect to ΔCCSD(T) in the principal IPs of the GW20 set computed at the G0W 0, G0Tpp
0 , and G0Teh

0 levels with the def2-TVZPP basis. Raw data
can be found in Table I.

FIG. 5. Self-energy (blue curves) associated with the HOMO of Ar (left) and BeO (right) computed at the G0W 0 (top), G0Tpp
0 (middle), and G0Teh

0 (bottom) levels with the
def2-TVZPP basis. The solutions of the quasiparticle equation are given by the intersection of the blue and red curves. Raw data can be found in supplementary material.
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G0Tpp
0 , and G0Teh

0 . These three many-body formalisms have been
implemented in QUACK, an open-source software for emerging
quantum electronic structure methods, which source code is avail-
able at https://github.com/pfloos/QuAcK. For each scheme, we com-
pute the quasiparticle energies as explained in Sec. V A using
Newton’s method. As reference data, we rely on the IPs computed
(in the same basis) via energy difference between the cation and the
neutral species using coupled cluster singles and doubles with per-
turbative triples [ΔCCSD(T)].68 Throughout our calculations, we set
the positive infinitesimal η to zero.

The principal IPs of the GW20 test are reported in Table I
and the error with respect to the ΔCCSD(T) reference values are
represented in Fig. 4. As previously reported in the literature,67

G0W0 and G0Tpp
0 have very similar mean absolute errors (MAEs)

for this set of small systems (0.26 eV vs 0.26 eV), while their
respective mean signed errors (MSEs) are almost exactly opposite
(0.22 eV vs −0.17 eV). The G0Teh

0 scheme has much larger MAE
(1.59 eV) and MSE (−0.45 eV). Figure 4 clearly shows that large
errors are observed for some systems, like Ne, HF, LiF, BeO, BF,
and F2. Moreover, even at equilibrium geometry, triplet instabilities
are encountered for several systems (Li2, BN, and F2). This forced
us to compute Teh within the Tamm–Dancoff approximation which
consists in setting B = 0 in Eq. (40). From these results, it is clear
that the performances of G0Teh

0 are clearly inferior to those of G0W0
and G0Tpp

0 . This explains the development of the screened version
of the eh T-matrix in solid-state calculations.19,69–75 Qualitatively at
least, the poor performance of G0Teh

0 can be explained by the fact
that Teh is constructed with the eigenvectors and eigenvalues asso-
ciated with the triplet states of the system computed at the RPAx
level [see Eq. (40) and the discussion below it] starting from a singlet
HF ground-state reference. It is well known that this usually leads
to poorly described triplet states and, often, triplet instabilities76

(see Appendix B).

In Fig. 5, we plot the variation of the G0W0 (top), G0Tpp
0 (mid-

dle), and G0Teh
0 (bottom) self-energies associated with the highest-

occupied molecular orbital (HOMO) as functions of ω for two
systems with weakly correlated N-electron ground state, namely,
Ar and BeO. The solutions of the quasiparticle equation are given
by the intersection of the blue and red curves. At the G0W0 and
G0Tpp

0 levels, the two systems exhibit similar behavior with well-
defined quasiparticle solutions with respective weights of 0.95 (0.98)
and 0.97 (0.93) for Ar (BeO), as reported in Table I. This is graph-
ically evidenced by the small values of the self-energy derivative in
the central region of the graphs. At the G0Teh

0 level, it is clear that
the variations of the self-energy are more pronounced. Contrary to
G0W0 and G0Tpp

0 , the G0Teh
0 self-energy derivative can take positive

values, as mentioned in Sec. V C. For Ar, the quasiparticle solution
has a weight of 0.83 and the behavior of the G0Teh

0 self-energy is quite
standard. The case of BeO is more interesting though as the solution
around −8 eV reached from the HF starting value using Newton’s
method has a small weight (0.33) and cannot really be classified as a
quasiparticle solution. Another solution with a similar weight can be
located around −22 eV. This example represents a clear breakdown
of the quasiparticle approximation.

