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ABSTRACT: Hierarchy configuration interaction (hCI) has recently
been introduced as an alternative configuration interaction (CI) route
combining excitation degree and seniority number and has been shown
to efficiently recover both dynamic and static correlations for closed-
shell molecular systems [J. Phys. Chem. Lett. 2022, 13, 4342]. Here we
generalize hCI for an arbitrary reference determinant, allowing
calculations for radicals and excited states in a state-specific way. We
gauge this route against excitation-based CI (eCI) and seniority-based
CI (sCI) by evaluating how different ground-state properties of radicals
converge to the full CI limit. We find that hCI outperforms or matches
eCI, whereas sCI is far less accurate, in line with previous observations
for closed-shell molecules. Employing second-order Epstein−Nesbet
(EN2) perturbation theory as a correction significantly accelerates the convergence of hCI and eCI. We further explore various hCI
and sCI models to calculate the excitation energies of closed- and open-shell systems. Our results underline that the choice of both
the reference determinant and the set of orbitals drives the fine balance between correlation of ground and excited states. State-
specific hCI2 and higher-order models perform similarly to their eCI counterparts, whereas lower orders of hCI deliver poor results
unless supplemented by the EN2 correction, which substantially improves their accuracy. In turn, sCI1 produces decent excitation
energies for radicals, encouraging the development of related seniority-based coupled-cluster methods.

I. INTRODUCTION
Configuration interaction (CI) offers a systematic way to solve
the many-body electronic structure problem.1,2 By including
progressively more determinants in the Hilbert space, the wave
function becomes increasingly closer to the exact one, and so
does the electronic energy. In full CI (FCI), all determinants are
accounted for, and the problem is solved exactly (for a given
basis set). In practice, however, one resorts to approximate CI
models where only the determinants that satisfy a given criterion
are included in the truncated Hilbert space.

The most well-known CI route is based on the excitation
degree e. Starting from a reference determinant, typically the
Hartree−Fock (HF) determinant, one generates all connected
determinants by exciting at most e electrons. The excitation
degree thus defines the order of the approximate excitation-
based CI (eCI) model: CI with single excitations (CIS), CI with
single and double excitations (CISD), CI with single, double,
and triple excitations (CISDT), etc. The eCI route rather
quickly captures dynamic (weak) correlation, though it struggles
with the description of static (strong) correlation.

A different CI route is based on the seniority number s (the
number of unpaired electrons in a given determinant). In
seniority-based CI (sCI),3−6 there is no reference determinant,
and one accounts for all determinants having seniority equal to
or less than s. In contrast to eCI, sCI recovers static correlation
more efficiently and works well to describe molecular

dissociation7−9 at the expense of a poorer account of dynamic
correlation and a higher computational cost. For systems with an
even number of electrons, the first approximate model is defined
by s = 0 (sCI0), usually referred to as doubly occupied CI
(DOCI), which is followed by the higher-order models sCI2,
sCI4, and so on. For odd numbers of electrons, the seniority
route follows along odd numbers of s: sCI1, sCI3, and so on.

We have recently introduced a third CI route, hierarchy CI
(hCI),10 where the Hilbert space is partitioned according to a
hierarchy parameter h that combines the excitation degree e and
the seniority number s, defined as h = (e + s/2)/2. This
definition ensures that all classes of determinants whose
numbers share the same scaling with system size are included
at the same hierarchy h. This key feature distinguishes hCI from
previous schemes combining excitation and seniority.8,11,12 By
allowing for higher-order excitations of paired electrons (as
explained in detail below), hCI is reminiscent of perfect pairing
models for closed-shell systems.13−19 For different properties
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and closed-shell molecular systems, hCI was found to display an
overall faster convergence toward the FCI results than the
traditional eCI route.10 In this sense, it was able to recover both
static and dynamic correlations more effectively than either eCI
or sCI. However, hCI has been defined only for a closed-shell
reference, thus being limited to the ground state of systems with
an even number of electrons.

There are two possible approaches to target excited states with
the CI methods. One can employ the ground-state HF orbitals
and obtain excitation energies from the higher-lying eigenvalues
of the CI matrix, which we refer to as the ground-state-based
approach. Instead, one may optimize the orbitals for the excited
state of interest (described with an appropriate reference),
followed by a separate CI calculation, in a so-called state-specific
approach (ΔCI). There has been a recent surge in the
development of state-specific methods, covering single-refer-
ence and multiconfigurational self-consistent field,20−31 density
functional theory,32−44 perturbation theory,45−47 quantum
Monte Carlo,48−56 and coupled-cluster (CC)57−63 methods.
In particular, by employing a minimal configuration state
function (CSF) reference, we have recently shown that
excitation-based ΔCI models deliver far more accurate
excitation energies than their ground-state-based analogs.29

Here, our first goal is to generalize hCI for an arbitrary type of
reference, thus extending its applicability from ground-state
closed-shell10 to radical and state-specific excited-state calcu-
lations. This is shown in section II. The computational details of
the implementation and the specific calculations performed here
are presented in section III. In section IV A, we assess the
performance of hCI, eCI, and sCI models by calculating various
properties of four ground-state radicals, which comprises our
second goal. Our third goal is to evaluate how perturbation
theory, more precisely the second-order Epstein−Nesbet (EN2)
perturbative correction (both standard and renormalized),64

impacts various properties of ground-state closed-shell systems
and radicals for hCI, eCI, and sCI models. This part is presented
in section IV B. Inspired by the results of hCI for ground-state
closed-shell systems10 and by the promising set of excitation-
based ΔCI methods,29 here we explore hCI models for excited
states, following both the ground-state-based and state-specific
approaches. In this sense, our fourth goal is to assess the
accuracy of hCI models for excited states, which is the subject of
section IV C. Furthermore, to the best of our knowledge, sCI
models have not yet been directly used to target excited states,
despite the growing number of methods that exploit the concept
of seniority for both ground6 1 , 6 5−8 1 and excited
states.60−62,79,81−86 Our fifth goal, detailed in section IV D, is

therefore to define and gauge ground-state-based and state-
specific sCI models for excited states. Finally, in section IV E we
assess how the excitation energies are impacted by the EN2
perturbative correction to hCI and sCI models, our sixth and last
goal. Section V closes the present contribution with the main
conclusions and perspectives.

II. HIERARCHY CONFIGURATION INTERACTION
We introduced hCI10 as a particular truncation of the Hilbert
space, viewed as a two-dimensional map of determinants built
from their seniority s and their excitation degree ewith respect to
a reference determinant, as shown in Figure 1. By defining
orbital subspaces according to the occupancy in the reference
determinant (doubly occupied, singly occupied, or unoccupied),
we refer to the class of an excited determinant as the
combination of the number of electrons and seniority in each
orbital subspace. The number of determinants Ndet within a
given class scales polynomially with the number of basis
functions N, with the exponent depending on the specific class.
For instance, for the class of doubly excited determinants with
no unpaired electrons (e = 2 and s = 0), =N N( )det

2 . hCI was
defined such that, at a given hierarchy h, all classes of
determinants presenting a scaling of =N N( )h

det
2 or less are

accounted for. This means moving diagonally in the seniority−
excitation map (denoted by the color tones in Figure 1). In
comparison, eCI spans the map horizontally (top to bottom),
whereas sCI does it vertically (left to right).

hCI was initially introduced for a closed-shell reference (left
panel of Figure 1).10 Here we generalize it for an arbitrary Slater
determinant reference, including systems with an odd number of
electrons. With respect to a given reference determinant, we
define the hierarchy h of a candidate determinant to be included
in the truncated hCI model as

=
+

h
e s s( )/2

2
0

(1)

where s and s0 denote the seniorities of the candidate and
reference determinants, respectively, and e represents the
excitation degree that connects them. The definition in eq 1
guarantees the sought-after relation between the classes of
determinants and their scaling. Namely, all classes whose
number of determinantsNdet share the same scaling withN enter
at the hierarchy h. Had we employed the absolute value of s − s0
or discarded s0 in the definition of h, this property would not
hold. The term (s− s0)/2 is always an integer, with s and s0 being
even (odd) for systems with even (odd) numbers of electrons.

Figure 1. Partitioning of the Hilbert space according to the seniority number s and the excitation degree ewith respect to a given reference determinant
(shown by its side) for a closed-shell reference (left), an open-shell reference with one unpaired electron (center), and an open-shell reference with two
unpaired electrons (right). The color tones represent the determinants that are included at a given hCI model. hCI0 reduces to the reference
determinant (usually the HF solution) in the former two cases, where s0 = 0 and s0 = 1.
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The excitation degree e is also an integer. Therefore, h assumes
integer or half-integer values for any type of reference
determinant. For a given hCI model defined by h, we include
all of the candidate determinants having a hierarchy less than or
equal to h with respect to any determinant in the reference. This
definition allows us to build multireference hCI models as well.
Notice that eq 1 simplifies to the previous definition10 for the
case of a closed-shell reference determinant, where s0 = 0. hCI
can be viewed as a CI model that includes increasingly more
dissimilar determinants with respect to a given reference
determinant. The level of dissimilarity is represented by the
hierarchy h, which accounts for differences in orbital occupation
(through the excitation degree e) and differences in the number
of unpaired electrons [through the term (s − s0)/2].

