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ABSTRACT
We present an equation generator algorithm that utilizes second-quantized operators in normal order with respect to a correlated or non-
correlated reference and the corresponding Wick theorem. The algorithm proposed here, written with Mathematica, enables the generation
of non-redundant strings of second-quantized operators that, after classification, are directly assigned to many-body term quantities used
to construct the many-body Hamiltonian. We demonstrate the capabilities of the algorithm by computing the coupled-cluster amplitude
equations and various blocks of the equation-of-motion many-body Hamiltonian. A comprehensive description of this four-step algorithm
is provided alongside concrete examples.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0163846

I. INTRODUCTION

The increase in computational capabilities has led us to explore
more complex wave function ansätze. As these ansätze become
more complicated, deriving the corresponding algebraic equations
also becomes more tedious, time-consuming, and, more impor-
tantly, subject to human errors. An important feature of many-body
quantum chemistry methods is that most of them can be written
in the second quantization formalism based on established com-
mutation or anti-commutation relations between second-quantized
operators.1 In the second quantization formalism, first introduced
in quantum field theory, the wave function and the operators
are expressed as products of creation and annihilation operators,
also known as strings. These strings can be evaluated using either
(anti-)commutation rules, diagrammatic techniques,2 or Wick’s
theorem.3 The diagrammatic approach proves to be more efficient
since it avoids redundant terms.

These rules can then be programmed with the aid of symbolic
algebra software, allowing us to write chains of products of these
operators as tensors that can be efficiently evaluated by modern
tensor contraction tools.4–10

In the context of coupled-cluster (CC) methods,2,11–14 various
equation generators have emerged to automate the process of deriv-
ing and implementing the corresponding equations, replacing the
manual derivation and error-prone implementation in electronic
structure software. In their pioneering work, Janssen and Schaefer
generated and automatically implemented the open-shell CC equa-
tions by utilizing second-quantized strings.15 In a similar vein, Li
and Paldus automated the implementation of spin-adapted open-
shell CC equations, with the added benefit of utilizing the unitary
group formalism that allows for the efficient handling of low-spin
states.16 In 2001, Kállay and Surján proposed a general-order CC
code by combining diagrammatic many-body perturbation theory
and string-based configuration interaction.17 In such a way, the
CC equations were written in terms of diagrams and stored as
strings. This technique was then generalized to state-specific mul-
tireference CCs,18 excited states computed within the linear response
formalism,19 and approximate treatment of higher excitations.20

Adopting the same design philosophy as Janssen and Schae-
fer, Hirata implemented the Tensor Contraction Engine (TCE)21–23

that performs manipulation of second-quantized operators and gen-
eration of the computer code. The main distinction is that TCE
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takes advantage of spin, spatial, and index permutation symme-
tries at every stage of the calculations, reducing the computational
cost and storage requirement. Later on, Hirata also developed an
equation generator for the equation-of-motion (EOM) CC24–30 for
neutral excitations (EE-EOM-CC),24–27 ionization potentials (IP-
EOM-CC),31–35 and electron affinities (EA-EOM-CC).11,36–38 Han-
rath et al. proposed an improved version of the TCE by imple-
menting matrix–matrix multiplication-based antisymmetric tensor
contraction for general CCs.39,40 Meanwhile, Kong et al. devel-
oped the EOM version of state-specific multireference CCs together
with the automated implementation of such complicated equa-
tions.41 This was later generalized to arbitrary order.42–45 Likewise,
Shiozaki implemented explicitly correlated versions of CCs in a
similar way.46,47

More recently, (i) the Symbolic Manipulation Interpreter for
Theoretical cHemistry (SMITH3)48 for complete active space meth-
ods that implies partial contractions of second-quantized operators,
(ii) p†q developed by Rubin and DePrince III49 that combines C++
and Python for proof-of-concept implementation of many-body
quantum chemistry methods, and (iii) WICK&D50 that presents
a strategy to evaluate Mukherjee’s51 and Kutzelnigg’s52 version of
Wick’s theorem in the case of an arbitrary number of orbital sub-
spaces were provided in the literature. Each of the above programs
is a clear example of the progress that has been achieved in the
last three decades with respect to equation generators in quantum
chemistry.

The aim of the present paper is to describe a four-step algo-
rithm based on Wick’s theorem to obtain the working equations
of EE-EOM-CC, IP-EOM-CC, EA-EOM-CC, and other quantities
of interest. In particular, the direct way of obtaining intermediates
facilitates the comparison between many-body perturbation theory
and CC methods.53–57 The present algorithm is implemented with
the computer algebra system, Mathematica,58 in order to be able to
generate and manipulate the equations in a user-friendly way.

This article is organized as follows: Sec. II gathers all theoreti-
cal details. In particular, Sec. II A describes Wick’s theorem and the
concept of normal ordering. Then, in Secs. II B and II C, we report
the main theoretical details behind the CC and EOM-CC equations,
respectively. Finally, in Sec. III, we provide a detailed description of
our algorithm. Our conclusions are drawn in Sec. IV.