This distribution of spectral weight amongst several solutions
can be analyzed in more detail by looking at the spectral function
associated with each orbital p, which, as readily seen from the fol-
lowing equation, is related to the imaginary part of the one-body
Green’s function:

Ap(ω) =
1
π
∣ImGpp(ω)∣

= η/π
[ω − ϵHF

p − Σc,pp(ω)]2 + η2 (46)

The spectral function associated with the HOMO of BeO computed
at the three levels of theory is depicted in Fig. 6. While there is a

FIG. 6. Spectral function associated with the HOMO of BeO computed at the G0W 0 (top left), G0Tpp
0 (top right), and G0Teh

0 (bottom) levels with the def2-TVZPP basis with
η = 0.01Eh. Raw data can be found in supplementary material.

J. Chem. Phys. 159, 184113 (2023); doi: 10.1063/5.0176898 159, 184113-8

Published under an exclusive license by AIP Publishing

 14 N
ovem

ber 2023 15:09:17

https://pubs.aip.org/aip/jcp
https://github.com/pfloos/QuAcK


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

TABLE II. Principal IP (in eV) for B2 and C2 computed at the G0W0, G0Tpp
0 ,

G0Teh
0 , and FCI levels of theory with the def2-TZVPP basis. The corresponding

renormalization factor is reported in parenthesis.

Mol. G0W0 G0Tpp
0 G0Teh

0
a FCI

B2 9.06 (0.93) 8.69 (0.96) 8.91 (0.75) 8.97
C2 12.92 (0.93) 12.63 (0.95) 13.01 (0.76) 12.45

aCalculation of Teh performed in the Tamm–Dancoff approximation due to triplet
instabilities.

well-defined quasiparticle peak with G0W0 and G0Tpp
0 , it is clear

that there are two main solutions for G0Teh
0 surrounded by a large

number of satellite peaks.
Next, we consider more strongly correlated systems, namely, B2

and C2,77–82 at their respective experimental equilibrium geometry:
RB–B = 1.5900 Å and RC–C = 1.2425 Å.83 Based on full configuration
interaction (FCI) calculations, performed with QUANTUM PACK-
AGE,84 both the neutral and charged species (cation and anion) have
strong multireference characters with several determinants con-
tributing to their respective ground-state wave functions. In the case
of B2, the FCI calculations show that the weight of the HF determi-
nant is only 0.36 with another doubly-excited determinant of weight
0.33. Likewise, in the carbon dimer, the weight of the HF deter-
minant is 0.69 with another doubly-excited determinant of weight
0.1. The cationic and anionic states of these systems are also of
multireference character, although not as much as B2.

The values of the principal IP computed at the G0W0, G0Tpp
0 ,

and G0Teh
0 levels of theory with the def2-TZVPP basis are reported

in Table II for these two strongly correlated systems. The FCI values
are also reported for comparison purposes. Note that, here again, we
rely on a restricted HF starting point. It is worth noting that, because
of triplet instabilities, the calculations of Teh are performed in the
Tamm–Dancoff approximation.

For the boron dimer, the IP calculated at the G0Teh
0 level is

remarkably close at 8.91 eV, deviating by only 0.06 eV from the
FCI value of 8.97 eV. In this case, G0W0 (at 9.06 eV) and G0Tpp

0 (at
8.69 eV) are also in proximity to the FCI result. The situation takes
a somewhat different turn for C2, where G0Tpp

0 (at 12.63 eV) closely
approximates the FCI value of 12.45 eV, while G0W0 (at 12.92 eV)
and G0Teh

0 (at 12.63 eV) exhibit slightly larger deviations, on the
order of half an eV. As for the systems composing the GW20 set
(see above), the spectral weight of the quasiparticle solution com-
puted at the G0Teh

0 level is usually significantly lower than the values
obtained from G0W0 and G0Tpp

0 .

VII. CONCLUDING REMARKS
This manuscript presents a comprehensive derivation and

implementation of the explicit expressions for the three self-energies
intrinsic to many-body perturbation theory: the well-established
GW self-energy, along with the pp and eh T-matrix self-energies.
To evaluate the efficacy of these approaches, we assess their perfor-
mances on molecular systems. Specifically, we compute the principal
IPs across a collection of 20 small molecules.

