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ABSTRACT: The exact functionals associated with the (singlet) ground
state and the two singlet excited states of the asymmetric Hubbard dimer at
half-filling are calculated using both Levy’s constrained search and Lieb’s
convex formulation. While the ground-state functional is, as is commonly
known, a convex function with respect to the density, the functional
associated with the doubly excited state is found to be concave. Also,
because the density-potential mapping associated with the first excited state
is noninvertible, its “functional” is a partial, multivalued function composed
of one concave and one convex branch that correspond to two separate
domains of the external potential. Remarkably, it is found that, although
the one-to-one mapping between density and external potential may not
apply (as in the case of the first excited state), each state-specific energy
and corresponding universal functional are “functions” whose derivatives
are each other’s inverse, just as in the ground state formalism.

Several decades after its foundation,1 density-functional
theory (DFT) still represents the main computational tool

to perform quantum mechanical simulations of interest for
pharmaceutical and technological applications.2 Originally
developed as a ground-state theory, it has been swiftly extended
to calculate the lowest excited state of a given symmetry,3−7

thereby obtaining excitation energies from differences of self-
consistent field (ΔSCF) calculations. Notwithstanding the
usefulness of such extension, for more general purposes, one
usually relies on (linear-response) time-dependent (TD) DFT
to describe excited states at the DFT level.8−12 TDDFT is an in-
principle exact theory, but in practice, it relies on approximations
for the exchange-correlation kernel. A fundamental source of
error underlying virtually all its implementations is adiabaticity
(neglecting memory effects), while another type of error comes
from the particular choice of the exchange-correlation func-
tional, similar to ground-state Kohn−Sham DFT.13 Within
these approximations, TDDFT has seen important successes14

but is also plagued by well-known shortcomings, e.g., for the
description of double excitations or charge-transfer pro-
cesses.15−20

Due to the relevance of these phenomena in photochemical
applications or quantum-based technologies, alternative, time-
independent theories have been developed. The most well-
known is ensemble DFT (EDFT), based on an ensemble of
equally weighted21 or unequally weighted22−24 densities, each
coming from an individual quantum state rather than a pure-
state density as in traditional DFT. In recent times, EDFT has
undergone significant developments that are crucial to its
advancement.25−44 However, it suffers from the disadvantages
that, to treat a high-lying excited state, it is usually required to

include all lower-lying states in the ensemble and that the weight
dependence of the exchange-correlation functional is hard to
model. Another ensemble theory that has been receiving
increasing attention and shares some of the problems of
EDFT is w-ensemble one-body reduced density matrix func-
tional theory.45−49

Concerning pure excited states, orbital-optimized DFT,50−63

the extension to any excited state of the mentioned ΔSCF
calculations, has been shown to be relatively successful for the
calculation of classes of excitations where TDDFT typically
fails,55,56 although its theoretical underpinning is still in
progress.

From a theoretical perspective, state-specific density-func-
tional formalisms have been developed.64−73 Some of these are
complicated by the dependence of the functional on quantities
other than the excited-state density and/or by the need for
orthogonality constraints to inherit the variational character of
the ground-state theory.74

In his seminal work, Görling67 proposes a stationarity rather
than a minimum principle to treat excited states. Building on
Görling’s work69 and restricting the set of external potentials to
Coulombic ones, Ayers et al. establish a one-to-one mapping
between external potential and any of its associated stationary
densities.70−72 For a general external potential, this one-to-one
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mapping may not hold true.50,75−77 However, none of these
formalisms have revealed a fundamental dual relationship
between excited-state energy and its corresponding state-
specific functional similar to the one between the ground-state
energy and the universal functional elucidated by Lieb.78

In turn, the present Letter provides an explicit case in which
such a fundamental dual relationship carries through for excited
states. Adopting Görling’s stationarity principle67 on Levy’s
constrained search79 and Lieb’s convex formulation,78 we find
for a simple model that, just as for the ground state, a given
excited-state energy and its corresponding universal functional
are functions whose derivatives are each other’s inverse
functions, a property described as “the essence of DFT”.80 Yet
the “functional” associated with the first-excited state has some
very peculiar mathematical properties.

Below, we first review the ground-state formalism. Consider
the usual variational principle

(1)

where the minimization is performed over all normalized N-
electron antisymetrized wave functions Ψ and the electronic
Hamiltonian

(2)

is composed of the kinetic energy operator T̂, the electron
repulsion operator , and the external potential contribution.