II. THEORY
A. Normal ordering and Wick’s theorem

Our goal is to automatically derive the EOM-CC working equa-
tions, which is a matrix eigenvalue problem. Each element of the
EOM-CC effective Hamiltonian is an expectation value formed by-
products of operators (We shall discuss this point in more detail
later in this section.). An efficient way to evaluate these products of
operators is via their second-quantized form.59–61

As a starting point, let us introduce the reference state, which is
represented as a single determinant,

∣0⟩ = ∣i jk ⋅ ⋅ ⋅ ⟩ = î † ĵ †k̂ †
⋅ ⋅ ⋅ ∣⟩, (1)

obtained by acting on the physical (or true) vacuum ∣⟩ with creation
operators î †, ĵ †, k̂ †, . . .. This reference state ∣0⟩, typically taken as
the Hartree–Fock (HF) ground-state determinant, can be used as

alternative vacuum, named the Fermi vacuum.2,14 One property of
the Fermi vacuum is that one can redefine the creation operators
relative to it as particles (â †, b̂ †, ĉ †, . . .) and holes ( î, ĵ, k̂, . . .).62,63

The particle creation operators create particle states above the Fermi
level while the hole creation operators remove particle states below
the Fermi level (particle–hole formalism). Because one cannot anni-
hilate a hole or remove a particle in the Fermi vacuum, we have
î †∣0⟩ = 0 and â∣0⟩ = 0.

It is also possible to define “neutral” excited determinants by
operating the same number of particle and hole operators onto the
Fermi vacuum,

â †b̂ †ĉ †
⋅ ⋅ ⋅ k̂ ĵ î∣0⟩ = ∣Φabc⋅ ⋅ ⋅

i jk⋅ ⋅ ⋅ ⟩. (2)

In such a way, it is also possible to define “charged” excited determi-
nants when the number of particles and holes is different. For exam-
ple, ionized and electron-attached determinants can be represented,
respectively, as follows:

â † ĵ î∣0⟩ = ∣Φa
i j⟩,

â †b̂ † î∣0⟩ = ∣Φab
i ⟩.

(3)

To preserve the antisymmetry of the electronic wave function,
the second-quantized fermionic operators fulfill anti-commutation
rules,

p̂q̂ + q̂p̂ = 0,

p̂ †q̂ †
+ q̂ †p̂ †

= 0,

p̂ †q̂ + q̂ †p̂ = δpq,

(4)

where p̂, q̂, r̂, . . . are arbitrary operators that can be either hole or
particle operators and δpq is a Kronecker delta.

Besides the anti-commutation rules defined in Eq. (4), there is
another powerful “bookkeeping system” called normal ordering,64

which places all the creation operators to the left and all annihila-
tion operators to the right. Therefore, applying the Fermi vacuum
on a normal-ordered string yields zero. At this stage, it is convenient
to introduce a more compact notation to take full advantage of this
bookkeeping system. To do so, we define the contraction of arbitrary
operators,

(5)

where {p̂ †q̂} means that the product p̂ †q̂ is normal ordered
with respect the Fermi vacuum. By definition, the only non-zero
contractions in Eq. (5) are

(6)

When a product of second-quantized operators is normal-ordered,
we name it a normal product.
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We are now in a position to introduce the generalized Wick theorem, stating that the product of creation and annihilation operators is
equal to their normal product plus the sum of all possible contractions.2 For example, by applying this theorem to a given string of normal-
ordered operators (which is typically what one has to do to derive the EOM-CC equations), one gets

(7)

where the first term on the right-hand side is the normal product,
the second term contains all the single contractions, the third con-
tains all double contractions, and the last sum gathers the so-called
fully contracted terms. The key feature of this theorem is that if we
evaluate the Fermi vacuum expectation value associated with Eq. (7),
the only non-zero terms correspond to the fully contracted ones, i.e.,

(8)
To have a consistent nomenclature, the products of second-
quantized operators {Â}{B̂}{Ĉ} are called strings, and each
operator {Â} is called a sub-string.

B. Coupled-cluster equations
To derive the CC equations, one first starts with the definition

of the CC wave function, which is an exponential parametrization
applied to a reference determinant,65,66

∣Ψ(0)⟩ = eT̂
∣0⟩, (9)

where Ψ(0) is the CC ground-state wave function and

T̂ =
N

∑
n=1

T̂n (10)

is the cluster operator, where

T̂n =
1
(n!)2 ∑

i jk⋅ ⋅ ⋅
∑

abc⋅ ⋅ ⋅
tabc⋅ ⋅ ⋅
i jk⋅ ⋅ ⋅ {â

† îb̂ † ĵĉ †k̂ ⋅ ⋅ ⋅}, (11)

where tabc⋅ ⋅ ⋅
i jk⋅ ⋅ ⋅ are the antisymmetric cluster amplitudes and the indices

i, j, k, . . . indicate occupied spin orbitals in the reference config-
uration, while a, b, c, . . . are unoccupied spin orbitals. In general,
T̂n produces n-fold excited N-electron determinants of the form
∣Φabc⋅ ⋅ ⋅

i jk⋅ ⋅ ⋅ ⟩ (with n ≤ N). It is worth mentioning here that the excitation
operators do commute with each other, i.e., [T̂n, T̂m] = 0.