The outcomes of our computations distinctly indicate that the
eh T-matrix formalism falls short when compared to the other two

approaches. The subset of diagrams composed by the eh ladder
diagrams is thus less relevant than the two other subsets (direct
rings and pp ladders) in the present context. This observation
paves the way for an investigation into the screened version of
the eh T-matrix, which has demonstrated successes in diverse sys-
tems, such as ferromagnetic periodic structures, as reported in prior
studies.61–64 Another avenue for further exploration involves the
combination of these three correlation channels, akin to “fluctuation
exchange” (FLEX),85–88 the Baym–Kadanoff approximation,11,12

parquet theory,89,90 and other similar approaches.19,64,91–94 Although
challenging, this task holds significant promise and represents a
potential avenue for our future investigations.

We have also investigated the performances of G0W0, G0Tpp
0 ,

and G0Teh
0 for more strongly correlated systems, namely, the boron

and carbon dimers. In this context, the eh T-matrix scheme might be
a more adequate approximation, yielding IPs and spectral weights in
good agreement with the reference FCI values. We hope to report
further on this in the near future.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed derivation of the
eh T-matrix elements and the corresponding self-energy elements.
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APPENDIX A: HEDIN’S EQUATIONS
FROM THE EQUATION-OF-MOTION FORMALISM

Here, we present a different derivation of the standard
(see Sec. I) and alternative (see Sec. II) forms of Hedin’s equations.
We refer the interested reader to Refs. 4 and 19 for additional details.

From the equation-of-motion of the one-body Green’s
function4

G(12) = G0(12) − iG0(13)v(34)G2(34+; 24++) (A1)

and the Dyson equation (1e) linking G0 and G, one gets the following
exact expression of the self-energy

Σ(12) = − iv(1+3)G2(13; 43+)G−1(42) (A2)

where G2 is the two-body Green’s function. One can then employ
the Martin–Schwinger relation95

δG(12; [Vext])
δVext(3)

= −G2(13; 23+; [Vext])

+G(12; [Vext])G(33+; [Vext]) (A3)

which relates the one- and two-body Green’s functions and the
variation of G with respect to a fictitious external potential Vext, to
substitute G2 in the expression of the self-energy. The equilibrium
Green’s functions are retrieved for Vext = 0, i.e., G(12, [Vext = 0])
≡ G(12) and G2(12; 34; [Vext] = 0) ≡ G2(12; 34). We hence
arrive at

Σ(12) = ΣH(12) + iv(1+3) δG(14; [Vext])
δVext(3)

∣
Vext=0

G−1(42) (A4)

For notational convenience, in the following, we drop the functional
dependence on Vext and the limit Vext = 0. Using the chain-rule
derivative

δG(12)
δVext(3)

= −G(14)δG−1(45)
δVext(3)

G(52) (A5)

we finally obtain

Σ(12) = ΣH(12) − iv(1+3)G(14)δG−1(42)
δVext(3)

(A6)

where the second term of the right-hand side corresponds to the
exchange-correlation part of the self-energy.

One can then recover Hedin’s form of Σxc [see Eq. (1d)] by
introducing the total classical potential V tot = VH + Vext [where
VH(1) = −iv(1+2)G(22+) is the local Hartree potential], as follows

Σxc(12) = − iv(1+3)G(14)δG−1(42)
δVtot(5)

δVtot(5)
δVext(3)

= iG(14)W(13)Γ(423) (A7)

where W(12) = ϵ−1(13)v(32) is the dynamically screened Coulomb
interaction,

ϵ−1(12) = δVtot(1)
δVext(2)

= δ(12) + v(13)χ(32) (A8)

is the inverse dielectric function [with χ(32) = −iδG(33+)/
δVext(2)], and Γ(423) = −δG−1(42)/δV tot(3) is the irreducible
vertex function.4,19

To recover the alternative form of the self-energy given in
Eq. (10a), we substitute G−1 = G−1

0 − Vext − Σ into Eq. (A7), and this
yields

Σxc(12) = Σx(12) + iv(13)G(14) δΣ(42)
δG(65)

δG(65)
δVext(3)

= Σx(12) + iv(13)G(14)Ξ(45; 26)L(63; 53) (A9)

with the kernel Ξ given by Eq. (7) and the polarization propagator
L(12; 32) = δG(13)/δVext(2).