The minimization in eq 1 can be split in two steps

(3)

where in the second line we have introduced the Levy−Lieb or
“universal” functional defined, via Levy’s constrained search,79

as

(4)

Note that the Hohenberg−Kohn,1 Levy−Lieb,78,79 or Lieb
functional78 differ in the density domain. We refer to any of
them as the universal functional, although only the Lieb
functional is properly convex in ρ.80

The Legendre−Fenchel transform of eq 3 delivers F[ρ] from
the maximization

(5)

exemplifying the duality between the functional E[v], concave in
the external potential v, and F[ρ], convex in the density ρ.78

Although technically discontinuous, F[ρ] is “almost differ-
entiable”80 in that it may be approximated to any accuracy by a
differentiable regularized functional.81 Thus, assuming differ-
entiability and carrying out the optimizations in eqs 3 and 5, one
obtains

(6a)

(6b)

respectively.
We adopt the two-site Hubbard model at half-filling,31,82−91

whose Hamiltonian reads

(7)

where t > 0 is the hopping parameter, U ≥ 0 is the on-site
interaction parameter, is the spin density operator
on site i, is the density operator on site i, and Δv =
v1 − v0 (with v0 + v1 = 0) is the potential difference between the
two sites.

Although simple, this model is able to describe the physics of
partially filled narrow band gaps82,83,85 and its two-site version
has been used in the framework of site-occupation function
theory to exemplify central concepts or test (new) density-
functional methods by numerous authors.31,84,86−91

It is noteworthy to mention that for lattice systems, even in the
case of the ground-state functional, the Hohenberg−Kohn
theorem does not hold universally. While a potential does exist,
it is not always unique. This aspect was recently highlighted by
Penz and van Leeuwen.92 However, in the context of linear
Hubbard chains (like the one discussed in this paper where the
chain is of length two), the uniqueness and thus the applicability
of the Hohenberg−Kohn theorem are established by Theorem
17 in the aforementioned reference. This theorem provides a
robust guarantee of uniqueness, ensuring that for linear
Hubbard chains there is a unique potential associated with a
given density. Notably, the present study and Schönhammer and
Gunnarsson’s original work also support this.84

At half filling (N = 2), we expand the Hamiltonian in the N-
electron (spin-adapted) site basis |0↑0↓⟩, ,
and |1↑1↓⟩ to form the following Hamiltonian matrix

(8)

whose eigenvalues provide the singlet energies of the system. A
generic singlet wave function can then be written as

(9)

with −1 ≤ x, y, z ≤ 1 and the normalization condition

(10)

The energy is given by E = T + Vee + V, with

(11a)

(11b)

(11c)

with

(12)
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We call E0, E1, and E2 the energies of the ground state, first
(singly) excited state, and second (doubly) excited state,
respectively. These are represented in Figure 1 as functions of

Δv for t = 1/2 and U = 1. It is worth noting that E0 (red curve)
and E2 (green curve) are concave and convex with respect to Δv,
respectively, for any value of t and U, while E1 is concave for Δv
smaller than the critical value Δvc (blue curve labeled as E1

∩) and
becomes convex for Δv > Δvc (yellow curve labeled as E1

∪).
The corresponding differences in (reduced) site occupation

(13)

for the ground state, ρ0, first excited state, ρ1, and second excited
state, ρ2, are represented in Figure 2. While the ground (red

curve) and the doubly excited (green curve) states have
monotonic densities with respect to Δv for any t and U values,
ρ1 is nonmonotonic and reaches a critical value ρc at Δvc before
decaying to 0 as Δv → ∞. In agreement with eq 6b, in the
asymmetric Hubbard dimer, one finds

(14)

However, analogous relations hold true also for the two excited
states, i.e.,

(15a)

(15b)

Substituting x and z in eqs 11a and 11b thanks to the
normalization condition and the reduced site occupation
difference defined in eqs 10 and 13, respectively, we obtain
the four-branch function

(16)

that one would minimize with respect to y to obtain the exact
ground-state functional.84,86,87 Although one technically deals
with functions in the Hubbard dimer, we shall stick to the term
functional to emphasize the formal analogy between site-
occupation function theory and DFT, as customarily done in
the literature.49,87,90,93−95

Rather than only minimizing eq 16 for a given ρ, we seek all
stationary points67 of f±±(ρ, y) with respect to y, i.e.,

(17)

The choice of the variable over which to optimize in eq 17 is
arbitrary and several choices are possible yielding various
functions86 other than f±±, yet identical F(ρ)’s. A similar
procedure can be carried out via an ensemble formalism,22−24 as
shown by Fromager and co-workers.31−33

Because, taken as whole, f±± is symmetric with respect to a
change in sign of y, we restrict the discussion to the domain
where y ≥ 0, without a loss of generality. As shown in Figure 3,
the branches f++ and f−− have one stationary point each for y ≥ 0
(green square and red circle, respectively): the global minimum
located at y0 corresponds to the convex ground-state functional,
F0(ρ) = f++(ρ, y0), while the global maximum at y2 corresponds
to the concave doubly excited-state functional, i.e., F2(ρ) =
f−−(ρ, y2) (see Figure 4). F0(ρ) and F2(ρ) merge at ρ = 1. The
stationary points located at −y0 and −y2 are associated with
opposite values of Δv.