The electronic Schrödinger equation associated with the CC
wave function is

Ĥ∣Ψ(0)⟩ = E(0)∣Ψ(0)⟩, (12)

where E(0) is the CC ground-state electronic energy and Ĥ is the elec-
tronic Hamiltonian, which can be expressed in second-quantized
form as follows:

Ĥ =∑
pq

hp
qp̂ †q̂ +

1
4∑pqrs

v
pq
rs p̂ †q̂ † ŝr̂, (13)

where the indices p, q, r, and s indicate arbitrary (i.e., occupied
or virtual) spin orbitals. The matrix element hp

q is the sum of the
kinetic and nuclear attraction components. The electronic repulsion
is accounted for by the (antisymmetrized) two-electron integrals
v

pq
rs . Because one is usually interested in the correlated part of the

Hamiltonian, it is common practice to divide it as

Ĥ = ĤN + ⟨0∣Ĥ∣0⟩, (14)

where the first term

ĤN = F̂N + V̂N =∑
pq

f p
q{p̂

†q̂} +
1
4∑pqrs

v
pq
rs {p̂

†q̂ † ŝr̂} (15)

is the normal-ordered Hamiltonian (where f p
q is an element of the

Fock matrix) that corresponds to fluctuations (i.e., correlation) with
respect to the second term that represents the reference energy
E0 = ⟨0∣Ĥ∣0⟩. It is worth emphasizing that ĤN do not commute with
T̂n, i.e., [T̂n, ĤN] ≠ 0.

Thanks to the exponential ansatz of the CC wave function,
Eq. (9), the following CC effective Hamiltonian is introduced via a
similarity transformation:

H̄ st
= e−T̂ ĤNeT̂ , (16)

where the superindex “st” stands for “similarity-transformed.” Then,
one can recast the Schrödinger equation as

H̄ st
∣0⟩ = ΔE(0)∣0⟩, (17)

where ΔE(0)
= E(0)

− E0 is the CC ground-state correlation energy
obtained via projection

⟨0∣H̄ st
∣0⟩ = ΔE(0), (18)

while

⟨Φabc⋅ ⋅ ⋅
i jk⋅ ⋅ ⋅ ∣H̄

st
∣0⟩ = 0 (19)

are the so-called amplitude equations, a set of non-linear equations
where the unknowns are cluster amplitudes tabc⋅ ⋅ ⋅

i jk⋅ ⋅ ⋅ .
To evaluate Eq. (19) efficiently, one usually relies on

the Baker–Campbell–Hausdorff expansion67,68 of the similarity-
transformed Hamiltonian,
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H̄ st
= ĤN + [ĤN, T̂] +

1
2!
[[ĤN, T̂], T̂] +

1
3!
[[[ĤN, T̂], T̂], T̂]

+
1
4!
[[[[ĤN, T̂], T̂], T̂], T̂], (20)

a series of nested commutators between ĤN and T̂ that naturally ter-
minates at the four-fold commutator, thanks to the two-body nature
of the electronic Hamiltonian.

Then, using Wick’s theorem [see Eq. (7)], one can establish that
the non-zero terms in Eq. (20) involve ĤN as the left-most operator
contracted with at most four T̂ operators, i.e.,

(21)
where the multi-leg symbol indicates that ĤN must be contracted at
least once with each T̂. Hence, ĤN is said to be connected as it does

not include the disconnected terms of the form .
If one introduces the right-hand side of Eq. (21) in Eqs. (18)

and (19), one gets

⟨0∣(ĤNeT̂
)

C
∣0⟩ = ΔE(0), (22a)

⟨Φabc⋅ ⋅ ⋅
i jk⋅ ⋅ ⋅ ∣(ĤNeT̂

)
C
∣0⟩ = 0, (22b)

where the subindex C stands for connected. Since one only deals
with the connected terms, the algebraic form of Eqs. (22a) and (22b)
is simpler than that of Eqs. (18) and (19).

C. Equation-of-motion coupled-cluster equations
Having explained how to derive the CC equations, next, we shift

our attention to the EOM-CC equations.24,28–30 As a starting point,
let us consider the Schrödinger equation for a target excited state
Ψ(k), i.e.,

ĤN∣Ψ(k)⟩ = ΔE(k)∣Ψ(k)⟩, (23)

where ΔE(k)
= E(k)

− E0. One way to access this target state is by
transforming the initial state described by Eq. (17) via an excitation
operator of the form

R̂ (k)
∣Ψ(0)⟩ = ∣Ψ(k)⟩. (24)

If one wants to access neutral excited states, one must rely on the
excitation energy (EE) operator

R̂ (k)
= 1̂ + R̂(k)1 + R̂(k)2 + ⋅ ⋅ ⋅ , (25)

with

R̂(k)1 =∑
i
∑

a
ra

i {â
† î}, (26a)

R̂(k)2 =
1
4∑i j

∑
ab

rab
i j {â

† îb̂ † ĵ}, (26b)

⋮

where R̂(k)n is an excitation operator of degree n for the state
k associated with the EOM-CC amplitudes ri j⋅ ⋅ ⋅

ab⋅ ⋅ ⋅ (Here, for the
sake of simplicity, we have omitted the k-dependence of the
amplitudes.).