We show in Figure 1 how the seniority−excitation map of
determinants is partitioned for a closed-shell reference (s0 = 0)
and for open-shell references with one (s0 = 1) or two (s0 = 2)
unpaired electrons. For these three types of references, the
classes of determinants including up to hCI1 are presented in
Figure 2. The closed-shell reference determinant is the natural
choice for describing the ground state of a closed-shell system as
well as its doubly excited states.29,36,37,59−61 Meanwhile, a
determinant having one unpaired electron is suitable for an
open-shell system with doublet ground and excited states.
Singlet and triplet singly excited states of closed-shell systems as
well as diradicals87−89 would require a reference determinant
with two unpaired electrons.

In eCI, the number of determinants Ndet scales polynomially
with the number of basis functions N as N2e.1 Likewise, in hCI,
Ndet scales as N2h. The actual computational cost scales as

+N( )e2 2 for eCI and similarly for hCI, scaling as +N( )h2 2 .
Both the scaling of Ndet and the computational scaling along the
two routes are shown in Table I. As for sCI models, the scaling of
Ndet with respect to N is exponential at all orders.3−6 This is the
case because excitations of all degrees are included, even at lower
orders such as sCI0 and sCI1.

For a closed-shell reference determinant (s0 = 0), hCI0
reduces to the reference determinant, usually chosen as the HF
one. The first nontrivial order is hCI1 (see the left panel of
Figure 1), which accounts for all single excitations (as CIS) plus
all paired double excitations (two electrons promoted from the
same occupied orbital into the same virtual orbital), as shown in
the top left panel of Figure 2. For both classes of determinants,
their numbers scale as N2 and are thus taken into account at the
same hierarchy of hCI (h = 1 in this case). An odd number of
excitations from a closed-shell reference always leaves unpaired
electrons, hence the empty blocks at s = 0 for odd e. hCI1.5
augments the set of hCI1 determinants with the set of double
excitations where two electrons are unpaired. At the next integer
order, hCI2 incorporates all classes of determinants where Ndet
scales as N4. In total, it accounts for all single and double
excitations (as CISD) plus the subset of triple excitations that
leave only two unpaired electrons plus the subset of quadruple
excitations where no electrons are unpaired.

For an odd number of electrons, s assumes odd values starting
from s = 1. The simplest reference is an open-shell determinant
with one unpaired electron (s0 = 1), shown in the center panel of
Figure 1 and in the top right panel of Figure 2. hCI0 also reduces

Figure 2. Classes of determinants generated in hCI0, hCI0.5, and hCI1 for three different reference determinants: closed-shell (top left), open-shell
with one unpaired electron (top right), and open-shell with two unpaired electrons (bottom). By dividing the orbitals of the reference determinant into
doubly occupied, singly occupied, and unoccupied subspaces, the class of an excited determinant is defined by the number of electrons and seniority in
each orbital subspace.

Table I. Scaling of Ndet and Computational Scaling (Cost) in
Terms of the Number of Basis FunctionsN for the Hierarchy-
and Excitation-Based CI Routes, with and without the EN2
Perturbative Correction

hierarchy-based excitation-based Ndet cost

hCI1 CIS N( )2 N( )4

hCI1.5 N( )3 N( )5

hCI2 hCI1+EN2 CISD CIS+EN2 N( )4 N( )6

hCI2.5 hCI1.5+EN2 N( )5 N( )7

hCI3 hCI2+EN2 CISDT CISD+EN2 N( )6 N( )8

hCI3.5 hCI2.5+EN2 N( )7 N( )9

hCI4 hCI3+EN2 CISDTQ CISDT
+EN2

N( )8 N( )10
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to the reference determinant (the restricted open-shell HF
solution is a natural choice). In contrast to the closed-shell case,
here there are no empty blocks in the seniority−excitation map.
Actually, the hCI series displays the hCI0.5 level, accounting
only for the single excitations from and into the singly occupied
orbital. When HF orbitals are employed, these excitations do not
connect with the reference, and in this case, hCI0.5 provides the
same energy as restricted open-shell HF. More generally, since
there are more types of orbitals for the open-shell reference
(doubly occupied, singly occupied, and unoccupied) than for
the closed-shell reference (doubly occupied or unoccupied),
there are correspondingly more classes of determinants at a
given level of hCI. This can be appreciated from the comparison
of hCI1 for closed- and open-shell references, shown in Figure 2.

Finally, one can employ a reference determinant having more
unpaired electrons to define hCI models. The case of two
unpaired electrons (s0 = 2) is shown in the right panel of Figure
1. The key difference in the hCI sequence with respect to the
closed-shell case lies in the displacement by one block to the
right in the seniority−excitation map, reflecting the shift from
the seniority-zero reference to the seniority-two reference. In
addition, in the two previous cases, the hCI0 level only included
the reference determinant whereas for s0 = 2, hCI0 accounts not
only for the reference determinant but also for the two closed-
shell determinants produced by the single excitation that pairs
the two unpaired electrons. The hCI1 classes of determinants for
the s0 = 2 reference can be seen in the bottom of Figure 2, which
clearly outnumber the fewer classes associated with the s0 = 0
and s0 = 1 cases.

One could adopt references with even larger s0, further
displacing the hCI sequence to the right in the seniority−
excitation map. In this case, hCI0 would include all of the lower-
spin determinants obtained by partially or totally pairing the
unpaired electrons. Notice that the number of such determi-
nants does not depend on the system size (scaling asN0) and are
thus included at the h = 0 level, in line with the spirit of hCI. In a
similar fashion, hCI can be built on top of a larger s0 reference for
odd numbers of electrons. The deductions for the number of
determinants in a given hCI model for the s0 = 0 closed-shell, s0 =
1 open-shell, and arbitrary reference determinant can be found
in Appendix A.

For a reference containing unpaired electrons, an approximate
CI model generally produces spin-contaminated states. One can
impose the solutions to have a well-defined spin by including
additional determinants generated via higher-order hierarchies,
which account for the missing spin-flip configurations.90 The
spin-contamination problem and its solution are therefore
equivalent to that encountered in eCI.91 Here we employed this
procedure and considered pure spin states. For the calculation of
excitation energies, however, we have also assessed the effect of
not imposing this condition.

For the s0 = 2 reference, one could alternatively employ a high-
spin triplet determinant (two unpaired spin-up electrons) rather
than the low-spin determinant shown in Figure 1. Regardless of
the choice, hCI (like eCI) produces the same energies for the
triplet states provided that a spin eigenstate is imposed.

III. COMPUTATIONAL DETAILS
The hCI models introduced here were implemented in QUANTUM

PACKAGE
64 through a straightforward modification of the

configuration interaction using a perturbative selection made
iteratively (CIPSI) algorithm.92−95 By allowing only for the
determinants that are connected with the reference determi-

nant(s) up to a given maximum hierarchy h, the CIPSI algorithm
is restricted to the truncated Hilbert space specified by the
reference determinant(s) and the value of h. QUANTUM PACKAGE

64

was also employed to perform all the present eCI, sCI, and FCI
calculations. In a given calculation, the energies are considered
to be converged when the (largest) EN2 correction computed in
the truncated Hilbert space lies below 0.01 mEh.96 This selected
CI procedure requires considerably fewer determinants than the
total number of determinants in the truncated Hilbert space
while delivering fairly converged energies. The ground- and
excited-state CI energies are obtained with the Davidson
iterative algorithm.97

For a given approximate CI model, we further evaluated the
standard and renormalized EN2 perturbative corrections.64 This
calculation involves a single loop over the determinants left
outside the truncated (internal) space but connected to it via, at
most, double excitations. Looping over these external doubly
excited determinants has a computational scaling equal to Ndet,
thus +N( )e2 4 for eCI and +N( )h2 4 for hCI, where e or h
defines the internal CI space. For example, hCI2 and CISD
present an N( )6 computational scaling, whereas hCI2+EN2
and CISD+EN2 scale as N( )8 , though with a small prefactor
stemming from the EN2 calculation, which employs a very
efficient semistochastic algorithm.96 The computational scaling
associated with the CI+EN2 calculations is also presented in
Table I.

To gauge the performance of hCI, eCI, and sCI for radicals,
we calculated the ground-state potential energy curves (PECs)
for the dissociation of four radicals: OH, CN, vinyl (C2H3), and
H7. The CI calculations employed the ground-state restricted
open-shell HF orbitals, described with the cc-pVDZ basis set
and within the frozen-core approximation. For such small
systems and basis sets, FCI is attainable and provides the
reference results for gauging the approximate CI models. The
equilibrium geometry of vinyl was taken from ref 98 and is also
reproduced in the Supporting Information. Their PECs were
computed along the C�C double bond breaking coordinate,
with the remaining internal coordinates kept frozen. For H7, we
considered equally spaced and linearly arranged hydrogen
atoms, and the PECs were computed along the symmetric
dissociation coordinate.