For ρ < ρc, the branch f+− has two stationary points (yellow
diamonds): a local minimum at y1

∩ and a local maximum at y1
∪

that yield a concave branch F1
∩(ρ) = f+−(ρ, y1

∩) (yellow curve in
Figure 4) and a convex branch F1

∪(ρ) = f+−(ρ, y1
∪) (blue curve in

Figure 4) for the singly excited-state functional. As expected
though, F1

∩(ρ) and F1
∪(ρ) lead to convex and concave energies,

E1
∪ and E1

∩ (see Figure 1), respectively, preserving the property
that the energy and the functional are conjugate functions.80

Because the density-potential mapping associated with the first
excited state is noninvertible (since, as seen in Figure 2, the same
density ρ can be produced by two Δv values), its “functional” is a
partial (i.e., defined for a subdomain of ρ), multivalued function
constituted of one concave and one convex branch that
correspond to two separate domains of the external potential.
Again, the stationary points on f−+ located at −y1

∩ and −y1
∪ (blue

triangles) are associated with opposite values of Δv. At ρ = ρc, y1
∩

and y1
∪ merge and disappear for larger ρ values. This critical value

of the density decreases with respect to U to reach zero at U = 0,
and ρc → 1 as U → ∞.

In accordance with eq 6a, the derivative of F0(ρ) with respect
to ρ gives back Δv0 as a function of ρ, i.e., the inverse of ρ0(Δv)
plotted in Figure 2. Most notably, an analogous relation holds

Figure 1. E0, E1, and E2 as functions of Δv for t = 1/2 and U = 1. Note
that E is an even function of Δv. E1 is concave for Δv < Δvc and becomes
convex for larger Δv values.

Figure 2. ρ as a function of Δv for t = 1/2 and U = 1 for the ground-state
(ρ0), the singly excited state (ρ1), and the doubly excited states (ρ2). ρ1
reaches a critical value, ρc, at Δvc. Note that ρ is an odd function of Δv.
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for the excited states. For the doubly excited state, we simply
have

(18)

In particular, for ρ = 0, we have Δv2 = 0, while Δv2 → ∞ as ρ →
1, similarly to Δv0 (except that Δv0 → − ∞ as ρ → 1).

For the first-excited state, which has a noninvertible density,
ρ1(Δv) (see Figure 2), we still have

(19a)

(19b)

where Δv1
∪(ρ) ranges from −Δvc (at ρ = ρc) to 0− (for ρ → 0+),

yielding the inverse of the blue curve in Figure 2, and Δv1
∩(ρ)

ranges from − ∞ (for ρ → 0+) to − Δvc (for ρ = ρc), yielding the
inverse of the yellow curve in Figure 2.

The Levy constrained-search procedure is geometrically
illustrated in Figure 5. The surface of the unit sphere
corresponds to the normalized wave functions such that x2 +
y2 + z2 = 1, onto which we mapped the value of T + Vee as a
function of x, y, and z. The gray parabolas correspond to the

(potentially unnormalized) wave functions, yielding ρ = z2 − x2.
Hence, the contours obtained by the intersection of these three-
dimensional surfaces are the normalized wave functions, yielding
ρ = z2 − x2. On these contours, one is looking for the points
where f±± is stationary. These are represented by the colored
dots in Figure 5 (see also Figure 3).

The exact functionals represented in Figure 4 can also be
obtained by using the Lieb variational principle. To do so, let us
define, for each singlet state, the function

(20)

However, instead of maximizing the previous expression for a
given ρ as in eq 5, we seek its entire set of stationary points with
respect to Δv for each m value, i.e.,

(21)

Figure 3. f−−(ρ, y) (red), f−+(ρ, y) (blue), f+−(ρ, y) (yellow), and f++(ρ, y) (green) as functions of y for t = 1/2, U = 1, and ρ = 1/5 (left), 1/2 (center),
and 3/5 (right). The markers indicate the positions of the stationary points on each branch. At ρ = 3/5 (right panel), the stationary points of f−+ and f+−
have disappeared as ρ > ρc (see Figure 2).