After several transformations, the Schrödinger equation for the
target excited state [see Eq. (23)] can be recast as

[H̄ st, R̂ (k)
]∣0⟩ = Ωk R̂ (k)

∣0⟩, (27)

where Ωk = E(k)
− E(0) is the excitation energy associated with the

kth excited state. Defining the normal-ordered similarity-
transformed Hamiltonian H̄st

N = H̄ st
− E(0), the commutator

in Eq. (27) can be further simplified as

(H̄st
N R̂ (k)

)
C
∣0⟩ = Ωk R̂ (k)

∣0⟩. (28)

The excitation energies are then directly computed by projecting
Eq. (28) on a determinant basis, truncated at a given excitation
degree, which is equivalent to truncate R̂ (k).

Introducing the simplified notation, ∣Φa
i ⟩ ≡ ∣S⟩, ∣Φab

i j ⟩ ≡ ∣D⟩, . . .,
the EOM-CC linear eigenvalue problem has the following form:

H̄rk = Ωkrk ⇒

⎛
⎜
⎜
⎜
⎜
⎜
⎝

⟨S∣H̄st
N∣S⟩ ⟨S∣H̄st

N∣D⟩ ⋅ ⋅ ⋅

⟨D∣H̄st
N∣S⟩ ⟨D∣H̄

st
N∣D⟩ ⋅ ⋅ ⋅

⋮ ⋮
. . .

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎝

ra
i

rab
i j

⋮

⎞
⎟
⎟
⎟
⎟
⎠

= Ωk

⎛
⎜
⎜
⎜
⎜
⎝

ra
i

rab
i j

⋮

⎞
⎟
⎟
⎟
⎟
⎠

. (29)

Here, H̄ represents the EOM-CC matrix, while rk and Ωk
are the corresponding eigenvector and eigenvalue, respectively. The
non-Hermitian nature of this eigenvalue problem necessitates the
computation of each block of the matrix. Furthermore, this non-
Hermitian characteristic indicates that H̄ is also associated with
left eigenfunctions ⟨Ψ(0)∣ L̂(k)1 = ⟨Ψ(k)∣ stemming from the fol-

lowing Schrödinger equation: ⟨Ψ(k)∣ĤN = ⟨Ψ(k)∣ΔE(k). Here, L̂ (k)

= 1̂ + L̂(k)1 + L̂(k)2 + ⋅ ⋅ ⋅ is a de-excitation operator such that L̂(1)1
= ∑i∑a lai { î †â}, for example. This results in the following left-hand
side eigenvalue equation:

lkH̄ = lkΩ∗k . (30)

The two sets of eigenfunctions can be normalized to satisfy
⟨Ψ(0)∣ L̂(l)1 R̂ (k)

∣Ψ(0)⟩ = δlk.
Following the same procedure, one can also obtain the EOM-

CC equations for the ionized and electron-attached states just by
changing the definition of the operator R̂ (k) in Eq. (26b). For
example, removing one or two particles, one gets IP-EOM-CC and
DIP-EOM-CC,69–73 respectively, while removing one or two holes
yields EA-EOM-CC and DEA-EOM-CC,72,73 respectively.
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D. Many-body Hamiltonian
When one computes the expectation value associated with

a given block of the EOM-CC matrix H̄ [see Eq. (29)], redun-
dant terms are generated. One way to avoid redundancies is to
rely on the many-body representation of the EOM-CC effective
Hamiltonian,74–77

H̄mb
N =∑

pq
χp

q{p̂
†q̂} +∑

pqrs
χpq

rs {p̂
†q̂ † ŝr̂} + χpqr

stu {p̂
†q̂ † r̂ †ût̂ŝ} + ⋅ ⋅ ⋅ ,

(31)
where χp

q , χpq
rs , and χpqr

stu are one-, two-, and three-body terms, respec-
tively. The superindex “mb” stands for “many-body.” Note that H̄mb

N
and H̄st

N are exactly the same quantity; the labels “mb” and “st” are
here to indicate the type of expansion.

The many-body terms {χpqr⋅ ⋅ ⋅
stu⋅ ⋅ ⋅ } are usually represented through

diagrammatic techniques.2 In the present work, we are interested
in describing them within the second quantization formalism. To
achieve this, we take the block ⟨D∣H̄mb

N ∣S⟩ and the many-body
Hamiltonian defined in Eq. (31) as an example to obtain

⟨Φab
i j ∣H̄

mb
N ∣Φ

c
k⟩ =∑

pq
χp

q⟨0∣{ î † ĵ †b̂â}{p̂ †q̂}{ĉ †k̂}∣0⟩

+∑
pqrs

χpq
rs ⟨0∣{ î † ĵ †b̂â}{p̂ †q̂ † ŝr̂}{ĉ †k̂}∣0⟩

+ ∑
pqrstu

χpqr
stu ⟨0∣{ î † ĵ †b̂â}{p̂ †q̂ † r̂ †ût̂ŝ}{ĉ †k̂}∣0⟩.