The results were analyzed along the same lines as our previous
report on hCI for closed-shell systems.10 Namely, for the
different CI models considered here, we evaluated the
convergence of the nonparallelity error (NPE), the distance
error, the harmonic vibrational frequencies, and the equilibrium
bond lengths as functions of Ndet. The NPE of a given level of
theory is defined as the maximum minus the minimum energy
difference between its corresponding PEC and the FCI PEC for
a given range of coordinates. Here we redefine the previous
definition of the distance error10 to account for the fact that the
approximate PEC might appear below the FCI one when
perturbative corrections are employed. In such cases and with
the previous definition, undesired negative values could be
attained. The distance error is redefined based on the signed
differences between two PECs, as the absolute value of their
maximum difference plus the absolute value of their minimum
difference, evaluated at a given coordinate interval. This new
definition measures how close two PECs are, remaining always
non-negative. From here on, we employ equilibrium properties
when referring to both the equilibrium geometry and the
harmonic vibrational frequency. Details about how the
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equilibrium properties were obtained from the calculated PECs,
along with the ranges defining the NPE and distance errors, can
be found in the Supporting Information.

The various CI models introduced here were further assessed
based on calculated vertical excitation energies for 69 electronic
states from 17 closed-shell systems and 13 radicals (shown in
Table II), with geometries extracted from the QUEST

database.99 Our set includes mostly small systems, ranging
from BH to glyoxal, displaying a mix of valence and Rydberg

singly excited states and two doubly excited states (glyoxal and
nitroxyl). It does not include large molecules or charge transfer
states. The full set of excited states and calculated excitation
energies for the various CI models are provided in the
Supporting Information.

We employed the aug-cc-pVDZ basis set for systems having
up to three non-hydrogen atoms and the 6-31+G(d) basis set for
the larger ones. Core orbitals were frozen systematically. We
impose the CI solutions to be eigenstates of the spin angular
momentum operator, which implies accounting for a set of
appropriate spin-flipped determinants stemming from higher-
order excitations or hierarchies.90 In this sense, our CIS
calculations for radicals actually correspond to the so-called
extended CIS91 for instance, and equivalently for the other hCI,
eCI, and sCI models. Notice that spin-contaminated solutions
would have energies different from those of the spin eigenstates
considered here.

We performed calculations following both the standard
ground-state-based CI route and the state-specific CI route.29

For the latter, we employed the state-specific orbitals obtained in
ref 29. Notice that in contrast to eCI, the energies obtained with

Table II. Systems Considered in the Excited-State
Calculations

closed shells open shells

glyoxal HCF H2O BeH NH2 HCO
acetaldehyde HCCl H2S BeF PH2 HOC
silylidene HPO N2 BH2 vinyl OH
nitroxyl CF2 NH3 CN allyl CO+

ethylene BH HCl CH3

methanimine BF

Figure 3. Nonparallelity error (NPE), distance error, equilibrium distance, and vibrational frequency (or force constant) for OH, CN, vinyl, and H7 as
functions of the number of determinants (Ndet) according to the hCI (green), eCI (red), and sCI (blue) routes, with (light-tone crosses) and without
(dark-tone circles) the standard EN2 perturbative correction. Each point denotes one CI model according to the sequences HF, hCI1, hCI1.5, hCI2,
etc. (green); HF, CIS, CISD, etc. (red); and sCI1, sCI3, and sCI5 (blue). The dashed lines represent the FCI results.
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the sCI and hCI models are not invariant under rotations within
the occupied and virtual subspaces. The restricted HF solution
(restricted open-shell HF for the open-shell systems) was taken
as the reference determinant for the hCI and eCI ground-state

calculations (left and middle panels of Figure 1). For the state-
specific hCI and eCI calculations, we employed a minimal CSF
reference:29 a single open-shell determinant for the doublet
excited states and a single open-shell CSF for the excited states

Figure 4. Nonparallelity error (NPE), distance error, equilibrium distance, and vibrational frequency (or force constant) for HF, F2, ethylene, N2, H4,
and H8 as functions of the number of determinants (Ndet) according to the hCI (green), eCI (red), and sCI (blue) routes, with (light-tone crosses) and
without (dark-tone circles) the standard EN2 perturbative correction. Each point denotes one CI model according to the sequences HF, hCI1, hCI1.5,
hCI2, etc. (green); HF, CIS, CISD, etc. (red); and sCI0, sCI2, and sCI4 (blue). The dashed lines represent the FCI results.
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from closed-shell systems (middle and right panels of Figure 1,
respectively). The computed excitation energies were bench-
marked against the reference theoretical values provided in the
QUEST database.99 For each excited state considered here, the
reference value and the method used to obtain it (of high-order
CC or extrapolated FCI quality) can be found in the Supporting
Information.

For the sCI models, we considered sCI1 for both ground- and
(state-specific) excited-state calculations for the doublet open-
shell systems. For the closed-shell systems and their excited
states, we explored two models. In the sCI2/sCI0 model, the
ground state was described with sCI0 and the excited state with
sCI2, which is the minimal sCI calculation for computing singly
excited states of closed-shell systems. Further including the
seniority-two sector for the ground-state calculations defines the
sCI2/sCI2 model.

From here on, CI models carrying the Δ symbol denote a
state-specific approach, whereas those without it correspond to a
ground-state-based approach.

IV. RESULTS AND DISCUSSION
A. hCI for Radicals. The full set of PECs for the open-shell

systems (OH, CN, H7, and vinyl) are presented in the
Supporting Information. From these PECs, we obtain the
NPEs, distance errors, equilibrium bond lengths, and harmonic
vibrational frequencies, which are plotted as functions of Ndet in
Figure 3. Each point in the figure denotes one CI model. For
instance, the hCI route is represented by the dark green line,
with the first point being hCI0 (which corresponds to HF in the
present cases), the second being hCI1, the third being hCI1.5,
etc. The corresponding results for the closed-shell systems (HF,
F2, N2, ethylene, H4, and H8) are shown in Figure 4. When we
first introduced hCI,10 we surveyed the same molecules, though
only for the bare CI models (without a perturbative correction).
These previous results are reproduced in Figure 4 together with
the present results, which include such correction. First, we
discuss the results for the bare CI models (hCI, eCI, and sCI) for
the open-shell systems (represented by the dark tones in the
figures), leaving the discussion about the perturbative correction
(light tones) for both open-shell and closed-shell systems to
section IV B.

We find that hCI typically improves the convergence with
respect toNdet compared to eCI for the four properties surveyed
here. The present finding for open-shell systems therefore
parallels the previously reported superiority of hCI for closed-
shell systems.10

The smaller NPEs obtained with hCI are related to the better
description of the PECs at dissociation. This is due to a larger
fraction of static correlation being recovered, stemming from the
classes of determinants appearing lower in the seniority−
excitation map (see Figure 1), namely, determinants high in
excitation degree e and low in seniority s, that are absent in eCI
of the same order. The smaller NPEs attained with hCI are clear
for OH (involving single-bond breaking), vinyl (double-bond
breaking), and CN (triple-bond breaking), whereas for H7
(multiple bond breaking), hCI and eCI are comparable. This
dependence on the order of bond breaking had also been
observed for closed-shell systems10 (as can be seen in Figure 4)
and would be expected, as describing dissociation becomes
increasingly more challenging as the bond order increases. Even
though hCI manages to recover more static correlation than eCI,
the advantage of the former is more striking for single-bond

breaking, whereas multiple bond breaking (such as H7 and H8)
inevitably requires higher-order excited determinants.

The distance errors obtained with hCI and eCI are overall
comparable for open-shell systems, whereas the former presents
slightly better convergence for the closed-shell systems. In
comparison to eCI, hCI leads to either comparable or somewhat
faster (for CN) convergence of the equilibrium geometries for
open-shell systems. Finally, hCI systematically outperforms eCI
in the calculation of vibrational frequencies, except for H7, where
no big difference is found. For the CN radical, CIS, sCI1, and
sCI3 produce crossings between ground and excited states
around equilibrium and hence nonsmooth adiabatic PECs and
somewhat less reliable equilibrium properties in these specific
cases. Given the overall slight superiority of hCI for the
equilibrium properties, it also manages to account for more
dynamic correlation than eCI for both open-shell and closed-
shell systems.

In great contrast to hCI and eCI, sCI models deliver poor
convergence of all observables. The single exception is the NPE
for OH obtained from sCI0, which is in between the NPEs
obtained from hCI2 and CISDT, methods having a computa-
tional cost comparable to that of sCI0 in this particular case.
Going to larger basis sets or bigger systems, the computational
burden of sCI models would increase considerably more than
hCI or eCI models due to its formal exponential scaling. As far as
configuration interaction methods are concerned, we conclude
that the sCI route is unattractive for open-shell systems, in line
with similar findings for closed-shell systems10 (also see Figure
4).