Figure 4. State-specific exact functionals Fm(ρ) as functions of ρ for t =
1/2 and U = 1. The ground-state functional F0(ρ) (red) is convex with
respect to ρ, and the singly excited-state multivalued functional F1(ρ)
has one convex branch (blue) and one concave branch (yellow), each
associated with a separate set of Δv values, while the doubly excited-
state functional F2(ρ) (green) is concave. Note that F is an even
function of ρ.

Figure 5. Illustration of the Levy constrained-search procedure for t =
1/2, U = 1, and ρ = 1/5. The value of T + Vee is mapped on the surface of
the unit sphere, which represents the normalized wave functions. The
gray parabolas correspond to density values ρ = z2 − x2. The four
branches of f±± [eq 16] are represented as contours and correspond to
the intersections of these three-dimensional objects. The dots locate the
stationary points on each of these contours.
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Figure 6 shows fm as a function of Δv at ρ = 0 and ±1/2 for
each state and the location of the corresponding stationary

points. For ρ = 0 (transparent curves), one recovers the energies
Em plotted in Figure 1. The values of the functions fm at their
stationary points (red circle, blue triangle, and green square at
Δv = 0) correspond to the initial values of F0, F1

∪, and F2 in Figure
4. For ρ = 1/2, f 0 (solid red curve) and f 2 (solid green curve)
have a single extremum: a maximum and a minimum, yielding
the ground- and second-excited-state functionals, F0(ρ) and
F2(ρ), respectively, as depicted in Figure 4. The blue curve f1
exhibits a local maximum and minimum that correspond to the
two branches of the multivalued functional associated with the
first-excited state, F1

∩(ρ) and F1
∪(ρ), respectively.

In practice, Lieb’s formulation has a very neat geometric
illustration in the Hubbard dimer. The total energies Em are
“tipped” by the addition of the linear term −Δvρ, which shifts
their extrema: the maxima of E0 and E1 toward Δv < 0 and the
minimum of E2 toward Δv > 0. Moreover, in the case of the first-
excited state, the linear curve −Δvρ shifts the energy in such a
way that as soon as ρ > 0, a local minimum appears (outermost
blue triangle) in f1. This minimum and the maximum gradually
get closer as ρ increases until they merge at ρ = ρc, f1 becoming
monotonic with no stationary points for ρ > ρc. The situation is
exactly mirrored for ρ = −1/2 (dashed curves).

The present Letter reports the exact functionals for the
ground and (singlet) excited states of the asymmetric Hubbard
dimer at half-filling. To the best of our knowledge, this is the first
time that exact function(al)s corresponding to singlet (non-
degenerate) excited states are computed. While the ground-state
functional is well-known to be a convex function with respect to
the site-occupation difference, the functional associated with the
highest-double-excited state is found to be concave. Addition-
ally, and more importantly, we find that the “functional” for the
first-excited state is a partial, multivalued function of the density
that is constructed from one concave and one convex branch

associated with two separate domains of the external potential.
Finally, Levy’s constrained search and Lieb’s convex formulation
are found to be entirely consistent with one another, yielding the
same exact functionals [eqs 17 and 21] and, even more
remarkably, the duality properties of the ground state appear to
be shared by the excited states of this model. These findings may
provide insight into the challenges of constructing state-specific
excited-state density functionals for general applications in
electronic structure theory.
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of E0 and E1 (red circle and blue triangle, respectively) toward Δv < 0
and the minimum of E2 (green square) toward Δv > 0. Moreover, a local
minimum in f1 (the outermost blue triangle) appears. The situation is
exactly mirrored for ρ = −1/2 (dashed curves).

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.3c02052
J. Phys. Chem. Lett. 2023, 14, 8780−8786

8784

https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02052?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jpclett.3c02052/suppl_file/jz3c02052_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Sara+Giarrusso"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
mailto:sgiarrusso@irsamc.ups-tlse.fr
mailto:sgiarrusso@irsamc.ups-tlse.fr
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Pierre-Franc%CC%A7ois+Loos"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0003-0598-7425
https://orcid.org/0000-0003-0598-7425
mailto:loos@irsamc.ups-tlse.fr
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02052?ref=pdf
https://doi.org/10.1103/PhysRev.136.B864
https://doi.org/10.1039/D2CP02827A
https://doi.org/10.1039/D2CP02827A
https://doi.org/10.1103/PhysRevB.13.4274
https://doi.org/10.1103/PhysRevB.13.4274
https://doi.org/10.1007/BF00551551
https://doi.org/10.1007/BF00551551
https://doi.org/10.1103/PhysRevB.20.3136
https://doi.org/10.1103/PhysRevB.20.3136
https://doi.org/10.1103/PhysRevA.20.1693
https://doi.org/10.1103/PhysRevA.37.4570
https://doi.org/10.1103/PhysRevA.37.4570
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.52.997
https://doi.org/10.1103/PhysRevLett.90.043005
https://doi.org/10.1103/PhysRevLett.90.043005
https://doi.org/10.1063/1.1904586
https://doi.org/10.1063/1.1904586
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02052?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02052?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02052?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpclett.3c02052?fig=fig6&ref=pdf
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.3c02052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(11) Casida, M.; Huix-Rotllant, M. Progress in Time-Dependent
Density-Functional Theory. Annu. Rev. Phys. Chem. 2012, 63, 287.