(32)

Equation (32) effectively terminates at the three-body level since
higher-order terms produce partial contractions, which are zero
with respect to the Fermi vacuum.

By applying Wick’s theorem to Eq. (32) and taking advantage
of the antisymmetric permutation of the many-body terms, one gets

⟨Φab
i j ∣H̄

mb
N ∣Φ

c
k⟩ = δ jkδbcχ

a
i − δikδbcχ

a
j − δ jkδacχb

i + δ jkδacχb
j

− δbcχ
ak
i j − δ jkχab

ci + δikχab
c j + δacχbk

i j + χabk
i jc . (33)

Since H̄mb
N = H̄st

N, the block ⟨D∣H̄mb
N ∣S⟩ can be naturally written in

terms of T̂, F̂N, and V̂N. To illustrate this, we consider the general
many-body term

χab⋅ ⋅ ⋅kl⋅ ⋅ ⋅
i j⋅ ⋅ ⋅cd⋅ ⋅ ⋅ = ⟨Φ

ab⋅ ⋅ ⋅
i j⋅ ⋅ ⋅ ∣H̄

st
N∣Φ

cd⋅ ⋅ ⋅
kl⋅ ⋅ ⋅ ⟩iC

, (34)

where the subscript iC represents “internal contractions,” i.e., con-
tractions occurring exclusively between ⟨Φab⋅ ⋅ ⋅

i j⋅ ⋅ ⋅ ∣ and H̄N and between
H̄N and ∣Φcd⋅ ⋅ ⋅

kl⋅ ⋅ ⋅ ⟩. Notably, contractions between ⟨Φab⋅ ⋅ ⋅
i j⋅ ⋅ ⋅ ∣ and ∣Φcd⋅ ⋅ ⋅

kl⋅ ⋅ ⋅ ⟩

are not allowed.
Taking Eq. (34) and the non-zero matrix elements of χak

i j into
account, one gets

χak
i j = ⟨Φ

a
i j∣(V̂N + T̂1V̂N + F̂NT̂2 + V̂NT̂2

+
1
2!

V̂NT̂2
1 + V̂NT̂1T̂2 +

1
3!

V̂NT̂3
1)

C
∣Φk⟩iC. (35)

Applying the same procedure for χab
ci and χabk

i jc , we obtain

χab
ic = ⟨Φ

ab
i ∣(V̂N + T̂1V̂N + F̂NT̂2 + V̂NT̂2 +

1
2!

V̂NT̂2
1

+ V̂NT̂1T̂2 +
1
3!

V̂NT̂3
1)

C
∣Φc
⟩

iC
, (36)

χabk
i jc = ⟨Φ

ab
i j ∣(V̂NT̂2)C

∣Φc
k⟩iC

. (37)

The one-body terms in Eq. (33) are defined as follows:

χa
i = ⟨Φ

a
i ∣[ĤN(1 + T̂1 + T̂2 +

T̂2
1

2
+ T̂1T̂2 +

T̂3
1

3!
)]

C
∣0⟩, (38)

which is identical to the coupled-cluster singles (CCS) amplitude
equations. Consequently, all the one-body terms are zero in Eq. (33).
This is also true for the many-body terms χab

i j for coupled-cluster sin-
gles and doubles (CCSD), χabc

i jk for coupled-cluster singles, doubles,
and triples (CCSDT), and so on.

Setting the one-body terms equal to zero in Eq. (38), we have

⟨Φab
i j ∣H̄

mb
N ∣Φ

c
k⟩ = −δbcχ

ak
i j − δ jkχab

ci + δikχab
c j + δacχbk

i j + χabk
i jc . (39)

It is possible to obtain the rest of the many-body terms in
Eq. (39) by substituting the indices of χab

i j , χab
ci , and χabk

i jc . These
replacements are restricted to indices of the same category: hole-
creation (i, j), particle-annihilation (a, b), hole-annihilation (k),
and particle-creation (c).

To obtain the block ⟨Φab
i j ∣H̄

mb
N ∣Φ

c
k⟩ in a compact and non-

redundant form, we rely on Eqs. (35)–(37) to define the many-body
terms and Eq. (39) to define the blocks in terms of these many-body
terms. Finally, to generate the entire eigenvalue equations for EE-
EOM-CCSD, one must repeat the same procedure for the blocks
⟨Φa

i ∣H̄
st
N∣Φ

c
k⟩, ⟨Φ

a
i ∣H̄

st
N∣Φ

cd
kl ⟩, and ⟨Φab

i j ∣H̄
st
N∣Φ

cd
kl ⟩ and then remove the

redundant many-body terms.