We recall that ground-state restricted open-shell HF orbitals
were employed in all calculations for the ground-state radicals.
In contrast to eCI, methods that rely on the seniority to generate
excited determinants (like the hCI and sCI models addressed
here) are not invariant under orbital rotations within the
occupied and virtual subspaces.3,66,74 One could exploit the
rotations within each subspace (by means of orbital localization,
for example) to hopefully render more suitable orbitals for hCI
and sCI calculations. In our first contribution on hCI for closed-
shell systems,10 we went one step further and variationally
optimized the orbitals at the correlated CI level, thus allowing
rotations between occupied and virtual subspaces. Except for the
lower-order CI models, the cost and complications of orbital
optimization outweigh the mixed improvement in the computed
properties.10 For the closed-shell systems (surveyed both here
and in the previous study10), the results become significantly
more accurate with the EN2 perturbative correction rather than
by variationally optimizing the orbitals.
B. hCI Plus EN2 Correction. The results for the CI models

corrected by the standard EN2 energy are represented by the
light tones in Figures 3 and 4. We excluded instances where the
PECs present important discontinuities. These discontinuities
reflect crossings between states of different symmetries in the
unperturbed CI calculation, appearing as kinks in the computed
ground-state PEC. Due to the abrupt change of character, the
EN2 correction is not uniform and gives rise to the observed
discontinuities. This happens for the open-shell systems at
dissociation (except for OH), for which we do not present NPEs
or distance errors. For OH and the six closed-shell systems, the
EN2 correction produced smooth PECs at dissociation. Around
the equilibrium geometry, the EN2 correction also leads to well-
behaved PECs for all CI models and for all systems except for
CN (thus, no equilibrium properties are presented for this
radical). This is simply due to its several close-lying excited
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states. If we were to follow the PEC of a given symmetry (and
not the lowest-lying state as we did here), then there would be
no discontinuities stemming from the EN2 contribution.

We found that the EN2 perturbative correction significantly
reduces the errors in the bare CI calculations. This is observed
for all of the CI models, systems, and observables considered
here. For OH, in particular, the improvement is massive, as even
the lower levels of CI+EN2 deliver very close results to those of
FCI. Importantly, the hCI+EN2 route outperforms its eCI+EN2
counterpart, thus preserving the advantage observed without the
perturbative correction. Similarly, the correction typically
maintains a comparable performance of the two routes when
this is the case according to the unperturbed CI calculations.

The improvement brought by the perturbative correction is
such that a given CI+EN2 model often provides more accurate
results than the higher-order bare CI model sharing the same
computational scaling. For instance, hCI1+EN2 and hCI2
display the same N( )6 computational scaling, and the former
outperforms the latter in many cases. In Figures 3 and 4,
hCI1+EN2 correlates with the second light-green mark and
hCI2 with the fourth dark-green mark. The former model
provides smaller NPEs and distance errors for OH, HF, and F2
(all single-bond breakings), the opposite being true for multiple
bond breaking. The advantage of the EN2 correction is more
striking for the equilibrium properties, where hCI1+EN2 is
more accurate than hCI2 for OH, vinyl, ethylene, and N2,
whereas the two models perform similarly for the remaining
systems. It is worth recalling that the prefactor associated with
the EN2 calculation is smaller than the one associated with the
higher-order CI calculation, which in the above example makes
hCI1+EN2 cheaper than hCI2. In many cases, the accuracy of
hCI1+EN2 is actually better than or comparable to that of
hCI2.5 or CISDT, which are considerably more expensive
models.

A similar impact on the effect of the EN2 correction also holds
for eCI. For that, we compare CISD+EN2 and CISDT, both of
which show N( )8 scaling. CISD+EN2 correlates with the third
dark-red mark and CISDT with the fourth light-red mark in
Figures 3 and 4. The errors for the four observables are
systematically smaller than those of the former model, except for
the NPE and distance error of H8 and the equilibrium properties
of H7, where they are comparable.

The EN2 correction usually ameliorates the performance of
the sCI route, though to a lesser extent than observed for hCI
and eCI. This reflects the poorer reference provided by sCI,
from which perturbation theory struggles to recover. In a
handful of cases, the EN2 correction does not improve the bare
sCI results for both NPEs (OH, N2, F2, and ethylene) and
equilibrium properties (vinyl, HF, F2, and ethylene). Overall, the
sCI+EN2 route is too expensive for the attained accuracy.

In very few cases, the EN2 correction does not improve the
bare CI results, suggesting an important cancellation of errors in
the latter. This is seen when employing the hCI1 and hCI1+EN2
models to compute the NPE of OH and F2 and to some extent
the equilibrium properties of F2. These are exceptions, though,
as the EN2 correction practically always improves the accuracy
of the computed observables. It further leads to an overall more
monotonic convergence of the observables. In this sense, it
regularizes oscillations seen in the unperturbed case, probably
related to the cancellation of errors at lower orders. This is
clearly seen in the equilibrium properties of vinyl, H7, and F2 and
in the NPE of OH, HF, F2, and ethylene.

Instead of the usual EN2 correction discussed so far and
shown in Figures 3 and 4, one can compute the renormalized
EN2 correction.64 Analogous results showing the convergence
of observables for both usual and renormalized EN2 corrections
are listed in the Supporting Information. Significant differences
can be encountered at the lower orders of CI, becoming
negligible at higher orders. More often than not, the usual
correction performs better. The difference is noticeable for
ethylene, N2, H7, and H8 and to a lesser extent for vinyl, whereas
for H4 the results are mixed. The renormalized correction is
slightly more accurate for OH, HF, and F2. These results suggest
that renormalizing the EN2 energy may be helpful only for
single-bond breaking, though by a small amount, whereas it
worsens the results for multiple bond breaking. Overall, the
usual EN2 correction should probably be favored when
employed in combination with the approximate CI models.

We further explored hCI to describe the automerization
barrier in the ground state of cyclobutadiene, which connects the
two equivalent rectangular D2h equilibrium geometries through
the square D4h transition state geometry.100,101 This is a well-
known and challenging problem, requiring high-level calcu-
lations to achieve quantitative values for the height of the barrier
(see ref 89 and references therein). Here we employ the
geometries presented in ref 89, the 6-31+G(d) basis set, and the
frozen-core approximation. We optimize the orbitals for two
closed-shell determinants in the D2h geometry and for two spin-
flipped open-shell determinants in theD4h geometry, from which
the excited determinants were generated in the subsequent CI
calculations. Even though the calculations target the ground
state, they are labeled ΔCI because different references are
employed for each geometry. For this basis set, the reference
value of 7.51 kcal/mol was obtained using CC with single,
double, triple, and quadruple excitations.89 With respect to this
reference value, the errors for the automerization barrier are 3.55
kcal/mol with our two-determinant calculations, −2.28 kcal/
mol with ΔhCI2, −1.07 kcal/mol with ΔhCI2+EN2, 0.61 kcal/
mol with ΔCISD, and −0.49 kcal/mol with ΔCISD+EN2.
These values are comparable to those obtained with other
methods, extensively discussed in ref 89. Here we just mention
the errors of CC with singles and doubles, 0.80 kcal/mol, and of
spin-flip equation-of-motion CC (EOM-CC) with singles and
doubles, −1.65 kcal/mol, which share the same N( )6

computational scaling as ΔCISD and ΔhCI2. This specific
example serves to illustrate that the accuracy of hCI models can
be similar to that of other methods. As such, hCI can be taken
into consideration in future systematic studies that tackle
challenging chemical problems in which strong correlation
comes into play.
C. hCI for Excited States. For each CI model considered

here, we evaluate the mean signed error (MSE), mean absolute
error (MAE), root-mean-square error (RMSE), and standard
deviation of the errors (SDE) with respect to the reference
theoretical values for the excitation energies. For completeness,
the definition of these statistical measures can be found in the
Supporting Information. For the lower-order models, calcu-
lations were performed for 50 (closed-shell) and 19 (open-shell)
excited states. In turn, subsets of 16 (closed-shell) and six (open-
shell) excited states were considered for the higher-order CI
models, given the more intensive computational cost. Even
though these subsets are too small for meaningful absolute
statistics, they should be enough to reveal the main trends. A
detailed comparison of eCI based on ground-state and state-
specific approaches can be found elsewhere.29 The focus of the

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00946
J. Chem. Theory Comput. 2023, 19, 8654−8670

8661

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00946/suppl_file/ct3c00946_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.3c00946/suppl_file/ct3c00946_si_001.pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00946?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


present discussion lies on the comparison of hCI with eCI and
sCI and on a similar comparison between ground-state and
state-specific approaches for hCI and sCI. The bare (un-
perturbed) hCI and sCI models are discussed in this section and
in section IV D, respectively, whereas their EN2-perturbed
analogues are left for section IV E.

We start the discussion with the excitations from closed-shell
systems with the corresponding statistical errors shown in Table
III. The first level of hCI, hCI1, produces poor excitation
energies, with a MAE of 1.16 eV. This model has the same
computational scaling as CIS but includes the paired double
excitations, which clearly worsen the decent CIS results (MAE
of 0.61 eV). Moving one rank up, to hCI1.5, the MAE increases
to 1.95 eV, and then it reaches a maximum of 3.53 eV at the hCI2
level. We notice that hCI2 delivers somewhat smaller errors than
CISD (MAE of 4.09 eV), even though both are way too large.
From that point on, the next hCI models generate progressively
better results. Despite the improvement with respect to hCI2,
hCI2.5 is still as inaccurate (MAE of 1.95 eV) as hCI1.5. At the
hCI3 level, significantly smaller errors are finally achieved (MAE
of 0.19 eV). This is close to that obtained with the eCI model of
the same order, CISDT (0.17 eV). Even smaller errors are
produced at the hCI3.5 level (MAE of 0.11 eV), but at a
considerable computational cost.