(12) Huix-Rotllant, M.; Ferré, N.; Barbatti, M. Quantum Chemistry
and Dynamics of Excited States; John Wiley & Sons, Ltd.: 2020; Chapter
2, pp 13−46.

(13) Kohn, W.; Sham, L. J. Self-Consistent Equations Including
Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133−A1138.

(14) Jacquemin, D.; Wathelet, V.; Perpete, E. A.; Adamo, C. Extensive
TD-DFT benchmark: singlet-excited states of organic molecules. J.
Chem. Theory Comput. 2009, 5, 2420−2435.

(15) Tozer, D. J.; Amos, R. D.; Handy, N. C.; Roos, B. O.; Serrano-
Andres, L. Does Density Functional Theory Contribute to the
Understanding of Excited States of Unsaturated Organic Compounds?
Mol. Phys. 1999, 97, 859−868.

(16) Tozer, D. J.; Handy, N. C. On the Determination of Excitation
Energies Using Density Functional Theory. Phys. Chem. Chem. Phys.
2000, 2, 2117−2121.

(17) Dreuw, A.; Weisman, J. L.; Head-Gordon, M. Long-Range
Charge-Transfer Excited States in Time-Dependent Density Functional
Theory Require Non-Local Exchange. J. Chem. Phys. 2003, 119, 2943−
2946.

(18) Maitra, N. T.; Zhang, F.; Cave, R. J.; Burke, K. Double excitations
within time-dependent density functional theory linear response. J.
Chem. Phys. 2004, 120, 5932.

(19) Levine, B. G.; Ko, C.; Quenneville, J.; Martinez, T. J. Conical
Intersections and Double Excitations in Time-Dependent Density
Functional Theory. Mol. Phys. 2006, 104, 1039−1051.

(20) Maitra, N. T. Charge Transfer In Time-Dependent Density
Functional Theory. J. Phys. Cond. Matt. 2017, 29, 423001.

(21) Theophilou, A. K. The Energy Density Functional Formalism for
Excited States. J. Phys. C 1979, 12, 5419−5430.

(22) Gross, E. K. U.; Oliveira, L. N.; Kohn, W. Rayleigh-Ritz
Variational Principle for Ensembles of Fractionally Occupied States.
Phys. Rev. A 1988, 37, 2805−2808.

(23) Gross, E. K. U.; Oliveira, L. N.; Kohn, W. Density-Functional
Theory for Ensembles of Fractionally Occupied States. I. Basic
Formalism. Phys. Rev. A 1988, 37, 2809−2820.

(24) Oliveira, L. N.; Gross, E. K. U.; Kohn, W. Density-Functional
Theory for Ensembles of Fractionally Occupied States. II. Application
to the He Atom. Phys. Rev. A 1988, 37, 2821−2833.

(25) Pribram-Jones, A.; Yang, Z.-h.; Trail, J. R.; Burke, K.; Needs, R. J.;
Ullrich, C. A. Excitations and Benchmark Ensemble Density Functional
Theory for Two Electrons. J. Chem. Phys. 2014, 140, 18A541.

(26) Yang, Z.-H.; Trail, J. R.; Pribram-Jones, A.; Burke, K.; Needs, R.
J.; Ullrich, C. A. Exact and Approximate Kohn-Sham Potentials in
Ensemble Density-Functional Theory. Phys. Rev. A 2014, 90, 042501.

(27) Yang, Z.-H.; Pribram-Jones, A.; Burke, K.; Ullrich, C. A. Direct
Extraction of Excitation Energies from Ensemble Density-Functional
Theory. Phys. Rev. Lett. 2017, 119, 033003.

(28) Sagredo, F.; Burke, K. Accurate Double Excitations from
Ensemble Density Functional Calculations. J. Chem. Phys. 2018, 149,
134103.

(29) Filatov, M. In Density-Functional Methods for Excited States; Ferré,
N., Filatov, M., Huix-Rotllant, M., Eds.; Springer International
Publishing: Cham, 2016; pp 97−124.