III. EOM-CC EQUATION GENERATOR
In this section, we describe the algorithm we have written

with Mathematica to automatically derive the working equations of
EOM-CC. Although the program is not optimized for efficiency, our
goal is to obtain the working equations in terms of the many-body
terms by using straightforward input quantities. First of all, we adapt
the index notations in order to have more suitable and general nota-
tions to obtain the EOM-CC equations up to fourth order. For the
operators belonging to the bra and the ket, instead of using â †, b̂ †,
. . ., î, ĵ, . . ., we use p̂†

1 , p̂†
2 , . . ., ĥ1, ĥ2, . . .. For the particles/holes that

play the role of dummy indices in the cluster operator T̂, instead
of using ê †, f̂ †, . . ., m̂, n̂, . . ., we use ô†

1 , ô†
2 , . . ., v̂1, v̂2, . . ., where

the notation of o and v refers to occupied and virtual spin orbitals,
respectively. Finally, for the arbitrary indices that could be either
particles or holes [similar to the Hamiltonian in Eq. (14)], we switch
from p̂ †, q̂ †, r̂, and ŝ to q̂†

1 , q̂†
2 , q̂3, and q̂4.

Thanks to this change in notation, we can now describe the
four-step algorithm that we use to derive the EOM-CC equations.
Each step of the algorithm is written as a Mathematica module.
These modules are gathered within a main module called eomc-
cgen. Variables tailor-made for Mathematica are summarized in
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TABLE I. List of variables used in the EOM-CC equation generator program.

Description Mathematical symbol Mathematica notation

Elements of the Fock matrix f p
q F[[p, q]]

Two-electron repulsion integrals v
pq
rs ERI[[p, q, r, s]]

Amplitudes of single excitations ta
i t1[[i, a]]

Amplitudes of double excitations tab
i j t2[[i, j, a, b]]

Amplitudes of triple excitations tabc
i jk t3[[i, j, k, a, b, c]]

Amplitudes of quadruple excitations tabcd
i jkl t4[[i, j, k, l, a, b, c, d]]

One-body terms χp
q χ1[[p, q]]

Two-body terms χpq
rs χ2[[p, q, r, s]]

Three-body terms χpqr
stu χ3[[p, q, r, s, t, u]]

Four-body terms χpqrs
tuvw χ4[[p, q, r, s, t, u, v, w]]

EOM-CC right-hand amplitudes of single excitations ra
i r1[[i, a]]

EOM-CC right-hand amplitudes of double excitations rab
i j r2[[i, j, a, b]]

EOM-CC right-hand amplitudes of triple excitations rabc
i jk r3[[i, j, k, a, b, c]]

EOM-CC right-hand amplitudes of quadruple excitations rabcd
i jkl r4[[i, j, k, l, a, b, c, d]]

EOM-CC left-hand amplitudes of single excitations lai l1[[i, a]]
EOM-CC left-hand amplitudes of double excitations lab

i j l2[[i, j, a, b]]

EOM-CC left-hand amplitudes of triple excitations labc
i jk l3[[i, j, k, a, b, c]]

EOM-CC left-hand amplitudes of quadruple excitations labcd
i jkl l4[[i, j, k, l, a, b, c, d]]

Table I alongside their description and corresponding mathematical
expression.

The input quantities for eomccgen are the list of (neutral)
excitation operators, named ClusterOperator (that determines
the similarity-transform Hamiltonian) and the list of EOM oper-
ators, named EOMOperator. For example, the input to obtain the
EE-EOM-CCSDT equations is

ClusterOperator = {{”1h1p”},{”2h2p”},{”3h3p”}},
EOMOperator = {{”1h1p”},{”2h2p”},{”3h3p”}}.

If one wants to get IP-EOM-CCSD, the input is

ClusterOperator = {{”1h1p”},{”2h2p”}},
EOMOperator = {{”1h0p”},{”2h1p”}}}.

To obtain DEA-EOM-CCSD, the second line has to be changed as

EOMOperator = {{”0h2p”},{”1h3p”}}}.

It is also possible to have different numbers of operators in
EOMOperator and ClusterOperator. For example, the EA-EOM-
CCSD (3h2p) equations can be written as

EOMOperator = {{”0h1p”},{”1h2p”},{”3h2p”}}.

In practice, it is possible to carry out all possible combinations of
excitation operators up to 4h4p, and it is also possible to calculate
the CC amplitude equations. For example, to generate the CCSD
amplitude equations, the following input must be entered:

ClusterOperator = {{”1h1p”},{”2h2p”}},
EOMOperator = {{”0h0p”}}.

We shall now discuss in detail the algorithm summarized in Fig. 1.

A. Step 1
The first step is carried out through the module AmplStr. The

inputs of this module are ClusterOperator and EOMOperator,

{Amplitudes, Strings}

= AmplStr[ClusterOperator, EOMOperator].

It returns the list of CC amplitudes (stemming from the truncated
Taylor expansion of eT̂ ) in Amplitudes. For example, in the case of
EE-EOM-CCSD, we have

Amplitudes = {1, tv1
o1 , tv1

o1 tv2
o2 , tv1

o1 tv2
o2 tv3

o3 , tv1v2
o1o2 , tv1v2

o1o2 tv3
o3 },

while in Mathematica, it takes the following form:
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FIG. 1. Flowchart of the entire set of modules constituting the EOM-CC equation generator.