As discussed above, the errors in excitation energies obtained
with the hCI models first increase as one augments the hierarchy
parameter h, reaching a maximum at hCI2, and then decrease
toward higher orders. This behavior parallels what is well-
established for the excitation energies computed with eCI,
where CISD is far worse than CIS, which in turn is inferior to
CISDT, whereas CISDTQ is considerably more accurate. This
can be understood based on the role of the excited determinants
for ground and excited states. The excited determinants of the

low-order hCI models (hCI1 and hCI1.5) already account for
some correlation for the ground state but represent mostly
orbital relaxation of the excited state, which thus remains less
correlated. This favored description of the ground state explains
the overestimated excitation energies at these orders. The effect
becomes exaggerated at the hCI2 (and CISD) level since it
captures most of the ground state correlation through the
unpaired double excitations, which in turn just start to describe
correlation for the excited state. Higher-order models, starting at
hCI3 and CISDT, are needed to recover a large fraction of the
excited-state correlation, and at this point the errors in the
excitation energies decline progressively. Because the excited
determinants are accessed from the ground-state determinant
and are due to ground-state HF orbitals, the description of the
ground state is always favored. This explains why hCI
systematically overestimates the excitation energies, just as eCI
does.

Employing state-specific orbitals would be expected to
suppress the bias toward the ground state and lead to improved
results, as observed, for instance, when going from CISD to
ΔCISD.29 However, for the low orders of state-specific hCI
(ΔhCI1 and ΔhCI1.5), we actually found larger errors than with
the ground-state-based approach, this time by underestimating
the excitation energies. Besides the set of orbitals, the classes of
determinants included at each order play an equally important
role and explain our observation. Still considering the excitations
of the closed-shell systems, different classes of determinants are
accessed from the ground-state reference (a closed-shell
determinant) and from the excited-state reference (a single
open-shell CSF) for a given hierarchy parameter h. The case of
ΔhCI1 can be understood by comparing the hCI1 determinants
for these two references, as shown in Figure 2. There is far more
diversity in the classes of determinants employed for the excited-

Table III. Mean Signed Error (MSE), Mean Absolute Error (MAE), Root-Mean Square Error (RMSE), and Standard Deviation of
the Errors (SDE) (in eV) with Respect to Reference Theoretical Values for the Set of Singly Excited States of Closed-Shell
Systems Listed in the Supporting Information

method count MSE MAE RMSE SDE method count MSE MAE RMSE SDE

CIS 48 +0.03 0.61 0.59 0.77
CISD 16 +4.09 4.09 4.18 0.84
CISDT 16 +0.12 0.17 0.18 0.14
CISDTQ 16 +0.15 0.15 0.17 0.08
hCI1 50 +1.07 1.16 1.39 0.89 hCI1+EN2 50 +0.65 0.65 0.84 0.53
hCI1.5 50 +1.95 1.95 2.04 0.59 hCI1.5+EN2 50 +0.62 0.63 0.76 0.44
hCI2 16 +2.99 3.53 3.61 0.76
hCI2.5 16 +1.95 1.95 2.06 0.66
hCI3 16 +0.19 0.19 0.21 0.08
hCI3.5 16 +0.11 0.11 0.13 0.07
ΔCSF 50 −0.71 0.77 0.91 0.58
ΔCISD 50 −0.12 0.17 0.22 0.18 ΔCISD+EN2 50 +0.02 0.06 0.09 0.09
ΔCISDT 16 −0.20 0.20 0.22 0.11
ΔCISDTQ 16 −0.02 0.02 0.02 0.02
ΔhCI1 50 −1.40 1.40 1.55 0.67 ΔhCI1+EN2 50 +0.12 0.24 0.30 0.27
ΔhCI1.5 50 −2.80 2.80 3.03 1.15 ΔhCI1.5+EN2 50 −0.01 0.13 0.19 0.19
ΔhCI2 50 −0.18 0.20 0.25 0.16 ΔhCI2+EN2 50 +0.01 0.07 0.10 0.10
ΔhCI2.5 16 −0.27 0.27 0.30 0.13
ΔhCI3 16 −0.22 0.22 0.24 0.10
ΔhCI3.5 16 −0.08 0.08 0.09 0.05
sCI2/sCI2 50 +1.35 1.35 1.51 0.68 sCI2/sCI2+EN2 50 +0.60 0.60 0.79 0.51
sCI2/sCI0 50 −0.34 0.55 0.74 0.66 sCI2/sCI0+EN2 50 +0.51 0.52 0.69 0.47
ΔsCI2/sCI2 50 +0.66 0.78 0.89 0.60 ΔsCI2/sCI2+EN2 50 +0.21 0.26 0.35 0.28
ΔsCI2/sCI0 50 −1.04 1.04 1.21 0.62 ΔsCI2/sCI0+EN2 50 +0.12 0.23 0.27 0.24
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state calculation than for the ground-state one, a consequence of
the different references. Because of that, low orders of hCI may
be expected to capture a larger fraction of correlation for the
excited state than for ground state. This is further supported by
the more accurate results obtained for excitations of open-shell
systems (discussed in detail later), where the same type of
reference is employed. Although hCI is constructed to account
for all classes of determinants whose number share the same
computational scaling, at the lower orders this procedure does
not lead to a balanced description of correlation, at least for
excitations of closed-shell systems and the present choice of
minimal references. An important point to realize from the
present results is that a state-specific approach is not necessarily
more accurate than a ground-state-based approach. Both the
orbitals and the classes of determinants of a given CI model
control the fine balance of ground- and excited-state correlation
effects.

At the ΔhCI2 level, the imbalance associated with the state-
specific classes of determinants is reduced to a great extent. At
this level, the state-specific advantage clearly manifests, with
ΔhCI2 having a MAE of 0.20 eV, which is substantially smaller
than the MAE of 3.53 eV obtained from hCI2. This comparison
between ground-state-based and state-specific approaches is
analogous to our previous finding on the eCI models of the same
order, CISD, and ΔCISD.29 Even though hCI2 is somewhat
more accurate than CISD (both have large errors), their state-
specific versions share comparable performance. Actually,
ΔhCI2 is slightly less accurate than ΔCISD, with MAEs of
0.20 and 0.17 eV. Moreover, ΔhCI2 has a more negative MSE
than ΔCISD (−0.18 eV against −0.12 eV). Albeit small, these
differences are statistically significant, and ΔCISD would still be
preferable to ΔhCI2 by some margin. The slightly worse
performance of ΔhCI2 probably stems from a residual
imbalance associated with the state-specific classes of determi-
nants. ΔhCI2 is more accurate for singlets than for triplets

(MAEs of 0.16 and 0.25 eV), whereas Rydberg states are better
described than valence states (MAEs of 0.14 and 0.24 eV). The
same trends are found for the low-order models (ΔhCI1 and
ΔhCI1.5) and also for ΔCISD, which slightly outperforms
ΔhCI2 for each type of excitation. The specific MAEs can be
found in the Supporting Information.

Moving to ΔhCI2.5 increases the errors (MAE of 0.27 eV)
compared to ΔhCI2 (MAE of 0.20 eV). This could be due to
another set of unbalanced state-specific determinants that enters
at this stage, like what was observed between ΔhCI1 and
ΔhCI1.5. Despite the differing number of states considered, the
observed variation in the accuracy of ΔhCI2 and ΔhCI2.5 is
statistically significant, which is confirmed by calculating the
statistical errors for the same subset of excited states. Even
though ΔhCI2.5 is much more accurate than hCI2.5, ΔhCI2 or
ΔCISD remains cheaper and more accurate.

The situation improves at ΔhCI3 (MAE of 0.22 eV), though it
still remains less accurate than ΔhCI2, which is only surpassed at
the ΔhCI3.5 level (MAE of 0.08 eV). There is no gain in going
from hCI3 (MAE of 0.19 eV) to ΔhCI3 and from hCI3.5 (MAE
of 0.11 eV) to ΔhCI3.5, like what had been found for CISDT
and ΔCISDT.29 We notice, however, that the state-specific
route presents negative MSEs, in contrast to the positive values
obtained with the ground-state-based route for both hCI and
eCI. Furthermore, eCI and hCI present comparable perform-
ances at this order, with an arguable preference for the former, as
also discussed above for ΔCISD and ΔhCI2.