(30) Senjean, B.; Knecht, S.; Jensen, H. J. A.; Fromager, E. Linear
Interpolation Method in Ensemble Kohn-Sham and Range-Separated
Density-Functional Approximations for Excited States. Phys. Rev. A
2015, 92, 012518.

(31) Deur, K.; Mazouin, L.; Fromager, E. Exact Ensemble Density
Functional Theory for Excited States in a Model System: Investigating
the Weight Dependence of the Correlation Energy. Phys. Rev. B 2017,
95, 035120.

(32) Deur, K.; Mazouin, L.; Senjean, B.; Fromager, E. Exploring
Weight-Dependent Density-Functional Approximations for Ensembles
in the Hubbard Dimer. Eur. Phys. J. B 2018, 91, 162.

(33) Deur, K.; Fromager, E. Ground and excited energy levels can be
extracted exactly from a single ensemble density-functional theory
calculation. J. Chem. Phys. 2019, 150, 094106.

(34) Marut, C.; Senjean, B.; Fromager, E.; Loos, P.-F. Weight
dependence of local exchange−correlation functionals in ensemble
density-functional theory: double excitations in two-electron systems.
Faraday Discuss. 2020, 224, 402−423.

(35) Loos, P.-F.; Fromager, E. A weight-dependent local correlation
density-functional approximation for ensembles. J. Chem. Phys. 2020,
152, 214101.

(36) Fromager, E. Individual Correlations in Ensemble Density
Functional Theory: State- and Density-Driven Decompositions
without Additional Kohn-Sham Systems. Phys. Rev. Lett. 2020, 124,
243001.

(37) Cernatic, F.; Senjean, B.; Robert, V.; Fromager, E. Ensemble
Density Functional Theory of Neutral and Charged Excitations. Top.
Curr. Chem. 2022, 380, 4.

(38) Gould, T.; Pittalis, S. Hartree and Exchange in Ensemble Density
Functional Theory: Avoiding the Nonuniqueness Disaster. Phys. Rev.
Lett. 2017, 119, 243001.

(39) Gould, T.; Kronik, L.; Pittalis, S. Charge Transfer Excitations
from Exact and Approximate Ensemble Kohn-Sham Theory. J. Chem.
Phys. 2018, 148, 174101.

(40) Gould, T.; Pittalis, S. Density-Driven Correlations in Many-
Electron Ensembles: Theory and Application for Excited States. Phys.
Rev. Lett. 2019, 123, 016401.

(41) Gould, T.; Stefanucci, G.; Pittalis, S. Ensemble Density
Functional Theory: Insight from the Fluctuation-Dissipation Theorem.
Phys. Rev. Lett. 2020, 125, 233001.

(42) Gould, T.; Kronik, L.; Pittalis, S. Double excitations in molecules
from ensemble density functionals: Theory and approximations. Phys.
Rev. A 2021, 104, 022803.

(43) Gould, T.; Hashimi, Z.; Kronik, L.; Dale, S. G. Single Excitation
Energies Obtained from the Ensemble “HOMO−LUMO Gap”: Exact
Results and Approximations. J. Phys. Chem. Lett. 2022, 13, 2452−2458.

(44) Gould, T.; Kooi, D. P.; Gori-Giorgi, P.; Pittalis, S. Electronic
Excited States in Extreme Limits via Ensemble Density Functionals.
Phys. Rev. Lett. 2023, 130, 106401.

(45) Schilling, C.; Pittalis, S. Ensemble reduced density matrix
functional theory for excited states and hierarchical generalization of
Pauli’s exclusion principle. Phys. Rev. Lett. 2021, 127, 023001.

(46) Liebert, J.; Castillo, F.; Labbé, J.-P.; Schilling, C. Foundation of
one-particle reduced density matrix functional theory for excited states.
J. Chem. Theory Comput. 2022, 18, 124−140.

(47) Liebert, J.; Schilling, C. An exact one-particle theory of bosonic
excitations: From a generalized Hohenberg-Kohn theorem to
convexified N-representability. New J. Phys. 2023, 25, 013009.

(48) Liebert, J.; Schilling, C. Deriving density-matrix functionals for
excited states. SciPost Phys. 2023, 14, 120.

(49) Liebert, J.; Chaou, A. Y.; Schilling, C. Refining and relating
fundamentals of functional theory. J. Chem. Phys. 2023, 158, 214108.

(50) Perdew, J. P.; Levy, M. Extrema of the Density Functional for the
Energy: Excited States from the Ground-State Theory. Phys. Rev. B
1985, 31, 6264−6272.