The set of excitation operators gathered in EOMOperator
determines the basis on which H̄ [see Eq. (29)] is diagonalized.
On this basis, together with the similarity-transformed Hamilto-
nian, the EOM-CC matrix is written in second-quantized form,
H̄[{p̂†

1 , p̂†
2 , . . . , ĥ1, ĥ2, ⋅ ⋅ ⋅ }], and stored in the variable Strings,

which is made of two substrings, i.e., Strings = {StringF, StringV},
where StringF (F stands for F̂N) and StringV (V stands for V̂N). For
example, the element StringV[[2, 1, 6]] corresponds to

⟨D∣V̂NT̂1T̂2∣S⟩ = {{h1†, h2†, p2, p1},{q1†, q2†, q4, q3},

{{v1†, o1},{v2†, o2, v3†, o3}},{p3†, h3}}.

The values 2 and 1 in StringV[[2, 1, 6]] correspond to the indices of
the row and column of the EOM-CC matrix, respectively, while 6
represents the sixth amplitude, i.e., Amplitudes[[6]]. For the sake of
simplicity, the summation and the Fermi vacuum of StringF and
StringV are implicit.
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B. Step 2
In Fig. 1, the module that corresponds to the second step

is named ManyBodyHamiltonian and requires the input quantity
Strings generated in AmplStr (see Subsection III A),

{ManyBodyBlocks, ManyBodyStrings}

= ManyBodyHamiltonian[Strings],

where ManyBodyBlocks corresponds to the EOM-CC matrix
defined in Eq. (29) written in terms of the many-body terms,
i.e., H̄[{χp1p2 ⋅ ⋅ ⋅h3h4 ⋅ ⋅ ⋅

h1h2 ⋅ ⋅ ⋅p3p4 ⋅ ⋅ ⋅
}], and ManyBodyStrings is a list that con-

sists of all unique many-body terms in second-quantized form, i.e.,

χp1p2 ⋅ ⋅ ⋅h3h4 ⋅ ⋅ ⋅

h1h2 ⋅ ⋅ ⋅p3p4 ⋅ ⋅ ⋅
[{p̂†

1 , p̂†
2 , . . . , ĥ1, ĥ2, ⋅ ⋅ ⋅ }].

More precisely, the algorithm inside ManyBodyHamiltonian
that generates ManyBodyBlocks and ManyBodyStrings performs
the following steps:

1. Extract the EOM basis from Strings and evaluate the many-body Hamiltonian represented in Eq. (31) to form matrix elements, such
as ⟨Φp1p2 ⋅ ⋅ ⋅

h1h2 ⋅ ⋅ ⋅
∣H̄mb

N ∣Φ
p3p4 ⋅ ⋅ ⋅

h3h4 ⋅ ⋅ ⋅
⟩.

2. Set the many-body terms that correspond to the CC amplitude equations to zero, such as the ones defined in Eq. (38).
3. Contract blocks made of second-quantized strings of the form ⟨Φp1p2 ⋅ ⋅ ⋅

h1h2 ⋅ ⋅ ⋅
∣H̄mb

N ∣Φ
p3p4 ⋅ ⋅ ⋅

h3h4 ⋅ ⋅ ⋅
⟩with the help of the ContractManyBody function.

For example, the contraction of the block ⟨Φp1
h1
∣H̄mb

N ∣Φ
p3
h3
⟩ generates

(−δp1p3 χh3
h1

, δh1h3 χp1
p3

,−χp1h3
h1p3
) = ContractManyBody[⟨Φp1

h1
∣H̄mb

N ∣Φ
p3
h3
⟩].

Applying ContractManyBody to each block of H̄ allows us to obtain the EOM-CC matrix in terms of many-body terms, i.e.,
H̄[{χp1p2 ⋅ ⋅ ⋅h3h4 ⋅ ⋅ ⋅

h1h2 ⋅ ⋅ ⋅p3p4 ⋅ ⋅ ⋅
}]. These are stored in ManyBodyBlocks. In MATHEMATICA, it takes the following form:

4. For each block of ManyBodyBlocks, we remove any redundant many-body term to create a list of unique terms,
χp1p2 ⋅ ⋅ ⋅h3h4 ⋅ ⋅ ⋅

h1h2 ⋅ ⋅ ⋅p3p4 ⋅ ⋅ ⋅
[{p̂†

1 , p̂†
2 , . . . , ĥ1, ĥ2, ⋅ ⋅ ⋅ }], stored in ManyBodyStrings. This is performed by counting the number of hole-annihilation,

hole-creation, particle-annihilation, and particle-creation operators in each term. For example, in the case of IP-EOM-CCSD, we have

ManyBodyStrings = {χh3
h1

, χh4
p3 , χp1

p3
, χh3p1

h1h2
, χh4p1

h2p3
, χh3h4p1

h1h2p3
},

Next, we express each many-body term as in Eq. (34) to obtain their second-quantized form. For example,

χh3h4p1
h1h2p3

= ⟨Φp1
h1h2
∣H̄st

N∣Φ
p3
h3h4
⟩

iC
, (40)

while in Mathematica, this three-body term corresponds to the sixth position of ManyBodyStrings:

C. Step 3

The third step is carried out by the module named
WicksContract, which performs Wick’s contractions [see Eq. (8)]

of the second-quantized strings in ManyBodyStrings obtained in
the module ManyBodyHamiltonian, as follows:

DeltaKronecker = WicksContract[ManyBodyStrings].
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FIG. 2. Flowchart of the WicksContract module. The module takes χh1
p1
= ⟨0∣H̄N∣Φp1

h1
⟩

iC
stored in the variable ManyBodyStrings produced from

ManyBodyHamiltonian the module as input (see Fig. 1).