We now shift to a discussion of excitations for open-shell
systems. The statistical errors are shown in Table IV. The key
difference in the calculations for open-shell excitations is that the
same type of reference was employed for ground- and excited-
state calculations, namely, a single open-shell determinant,
shown in the center panel of Figure 1. In contrast, the excited
states from the closed-shell systems relied on different classes of
reference determinants. This accounts for the more accurate

Table IV. Mean Signed Error (MSE), Mean Absolute Error (MAE), Root-Mean Square Error (RMSE), and Standard Deviation of
the Errors (SDE) in Units of eV, with Respect to Reference Theoretical Values, for the Set of Singly-Excited States from Open-
Shell Doublets Listed in the Supporting Information

method count MSE MAE RMSE SDE method count MSE MAE RMSE SDE

CIS 19 +0.38 0.41 0.63 0.50
CISD 6 +2.97 2.97 3.19 1.17
CISDT 6 +0.06 0.07 0.09 0.06
CISDTQ 6 +0.08 0.08 0.11 0.08
hCI1 19 +0.65 0.73 0.91 0.64 hCI1+EN2 19 +0.27 0.28 0.36 0.24
hCI1.5 19 +1.07 1.07 1.26 0.68 hCI1.5+EN2 19 +0.22 0.25 0.33 0.24
hCI2 6 +1.32 1.32 1.60 0.90
hCI2.5 6 +0.03 0.05 0.06 0.05
hCI3 6 +0.00 0.04 0.05 0.05
hCI3.5 6 +0.01 0.03 0.05 0.04
ΔCSF 19 −0.04 0.43 0.59 0.59
ΔCISD 19 +0.00 0.12 0.21 0.21 ΔCISD+EN2 19 −0.02 0.04 0.06 0.06
ΔCISDT 6 −0.07 0.07 0.10 0.08
ΔCISDTQ 6 −0.02 0.02 0.02 0.02
ΔhCI1 19 −0.21 0.35 0.49 0.44 ΔhCI1+EN2 19 +0.02 0.17 0.29 0.29
ΔhCI1.5 19 −0.14 0.45 0.70 0.69 ΔhCI1.5+EN2 19 +0.00 0.10 0.15 0.15
ΔhCI2 19 −0.02 0.10 0.16 0.16 ΔhCI2+EN2 19 −0.00 0.05 0.08 0.08
ΔhCI2.5 6 −0.09 0.09 0.14 0.10
ΔhCI3 6 −0.06 0.06 0.08 0.05
ΔhCI3.5 6 −0.02 0.02 0.03 0.02
sCI1 19 +0.20 0.35 0.57 0.53 sCI1+EN2 19 +0.23 0.25 0.32 0.21
ΔsCI1 19 −0.12 0.28 0.39 0.37 ΔsCI1+EN2 19 +0.06 0.12 0.20 0.19
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results observed for open-shell excitations and explains most of
the differences with respect to excitations from closed-shell
systems, as discussed in detail in the following.

When using ground-state orbitals, we found that the
performance initially degrades and later improves as the order
increases, for both eCI and hCI. This is similar to what was
observed for the closed-shell excitations and can be traced back
to a biased description of the ground state related to the choice
of ground-state orbitals. An important difference, however, is
that the maximum error, also at hCI2, is significantly smaller
(MAE of 1.32 eV) for open shells than for closed shells (MAE of
3.53 eV). This clearly reflects the choice of reference, as both the
ground and excited states of the open shells considered here are
qualitatively described with the same type of determinant. For
the same reason, the MSEs are systematically smaller for the
open-shell excitations (though still positive because of the
ground-state orbitals).

Once state-specific orbitals are employed, there is no
remaining bias toward the ground state. In stark contrast to
the closed-shell case, the lower orders of ΔhCI, ΔhCI1 (MAE of
0.35 eV) and ΔhCI1.5 (MAE of 0.45 eV), become more
accurate than their ground-state-based counterparts, hCI1
(MAE of 0.73 eV) and hCI1.5 (MAE of 1.07 eV). Once again,
this is thanks to the same type of reference in ground- and
excited-state calculations. The case of ΔhCI1 for open-shell
excitations is depicted in Figure 2, in comparison to the more
unbalanced case of excitations from closed shells. We notice,
however, an apparent residual bias from the somewhat negative
MSEs (−0.21 eV with ΔhCI1 and −0.14 eV with ΔhCI1.5) and
that ΔhCI1.5 is slightly less accurate than ΔhCI1.

This residual bias virtually disappears at the next order,
ΔhCI2 (MSE of −0.02 eV), whereas for the closed-shell systems
even ΔhCI3.5 significantly underestimated the excitation
energies (MSE of −0.08 eV). The same comparison between
open and closed shells holds true for eCI models. For the open-
shell transitions, ΔhCI2 is slightly more accurate (MAE of 0.10
eV and RMSE of 0.16 eV) than ΔCISD (MAE of 0.12 eV and
RMSE of 0.21 eV). In further contrast to the closed-shell case,
ΔhCI2.5 is as accurate as ΔhCI2, producing a MAE of 0.09 eV.
(Accounting only for the six states considered for ΔhCI2.5,
ΔhCI2 would also have a MAE of 0.09 eV.) Likewise, higher-
order hCI models are progressively more accurate. Even though
the statistics become more limited, they suggest both a small
advantage of the hCI models against eCI and that the ground-
state routes perform slightly better than the state-specific ones.

For the state-specific models, we have further assessed the
impact of not imposing spin eigenstates (the results and statistics
can be found in the Supporting Information). This amounts to
not including the appropriate spin-flip determinants lying above
the hierarchy or excitation degree of choice. The effect is
minimal for the excitation energies of both closed- and open-
shell systems in the ΔhCI1.5, ΔhCI2, and ΔCISD models. The
mean difference on the individual excitation energies lies
between 0.01 and 0.02 eV for the latter two and 1 order of
magnitude less for ΔhCI1.5. Similarly, small effects are seen in
the global statistics. In turn, ΔhCI1 is more affected, which
would be expected since it is a low-order model. Average
individual excitations of closed- and open-shell systems vary by
0.26 and 0.06 eV, respectively, always in the sense of improving
the energies in the former case, though not enough to cause a
considerable reduction of the large absolute errors. Overall, not
constraining the CI solutions to have well-defined spin brings
practical complications (as more roots have to be calculated)

and does not improve the computed excitation energies
obtained with the more competitive ΔCISD and ΔhCI2
models. The sCI models, discussed in the next subsection, are
naturally spin eigenstates, and there is no need to enforce that.
D. sCI for Excited States. We refer back to Table III to

discuss the performance of sCI for excited states of closed-shell
systems. The first model, sCI2/sCI2, systematically over-
estimates the excitation energies, producing a MAE of 1.35
eV. The same two factors discussed above for hCI explain such
large errors. First, the ground-state description is favored due to
the use of ground-state HF orbitals. Indeed, with state-specific
orbitals, the ΔsCI2/sCI2 model reduces the MAE to 0.78 eV,
although still overestimating the excitation energies. Second,
there is an unbalanced description of the correlation for ground
and excited states, associated with the classes of determinants.
While sCI2/sCI2 accounts for an additional s = 2 sector for the
ground state (which can be qualitatively described in the s = 0
sector), no additional pairs of electrons are allowed to become
unpaired in the excited state calculation, even though the state is
qualitatively described by a determinant that is contained in the s
= 2 sector. In other words, unpaired excitations are allowed to
correlate the ground state but not the excited state, given their
respective closed-shell and open-shell characters, thus creating a
bias toward the former.

A possible solution to this imbalance is to restrict the
determinants to a maximum seniority number of s = 0 for the
ground-state and s = 2 for the excited-state calculation. This is
precisely the sCI2/sCI0 model, which delivers a MAE of 0.55
eV, compared to 1.35 eV for sCI2/sCI2. However, when going
to state-specific orbitals, ΔsCI2/sCI0 systematically under-
shoots the excitation energies and provides a MAE of 1.04 eV.
Clearly, the seniority-two sector captures more correlation for
the excited states than does the seniority-zero for the ground
state. Ultimately, we did not find a combination of sCI models
and orbitals that produced reasonable excitation energies for
closed-shell systems.

The situation for open-shell systems is quite different, in close
analogy to the previous discussion regarding hCI. As shown in
Table IV, sCI1 provides considerably more accurate excitation
energies for open-shell systems than for closed-shell systems.
The reason should not be surprising at this point. Both ground
and excited states of open shells can be qualitatively described by
the same type of reference (a single s = 1 open-shell
determinant). Moreover, the state-specific approach is superior.
sCI1 presents a MAE of 0.35 eV and overestimates the excitation
energies (MSE of 0.20 eV) in view of the bias introduced by the
ground-state orbitals. With state-specific orbitals, ΔsCI1 reduces
the MAE to 0.28 eV and the MSE to −0.12 eV, which is smaller
in absolute value than found for sCI1.