APPENDIX B: SPIN ADAPTATION

Spin adaptation corresponds to converting spinorbital expres-
sions to their spatial orbital equivalents for the various spin mani-
folds that one can encounter. Practically, in the present case, it means
that, instead of solving a larger eigenvalue problem in the spinorbital
basis such as in Eq. (26), for example, one can equivalently solve two
distinct eigenvalue problems for the singlet (2S + 1 = 1) and triplet
(2S + 1 = 3)manifolds separately:

⎛
⎜
⎝

1,3A eh 1,3B eh

−1,3B eh −1,3A eh

⎞
⎟
⎠

⎛
⎜
⎝

1,3X eh
m

1,3Y eh
m

⎞
⎟
⎠
= 1,3Ω eh

m

⎛
⎜
⎝

1,3X eh
m

1,3Y eh
m

⎞
⎟
⎠

(B1)

Below, we report the spin adaptation of the eh and pp
eigenvalue problems in the case of RPA, restricting ourselves to
spin-restricted closed-shell calculations. Note that, in the present
appendix, although we retain the same notations as in the spinor-
bital basis, all the integrals and operators are defined in the spatial
orbital basis.

1. Electron–hole channel
Spin-adaptation of the eh channel is well documented (see,

for example, Ref. 96). Each eh matrix has a similar spin structure
that is directly inherited from the spin structure of the two-electron
integrals. For example, we have

Aeh =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

Aeh
↑↑,↑↑ Aeh

↑↑,↓↓ 0 0

Aeh
↓↓,↑↑ Aeh

↓↓,↓↓ 0 0

0 0 Aeh
↑↓,↑↓ Aeh

↑↓,↓↑

0 0 Aeh
↓↑,↑↓ Aeh

↓↑,↓↑

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(B2)

In the eh channel, singlet and triplet spin-adapted operators are
defined as

1Ea
i =

a†
a↑ai↓ + a†

a↓ai↑√
2

(B3a)
3,−1Ea

i = a†
a↓ai↓ (B3b)

3,0Ea
i =

a†
a↑ai↓ − a†

a↓ai↑√
2

(B3c)
3,1Ea

i = a†
a↑ai↑ (B3d)
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where a†
aσ (aiσ ) creates a spin-σ electron (hole) in the virtual (occu-

pied) orbital a (i). Hence, one can spin-adapt each eh matrix via the
following orthogonal transformation

Ueh = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 1 0 0

1 −1 0 0

0 0 1 1

0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(B4)

which block-diagonalizes each eh matrix as follows:

(Ueh)⊺AehUeh =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1A eh 0 0 0

0 3,−1A eh 0 0

0 0 3,0A eh 0

0 0 0 3,1A eh

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(B5)

with

1A eh
ia,jb =

1
2
(Aeh

i↑a↑ , j↑b↑ + Aeh
i↑a↑ , j↓b↓ + Aeh

i↓a↓ , j↑b↑ + Aeh
i↓a↓ , j↓b↓) (B6a)

3,0A eh
ia,jb =

1
2
(Aeh

i↑a↑ , j↑b↑ − Aeh
i↑a↑ , j↓b↓ − Aeh

i↓a↓ , j↑b↑ + Aeh
i↓a↓ , j↓b↓) (B6b)

3,±1A eh
ia,jb =

1
2
(Aeh

i↑a↓ , j↑b↓ ± Aeh
i↑a↓ , j↓b↑ ± Aeh

i↓a↑ , j↑b↓ + Aeh
i↓a↑ , j↓b↑) (B6c)

In the case of the GW approximation, using Eqs. (28a) and
(28b), one finds that the singlet eh-RPA matrix elements are then

1A eh
ia,jb = δijδab(ϵa − ϵi) + 2vibaj (B7a)

1B eh
ia,jb = 2vijab (B7b)

while, for the triplet manifold, it yields three identical sets of
equations with matrix elements

3A eh
ia,jb = δijδab(ϵa − ϵi) (B8a)

3B eh
ia,jb = 0 (B8b)

where one notes that the direct term has vanished. Because of the
form of χeh, the triplet excited states do not contribute to the dynam-
ical screening within the GW approximation.97 Hence, one only
needs to solve the singlet eh-RPA problem whose elements are
defined in Eqs. (B7a) and (B7b).