The output DeltaKronecker contains two quantities, the Kro-
necker deltas and the signs of each contraction.

Figure 2 illustrates the structure of the module
WicksContract. Its input is the one-body term χh1

p1
, which is

stored in the variable ManyBodyStrings[[3]] produced by the
module ManyBodyHamiltonian discussed in Subsection III B.
The first step consists of replacing the similarity-transformed
Hamiltonian with the terms yielding non-zero matrix elements
and then applying Wick’s theorem to the remaining terms. Finally,
the Kronecker deltas and signs obtained from Wick’s theorem are
stored in DeltaKronecker.

D. Step 4
The module AntiSymPermut requires three inputs:

DeltaKronecker, ManyBodyStrings, and Amplitudes,

ManyBodyTerms = AntiSymPermut[DeltaKronecker,
ManyBodyStrings, Amplitudes].

This module applies the Kronecker deltas obtained in WicksCon-
tract (see Subsection III C) to Amplitudes (generated in AmplStr
and discussed in Subsection III A), the Fock matrix elements,
{ f p

q}, and the two-electron repulsion integrals, {vpq
rs }. Next, it takes

advantage of the antisymmetric permutations of the amplitudes and

integrals to obtain more compact expressions.
Finally, as output, ManyBodyBlocks obtained in the

module ManyBodyHamiltonian (see Subsection III B) and
ManyBodyTerms, χp1p2 ⋅ ⋅ ⋅h3h4 ⋅ ⋅ ⋅

h1h2 ⋅ ⋅ ⋅p3p4 ⋅ ⋅ ⋅
[{ f p

q},{v
pq
rs },{t

p1p2 ⋅ ⋅ ⋅

h1h2 ⋅ ⋅ ⋅
}], from

AntiSymPermut are printed. From these, one can easily generate
the EOM-CC equations.

E. Examples
The software has also the advantage of being able to gener-

ate various outputs, including CC energy and amplitude equations,
second-quantized strings in normal order, many-body terms of the
similarity-transformed Hamiltonian, and blocks of the EOM-CC
Hamiltonian matrix in terms of many-body terms.

For example, the input code to obtain IP-EOM-CCSD is

while the output consists of a list of many-body terms and the EOM-
CC matrix in terms of these quantities:
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The input code to generate the CCD equations is

and it produces the following output:

In the following example, we compute the block {2,1} of the IP-EOM-CCSD matrix. The corresponding input is
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and the output is

It is also possible to contract the EOM-CC Hamiltonian and the right or left eigenvectors [see Eqs. (29) and (30)]. These quantities
are useful when one relies on the Davidson diagonalization method78 or related techniques. For example, the input to obtain the left-hand
eigenvalue equation for IP-EOM-CCSD is the following:

The output is very similar to the first example with the difference that, in ManyBodyBlocks, the Kronecker deltas are applied to the
many-body terms as well as to the left-hand EOM-CC amplitudes.

The MATHEMATICA code described in this paper is pub-
licly available in a dedicated repository on GitHub with the name
eomccgen.79 In particular, the repository contains examples of
scripts and data files that can be easily adapted for particular research
projects. In addition, the repository includes another notebook,
called eomccnum, where the equations obtained in eomccgen can be
implemented and numerically tested for small atoms and molecules.
eomccnum comes with pre-installed examples that can serve as a
guide for implementing the equations obtained in eomccgen. An
example of the water molecule in the STO-3G basis can be found
in the repository.

IV. CONCLUSION
The present paper discusses the development of a code gener-

ator for equation-of-motion coupled-cluster (EOM-CC) methods, a
class of many-body quantum chemistry methods known for their
accuracy in predicting excitation energies, ionization potentials, and
electron affinities in molecular systems. Because their implementa-
tion can be complex and time-consuming, we develop an easy-to-use
code generator that automates the process of deriving and imple-
menting the EOM-CC equations, reducing the potential for human
error.

We begin by discussing the second-quantization formalism,
a practical and modern mathematical language used to describe
many-body quantum systems in terms of creation and annihilation
operators. We then discuss the development of our code genera-
tor for EOM-CC methods. Our approach builds on previous work
by using second-quantized strings to automate the derivation and

implementation of EOM-CC equations. However, we introduce sev-
eral new features that make the code generator more efficient and
flexible. For example, we rely on a symbolic algebra software pack-
age, Mathematica, to generate these equations that can be easily read
by humans and machines. The paper provides a detailed description
of each step of the algorithm used in the code generator. We also
describe how the code generator can be used to calculate excitation
energies, ionization potentials, and electron affinities by providing
several concrete examples.

Although many improvements are still needed to generate a
production-level code, especially in the definition of adequate inter-
mediates to ensure right computational scaling of the methods, we
hope that the present work nicely illustrates the capabilities of the
Mathematica-based code generator in the context of CC theory.
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