Even though ΔsCI1 is less accurate and has less favorable
computational scaling than CI models like ΔCISD and ΔhCI2,
its decent errors are encouraging for another reason: the
development of polynomial-scaling CC methods based on the
concept of seniority. For closed-shell systems, DOCI (here
referred to as sCI0) energies can be very well reproduced with
state-specific pair coupled-cluster doubles (pCCD), a method
that has mean-field cost for both ground3−6 and excited60,61

states. Likewise, a formulation of pCCD for open-shell systems
might share an analogous connection to low-order sCI models
like sCI1. If that is the case, then a state-specific approach for
such a pCCD formulation adapted to open shells may approach
the accuracy of ΔsCI1 (MAE of 0.28 eV) at a mean-field cost.
This method could then provide an improved starting point to
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recover the remaining weak correlation compared to starting
from the (also mean-field though less accurate) ΔCSF model
(MAE of 0.43 eV). To the best of our knowledge, there has been
a single proposed extension of pCCD to open-shell systems,78

based on the ionization-potential equation-of-motion CC
(EOM-CC) formalism.102−104

As pointed out previously, hCI and sCI models are not
invariant under rotations within the subspaces of occupied and
virtual orbitals. For the state-specific calculations, such rotations
for the excited-state orbitals represent additional degrees of
freedom to those of the ground-state orbitals.10 As discussed at
the end of section IV A, these degrees of freedom could be
exploited by localizing occupied and virtual subspaces or by
variationally optimizing all orbitals at a correlated level, for
instance. We did not pursue these ideas here, and their impact
on the excitation energies computed with hCI and sCI remains
an open question.
E. hCI and sCI Plus EN2 Correction for Excited States.

The renormalized EN2 correction significantly reduces the
errors across most CI models for both closed- and open-shell
systems. The statistical measures for the CI models corrected
with the EN2 correction can be seen in Table III (closed-shell
systems) and Table IV (open-shell systems), along with the
results for the bare (unperturbed) CI models. We did not
consider the EN2 correction for the higher-order models.

For a given scaling (see Table I), whether the bare CI model
or the lower-order CI model plus EN2 correction produces the
smaller errors depends on the truncation order and also on the
type of excitations (from closed or open shells). For instance,
ΔhCI2 and ΔhCI1+EN2 have the same N( )6 computational
cost, but the former has smaller MAEs for closed shells (0.20 eV
compared to 0.24 eV) and, more significantly, for open shells
(0.10 eV compared to 0.17 eV). In turn, ΔhCI1.5+EN2 is
significantly more accurate than ΔhCI2.5 for closed shells, with
MAEs of 0.13 and 0.27 eV, whereas for open shells both models
produce a MAE of 0.10 eV. The same trend is found at the next
order. ΔhCI2+EN2 is much more accurate than ΔhCI3 for
closed shells, with MAEs of 0.06 and 0.22 eV, whereas for the
open-shell transitions, they deliver comparable MAEs of 0.05 to
0.06 eV. We recall that the calculation of the EN2 correction has
a small associated prefactor, which makes the above ΔhCI+EN2
models attractive alternatives to their higher-order unperturbed
ΔhCI counterparts.

Among the different CI models, it is worth highlighting the
huge improvement observed from ΔhCI1.5 to ΔhCI1.5+EN2.
For the closed shells, the MAE drops from 2.80 to 0.13 eV,
whereas a reduction from 0.45 to 0.10 eV is seen for the open
shells. In both cases, the MSE is virtually zero. In addition, the
individual errors for singlet, triplet, Rydberg, and valence states
are comparable, lying in the range 0.11 to 0.15 eV.

We found a similar impact of the EN2 correction for ΔCISD
and ΔhCI2. As discussed above, ΔCISD is somewhat more
accurate than ΔhCI2 for the closed shells (MAEs of 0.17 and
0.20 eV), whereas the EN2 correction decreases their respective
MAEs to 0.06 and 0.07 eV. In turn, while ΔCISD is slightly less
accurate than ΔhCI2 for the open shells (MAEs of 0.12 and 0.10
eV), the EN2-corrected models show MAEs of 0.04 and 0.05 eV,
respectively. Furthermore, the accuracy of ΔhCI2+EN2 is
comparable for singlets and triplets (MAEs of 0.07 and 0.06 eV)
and superior for Rydberg states compared to valence states
(MAEs of 0.04 and 0.08 eV). ΔCISD+EN2 displays the same
trends, slightly outperforming ΔhCI2+EN2 for each of the four

types of transitions mentioned above, just as discussed above for
the unperturbed case.

In contrast to the eCI and hCI routes, the EN2 correction has
a more limited effect on the sCI route. There is little to no
advantage to the models based on ground-state HF orbitals. The
outcome is more favorable with state-specific orbitals, where, for
the closed shells, ΔsCI2/sCI2+EN2 and ΔsCI2/sCI0+EN2
show comparable MAEs (0.26 and 0.23 eV, respectively). For
the open shells, the MAE decreases from 0.28 eV (ΔsCI1) to
0.12 eV (ΔsCI1+EN2), the latter error being comparable to that
of the much less expensive ΔhCI1.5+EN2 model (0.10 eV).
Despite the improvement, the EN2 correction is not enough to
render the sCI models competitive.

V. CONCLUSION
Here we have generalized hCI10 to an arbitrary reference
determinant, thus extending its applicability to radical species
and state-specific excited-state calculations.

By surveying the dissociation of four radicals, we found that
the hCI route outperforms or matches the eCI route for both
weakly correlated (equilibrium properties) and strongly
correlated (dissociation) regimes. These and previous10 findings
demonstrate the ability of hCI models to recover weak and
strong correlations for both open- and closed-shell systems.
Meanwhile, sCI leads to far less accurate results in comparison to
hCI or eCI for a given computational cost. For closed- and open-
shell systems, the EN2 perturbative correction substantially
accelerates and stabilizes the convergence of hCI and eCI (while
keeping the advantage of the former), though it ameliorates the
sCI route to a lesser extent. The standard EN2 correction
typically produced more accurate results than its renormalized
form, except perhaps for describing single-bond breaking.
Overall, lower-order models (such as hCI1+EN2) were found
to be fairly accurate given their low computational cost. At a
given CI level, the perturbative correction is significantly more
effective in recovering the missing correlation energy than
variationally optimizing the orbitals.10 In the future, it may be
worth combining orbital optimization at a lower level of hCI10

with the correction provided by perturbation theory.
We further gauged the performance of hCI to describe excited

states of closed- and open-shell systems based on either HF
ground-state orbitals or state-specific orbitals. For excitations of
closed-shell systems, ΔhCI2 and ΔhCI3 are comparable to their
excitation-based counterparts, ΔCISD and ΔCISDT, whereas
ΔhCI1, ΔhCI1.5, and ΔhCI2.5 are inaccurate bearing in mind
their computational cost. The poor performance at lower orders
is ascribed to the different minimal references employed, a single
seniority-zero determinant for the ground state and a single
seniority-two CSF for the excited state, which introduces a
strong bias on the classes of determinants accessed in the hCI
calculations. ΔhCI performs significantly better for the doublet
transitions when compared with the results for closed shells. In
this case, the reference of both ground and excited states
comprises the same type of single seniority-one determinant.
The advantage of using state-specific orbitals over ground-state
ones depends on the choice of reference and the order in which
the CI is truncated. When similar references are adopted (as for
the doublet transitions), such an advantage is already evident at
ΔhCI1. In contrast, for unlike references (as for the closed-shell
excitations), the state-specific approach becomes advantageous
only at somewhat higher orders (ΔhCI2). The present findings
highlight the challenge in describing, on an equal footing, states
with qualitatively different characters, in particular ground and
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singly excited states of closed-shell systems. In this regard,
rotations within occupied and virtual orbitals represent yet
another factor worth exploring in the future developments of
hCI models. hCI also produced reasonable energies for the
automerization barrier of cyclobutadiene. It remains to be seen
how these models perform for other strongly correlated systems,
larger molecules, and charge transfer excited states.

The accuracy of the CI models is significantly enhanced
thanks to the EN2 correction, the case of ΔhCI1.5 for closed
shells being the most striking, with the MAE plummeting from
2.80 to 0.13 eV. Low orders of state-specific CI supplemented
with a perturbative correction can thus provide a cost-effective
option for the computation of excitation energies.

We put forward the interesting perspective of developing
hierarchy-based CC (hCC) methods (hCC1, hCC2, ...) along
with derived EOM-CC formulations to target excited states
(EOM-hCC1, EOM-hCC2, ...). EOM-CC with single and
double excitations (EOM-CCSD)105−108 is very accurate for
describing singly excited states,98,109,110 although it slightly
overestimates their excitation energies. In contrast, CISD
provides too-large excitation energies,29,107 even though the
CISD and EOM-CCSD methods span the same excited
determinants and rely on HF ground-state orbitals. Here we
found that hCI2 is more accurate than CISD, despite its large
absolute errors. In particular, the overestimated energies are less
exaggerated in the former. We ponder whether this improve-
ment would be transferred to EOM-hCC2. Along the same line,
it would be interesting to develop and gauge the performance of
cheaper methods like EOM-hCC1. Importantly, it is not obvious
what the computational scaling of such methods would be.
Alternatively, one can envision state-specific hCC methods to
target excited states.

Finally, we employed different sCI models to compute the
excitation energies of closed- and open-shell systems. Despite
the four different models employed for the closed-shell
excitations, the results are overall disappointing. For the open-
shell transitions, the outcome is more encouraging. Despite the
improvement brought about by the EN2 correction, the sCI
models remain less accurate and are more expensive than the
eCI or hCI options. The relevance of these sCI models lies in
their possible connection to CC methods. While this is already
established for closed-shell systems (pCCD and DOCI deliver
very similar energies),3−6,60,61 here we raised the question of
whether there exists a polynomial-scaling extension of pCCD to
open-shell systems that matches sCI1 in terms of computed
energies. In this sense, the present results obtained with ΔsCI1
for open-shell excitations are appealing and encourage the
development of a generalized pCCD method.