(51) Kowalczyk, T.; Tsuchimochi, T.; Chen, P.-T.; Top, L.; Van
Voorhis, T. Excitation energies and Stokes shifts from a restricted open-
shell Kohn-Sham approach. J. Chem. Phys. 2013, 138, 164101.

(52) Gilbert, A. T.; Besley, N. A.; Gill, P. M. Self-consistent field
calculations of excited states using the maximum overlap method
(MOM). J. Phys. Chem. A 2008, 112, 13164−13171.

(53) Barca, G. M. J.; Gilbert, A. T. B.; Gill, P. M. W. Simple Models for
Difficult Electronic Excitations. J. Chem. Theory. Comput. 2018, 14,
1501−1509.

(54) Barca, G. M. J.; Gilbert, A. T. B.; Gill, P. M. W. Excitation
Number: Characterizing Multiply Excited States. J. Chem. Theory.
Comput. 2018, 14, 9−13.

(55) Hait, D.; Head-Gordon, M. Excited State Orbital Optimization
via Minimizing the Square of the Gradient: General Approach and
Application to Singly and Doubly Excited States via Density Functional
Theory. J. Chem. Theory Comput. 2020, 16, 1699−1710.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.3c02052
J. Phys. Chem. Lett. 2023, 14, 8780−8786

8785

https://doi.org/10.1146/annurev-physchem-032511-143803
https://doi.org/10.1146/annurev-physchem-032511-143803
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1103/PhysRev.140.A1133
https://doi.org/10.1021/ct900298e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct900298e?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1080/00268979909482888
https://doi.org/10.1080/00268979909482888
https://doi.org/10.1039/a910321j
https://doi.org/10.1039/a910321j
https://doi.org/10.1063/1.1590951
https://doi.org/10.1063/1.1590951
https://doi.org/10.1063/1.1590951
https://doi.org/10.1063/1.1651060
https://doi.org/10.1063/1.1651060
https://doi.org/10.1080/00268970500417762
https://doi.org/10.1080/00268970500417762
https://doi.org/10.1080/00268970500417762
https://doi.org/10.1088/1361-648X/aa836e
https://doi.org/10.1088/1361-648X/aa836e
https://doi.org/10.1088/0022-3719/12/24/013
https://doi.org/10.1088/0022-3719/12/24/013
https://doi.org/10.1103/PhysRevA.37.2805
https://doi.org/10.1103/PhysRevA.37.2805
https://doi.org/10.1103/PhysRevA.37.2809
https://doi.org/10.1103/PhysRevA.37.2809
https://doi.org/10.1103/PhysRevA.37.2809
https://doi.org/10.1103/PhysRevA.37.2821
https://doi.org/10.1103/PhysRevA.37.2821
https://doi.org/10.1103/PhysRevA.37.2821
https://doi.org/10.1063/1.4872255
https://doi.org/10.1063/1.4872255
https://doi.org/10.1103/PhysRevA.90.042501
https://doi.org/10.1103/PhysRevA.90.042501
https://doi.org/10.1103/PhysRevLett.119.033003
https://doi.org/10.1103/PhysRevLett.119.033003
https://doi.org/10.1103/PhysRevLett.119.033003
https://doi.org/10.1063/1.5043411
https://doi.org/10.1063/1.5043411
https://doi.org/10.1103/PhysRevA.92.012518
https://doi.org/10.1103/PhysRevA.92.012518
https://doi.org/10.1103/PhysRevA.92.012518
https://doi.org/10.1103/PhysRevB.95.035120
https://doi.org/10.1103/PhysRevB.95.035120
https://doi.org/10.1103/PhysRevB.95.035120
https://doi.org/10.1140/epjb/e2018-90124-7
https://doi.org/10.1140/epjb/e2018-90124-7
https://doi.org/10.1140/epjb/e2018-90124-7
https://doi.org/10.1063/1.5084312
https://doi.org/10.1063/1.5084312
https://doi.org/10.1063/1.5084312
https://doi.org/10.1039/D0FD00059K
https://doi.org/10.1039/D0FD00059K
https://doi.org/10.1039/D0FD00059K
https://doi.org/10.1063/5.0007388
https://doi.org/10.1063/5.0007388
https://doi.org/10.1103/PhysRevLett.124.243001
https://doi.org/10.1103/PhysRevLett.124.243001
https://doi.org/10.1103/PhysRevLett.124.243001
https://doi.org/10.1007/s41061-021-00359-1
https://doi.org/10.1007/s41061-021-00359-1
https://doi.org/10.1103/PhysRevLett.119.243001
https://doi.org/10.1103/PhysRevLett.119.243001
https://doi.org/10.1063/1.5022832
https://doi.org/10.1063/1.5022832
https://doi.org/10.1103/PhysRevLett.123.016401
https://doi.org/10.1103/PhysRevLett.123.016401
https://doi.org/10.1103/PhysRevLett.125.233001
https://doi.org/10.1103/PhysRevLett.125.233001
https://doi.org/10.1103/PhysRevA.104.022803
https://doi.org/10.1103/PhysRevA.104.022803
https://doi.org/10.1021/acs.jpclett.2c00042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c00042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpclett.2c00042?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1103/PhysRevLett.130.106401
https://doi.org/10.1103/PhysRevLett.130.106401
https://doi.org/10.1103/PhysRevLett.127.023001
https://doi.org/10.1103/PhysRevLett.127.023001
https://doi.org/10.1103/PhysRevLett.127.023001
https://doi.org/10.1021/acs.jctc.1c00561?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00561?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1088/1367-2630/acb006
https://doi.org/10.1088/1367-2630/acb006
https://doi.org/10.1088/1367-2630/acb006
https://doi.org/10.21468/SciPostPhys.14.5.120
https://doi.org/10.21468/SciPostPhys.14.5.120
https://doi.org/10.1063/5.0143657
https://doi.org/10.1063/5.0143657
https://doi.org/10.1103/PhysRevB.31.6264
https://doi.org/10.1103/PhysRevB.31.6264
https://doi.org/10.1063/1.4801790
https://doi.org/10.1063/1.4801790
https://doi.org/10.1021/jp801738f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp801738f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/jp801738f?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00994?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00963?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.7b00963?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01127?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01127?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01127?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.9b01127?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCL?ref=pdf
https://doi.org/10.1021/acs.jpclett.3c02052?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