For the eh T-matrix approximation, using Eqs. (41a) and (41b),
one easily shows that the singlet and triplet eh-RPA matrix elements
are identical:

1A eh
ia,jb =

3A eh
ia,jb = δijδab(ϵa − ϵi) − vibja (B9a)

1B eh
ia,jb =

3B eh
ia,jb = −vijba (B9b)

which means that one only needs to solve a unique set of eigen-
value equations to compute χ eh. After spin integration, one can show
that the elements of the eh T-matrix self-energy remain unchanged
(except for the summation ranges) while the transition densities read

Leh
pq,m =∑

jb
(vpjbqXeh

jb,m + vpbjqYeh
jb,m) (B10a)

Reh
pq,m =∑

jb
(vpjbqXeh

jb,m + vpbjqYeh
jb,m) (B10b)

with vpqrs = 2vpqrs − vpqsr .

2. Particle–particle channel
The spin structure of the pp problem is slightly simpler than its

eh counterpart described in Appendix B 1. For example, we have

Aee =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

Aee
↑↑,↑↑ 0 0 0

0 Aee
↓↓,↓↓ 0 0

0 0 Aee
↑↓,↑↓ Aee

↑↓,↓↑

0 0 Aee
↓↑,↑↓ Aee

↓↑,↓↑

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(B11)

In the pp channel, singlet and triplet spin-adapted operators for
the 2e configurations are constructed as

1Eab =
a†

b↑
a†

a↓ + a†
b↓

a†
a↑√

2(1 + δab)
(B12a)

3,−1Eab = a†
b↓

a†
a↓ (B12b)

3,0Eab =
a†

b↑
a†

a↓ − a†
b↓

a†
a↑√

2
(B12c)

3,1Eab = a†
b↑

a†
a↑ (B12d)

Similarly, for the 2h configurations, we have

1Eij =
ai↑aj↓ + ai↓aj↑√

2(1 + δij)
(B13a)

3,−1Eij = a†
i↓aj↓ (B13b)

3,0Eij =
ai↑aj↓ − ai↓aj↑√

2
(B13c)

3,1Eij = ai↑aj↑ (B13d)

Hence, one can spin-adapt each matrix via the following
orthogonal transformation

Upp = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(B14)
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which block-diagonalizes each pp matrix as follows:

(Upp)⊺AeeUpp =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

1A ee 0 0 0

0 3,0A ee 0 0

0 0 3,−1A ee 0

0 0 0 3,1A ee

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

(B15)

with

1A ee
ab,cd =

Aee
a↑b↓ ,c↑d↓ + App

a↓b↑ ,c↓d↑√
1 + δab

√
1 + δcd

(B16a)

3,−1A ee
ab,cd = Aee

a↓b↓ ,c↓d↓ (B16b)
3,0A ee

ia,jb = Aee
a↑b↓ ,c↑d↓ − Aee

a↓b↑ ,c↓d↑ (B16c)
3,1A pp

ab,cd = Aee
a↑b↑ ,c↑d↑ (B16d)

and similar expressions for the matrices Bee,hh and Chh.
The singlet pp-RPA matrix elements are then

1A ee
ab,cd = δacδbd(ϵa + ϵb) +

vabcd + vabdc√
1 + δab

√
1 + δcd

(B17a)

1B ee, hh
ab,ij =

vabij + vabji√
1 + δab

√
1 + δij

(B17b)

1C hh
ij,kl = −δikδjl(ϵi + ϵj) +

vijkl + vijlk√
1 + δij

√
1 + δkl

(B17c)

with the index restrictions a ≤ b, c ≤ d, i ≤ j, and k ≤ l, while, for the
triplet manifold, it yields three identical sets of equations with matrix
elements

3A ee
ab,cd = δacδbd(ϵa + ϵb) + vabcd − vabdc (B18a)

3B ee, hh
ab,ij = vabij − vabji (B18b)

3C hh
ij,kl = −δikδjl(ϵi + ϵj) + vijkl − vijlk (B18c)

with the index restrictions a < b, c < d, i < j, and k < l. We refer the
interested reader to the work of Yang et al. for additional details
concerning the spin adaptation of the pp-RPA equations.98
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62E. Młyńczak, M. C. T. D. Müller, P. Gospodarič, T. Heider, I. Aguilera,
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