■ APPENDIX A: NUMBER OF DETERMINANTS
What is the number of determinants in a given hCI model,
defined by the hierarchy h (see eq 1) and the reference
determinant? Here we address this question by first working out
the simpler case of a closed-shell reference. Then we move to a
slightly more complicated case of an open-shell reference with a
single unpaired electron. Finally, we deduce the general case.
The reference determinant for each case is shown in Figure 5.

The gist of the deduction is as follows. We start from the
known number of determinants based only on the excitation
degree e. Then we systematically decompose each term into
specific contributions based on whether the excitation increases
or reduces the seniority. For the decomposition, we make use of
Vandermonde’s identity:
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Next, an incremental seniority can be assigned to each type of
contribution. Finally, the final answer can be obtained by
summing only the contributions with the desired seniority s.

We start with the simpler case of a closed-shell determinant
with N electrons and K spatial orbitals (left panel of Figure 5).
From this reference determinant, the number of excited
determinants generated by exciting e electrons is given by1
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where the sum expresses the different combinations for exciting
spin-up or spin-down electrons. The first binomial term
accounts for the number of possibilities for exciting p spin-up
electrons from the N/2 orbitals, the second term represents the
number of ways of placing these p electrons into K − N/2
orbitals, and similarly for the latter two terms and the e − p
remaining spin-down electrons.

To account for the seniority of the excited determinants, one
must disentangle the excitations based on how they change the
seniority number while keeping track of the previously excited
electrons. Starting from the closed-shell determinant, p spin-up
electrons are excited, which increases the seniority by 2p (a
factor of p due to the unpaired spin-up electrons just excited, and
another factor of p due to the unpaired spin-down electrons left
behind). The first two binomial terms in eq A2 are left
untouched since they are always accompanied by the same
change in seniority. Next, the spin-down electrons can be excited
from the same orbitals from which the spin-up electrons were
excited (decreasing the seniority by one) or instead from an
orbital that remained doubly occupied (increasing the seniority
by one). The two possibilities are expressed by decomposing the
third binomial term in eq A2 as a sum over the two
corresponding binomials, such as
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The first binomial counts the number of possibilities for exciting
q spin-down electrons from one of the p orbitals from which a

Figure 5. Closed-shell determinant (s0 = 0) with N electrons (left),
open-shell determinant (s0 = 1) with N↑ spin-up electrons and N↓ = N↑

− 1 spin-down electrons (center), and general determinant (s0 = Ns
↑ +

Ns
↓) with Nd doubly occupied orbitals, Ns

↑ singly occupied spin-up
electrons, and Ns

↓ singly occupied spin-down electrons (right). In the
three cases, there are K spatial orbitals. The numbers of determinants
generated from these three reference determinants, from left to right,
which have excitation degree e and seniority s, are given in eqs A4, A6,
and A7.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00946
J. Chem. Theory Comput. 2023, 19, 8654−8670

8666

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00946?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00946?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00946?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00946?fig=fig5&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00946?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


spin-up electron was already excited. By removing the unpaired
spin-down electron left behind, the seniority thus decreases by a
factor of q. The second term accounts for the complementary
excitations, where the (e − p − q) spin-down electrons are
chosen out of the N/2 − p orbitals that remained doubly
occupied after exciting the p spin-up electrons. Therefore, this
term increases the seniority by (e− p− q) . We proceed similarly
for the fourth binomial term of eq A2 by decomposing it into the
sum of two other binomials, where r spin-down electrons pair
with the previously spin-up electrons (thus reducing the
seniority) and (e − p − r) do not (which increases the
seniority). By collecting the seniority changes from each term,
namely, (2p) from the unmodified binomials, (−q) and (e− p−
q) from the third binomial, and (−r) and (e − p − r) from the
fourth one, the seniority of the excited determinant is given by s
= 2(e − q − r). Finally, by combining the seniority-specific
binomials and imposing the desired seniority via a Kronecker
delta, the number of determinants with a given excitation degree
e and seniority s produced from a closed-shell reference (s0 = 0)
is given by
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To obtain the final number of determinants for a given hierarchy
h, we simply sum over the allowed combinations of e and s
according to eq 1.

Moving to the case where the numbers of spin-up electrons
(N↑) and spin-down electrons (N↓) differ by one (N↑ =N↓ + 1),
which is illustrated in the center panel of Figure 5, the number of
excited determinants generated exclusively by exciting e
electrons is analogous to eq A2, being given by
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The deduction proceeds similarly to the closed-shell case. The
main differences are the following. The first binomial term of eq
A5 is decomposed into the sum of t spin-up electrons excited
from the singly occupied orbital and (p− t) that are excited from
the N↓ doubly occupied ones. The second binomial is left
untouched, as before. The third one is also decomposed as
explained for the closed-shell case, with the difference that the q
spin-down electrons are excited from (p − t) orbitals (instead of
p) from which spin-up electrons were excited. Similarly, in the
fourth binomial of eq A5, r spin-down electrons are placed into
one of the (1 + p − t) orbitals (rather than p in the closed-shell
case) which contain an unpaired spin-up electron. Collecting the
individual contributions and setting the targeted seniority, the
number of determinants generated from an s0 = 1 reference
determinant with excitation degree e and seniority s is given by
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In the general case, an arbitrary reference determinant is
defined by three parameters, the number of doubly occupied
orbitals (Nd), the number of singly occupied spin-up electrons
(Ns

↑ = N↑ − Nd), and the number of singly occupied spin-down
electrons (Ns

↓ = N↓ − Nd). (Alternatively, one could employ the
number of electrons N, Nd, and the spin quantum number Sz =
(N↑ − N↓)/2). For K spatial orbitals, the number of virtual
orbitals is Nv = K − Nd − Ns

↑ − Ns
↓.

The deduction is somewhat more involved but follows along
the same lines as the two previously discussed cases. The starting
point is also given by eq A5, with each binomial being written as
a sum of two or more binomials that distinguish the change in
seniority. Here, we just state how each term is decomposed,
where the details can be checked by inspection of the final result
presented below (see eq A7). The first binomial of eq A5 is
decomposed into the contributions of spin-up electrons excited
from theNd doubly occupied orbitals and theNs

↑ singly occupied
orbitals. The second binomial is decomposed into the spin-up
electrons being excited to the Nv virtual orbitals and to the Ns

↓

singly occupied orbitals. The third one undergoes two
decompositions and is thus expressed as a double sum over
three binomials. The spin-down electrons are distinguished
between the Ns

↓ singly occupied orbitals, a subset of Nd doubly
occupied orbitals for which spin-up electrons were excited, and
the complementary subset for which no spin-up electrons were
excited. Finally, the fourth binomial of eq A5 counts the number
of possibilities to place the excited spin-down electrons. It is first
decomposed into two terms, based on whether they are
promoted to the Nv virtual orbitals or to the Ns

↑ singly occupied
orbitals. Each term is further decomposed into two terms,
accounting for the subset ofNv orbitals which now contain spin-
up electrons and the subset of Ns

↑ orbitals from which spin-up
electrons were removed, thus leading to three sums over four
binomials. The final result for the number of determinants
generated from an arbitrary reference determinant constrained
to have excitation degree e and seniority s is given by
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(72) Johnson, P. A.; Fecteau, C.-É.; Berthiaume, F.; Cloutier, S.;
Carrier, L.; Gratton, M.; Bultinck, P.; De Baerdemacker, S.; Van Neck,
D.; Limacher, P.; Ayers, P. W. Richardson-Gaudin mean-field for strong
correlation in quantum chemistry. J. Chem. Phys. 2020, 153,
No. 104110.

(73) Henderson, T. M.; Bulik, I. W.; Stein, T.; Scuseria, G. E.
Seniority-based coupled cluster theory. J. Chem. Phys. 2014, 141,
No. 244104.

(74) Stein, T.; Henderson, T. M.; Scuseria, G. E. Seniority Zero Pair
Coupled Cluster Doubles Theory. J. Chem. Phys. 2014, 140,
No. 214113.

(75) Henderson, T. M.; Bulik, I. W.; Scuseria, G. E. Pair Extended
Coupled Cluster Doubles. J. Chem. Phys. 2015, 142, No. 214116.

(76) Chen, Z.; Zhou, C.; Wu, W. Seniority Number in Valence Bond
Theory. J. Chem. Theory Comput. 2015, 11, 4102−4108.

(77) Bytautas, L.; Dukelsky, J. Seniority based energy renormalization
group (Ω-ERG) approach in quantum chemistry: Initial formulation
and application to potential energy surfaces. Comput. Theor. Chem.
2018, 1141, 74−88.

(78) Boguslawski, K. Open-shell extensions to closed-shell pCCD.
Chem. Commun. 2021, 57, 12277−12280.

(79) Tecmer, P.; Boguslawski, K. Geminal-based electronic structure
methods in quantum chemistry. Toward a geminal model chemistry.
Phys. Chem. Chem. Phys. 2022, 24, 23026−23048.
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