(56) Hait, D.; Head-Gordon, M. Orbital Optimized Density
Functional Theory for Electronic Excited States. J. Phys. Chem. Lett.
2021, 12, 4517−4529.

(57) Shea, J. A. R.; Neuscamman, E. Communication: A Mean Field
Platform for Excited State Quantum Chemistry. J. Chem. Phys. 2018,
149, 081101.

(58) Shea, J. A. R.; Gwin, E.; Neuscamman, E. A Generalized
Variational Principle with Applications to Excited State Mean Field
Theory. J. Chem. Theory Comput. 2020, 16, 1526−1540.

(59) Hardikar, T. S.; Neuscamman, E. A self-consistent field
formulation of excited state mean field theory. J. Chem. Phys. 2020,
153, 164108.

(60) Levi, G.; Ivanov, A. V.; Jónsson, H. Variational Density
Functional Calculations of Excited States via Direct Optimization. J.
Chem. Theory Comput. 2020, 16, 6968−6982.

(61) Carter-Fenk, K.; Herbert, J. M. State-Targeted Energy
Projection: A Simple and Robust Approach to Orbital Relaxation of
Non-Aufbau Self-Consistent Field Solutions. J. Chem. Theory Comput.
2020, 16, 5067−5082.

(62) Toffoli, D.; Quarin, M.; Fronzoni, G.; Stener, M. Accurate
Vertical Excitation Energies of BODIPY/Aza-BODIPY Derivatives
from Excited-State Mean-Field Calculations. J. Phys. Chem. A 2022,
126, 7137−7146.

(63) Schmerwitz, Y. L. A.; Levi, G.; Jónsson, H. Calculations of
Excited Electronic States by Converging on Saddle Points Using
Generalized Mode Following. J. Chem. Theory Comput. 2023, 19,
3634−3651.

(64) Görling, A. Density-functional theory for excited states. Phys. Rev.
A 1996, 54, 3912.

(65) Nagy, A. Optimized Potential Method for Ensembles of Excited
States. Int. J. Quantum Chem. 1998, 69, 247−254.

(66) Levy, M.; Nagy, A. Variational Density-Functional Theory for an
Individual Excited State. Phys. Rev. Lett. 1999, 83, 4361−4364.

(67) Görling, A. Density-functional theory beyond the Hohenberg-
Kohn theorem. Phys. Rev. A 1999, 59, 3359−3374.

(68) Zhang, F.; Burke, K. Adiabatic connection for near degenerate
excited states. Phys. Rev. A 2004, 69, 052510.

(69) Ayers, P. W.; Levy, M. Time-independent (static) density-
functional theories for pure excited states: Extensions and unification.
Phys. Rev. A 2009, 80, 012508.

(70) Ayers, P. W.; Levy, M.; Nagy, A. Time-independent density-
functional theory for excited states of Coulomb systems. Phys. Rev. A
2012, 85, 042518.

(71) Ayers, P. W.; Levy, M.; Nagy, Á. Communication: Kohn-Sham
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