
State-Specific Configuration Interaction for Excited States
Fábris Kossoski* and Pierre-François Loos*

Cite This: J. Chem. Theory Comput. 2023, 19, 2258−2269 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: We introduce and benchmark a systematically improvable
route for excited-state calculations, labeled state-specific configuration
interaction (ΔCI), which is a particular realization of multiconfigurational
self-consistent field and multireference configuration interaction. Starting
with a reference built from optimized configuration state functions,
separate CI calculations are performed for each targeted state (hence,
state-specific orbitals and determinants). Accounting for single and double
excitations produces the ΔCISD model, which can be improved with
second-order Epstein−Nesbet perturbation theory (ΔCISD+EN2) or a
posteriori Davidson corrections (ΔCISD+Q). These models were gauged
against a vast and diverse set of 294 reference excitation energies. We have
found that ΔCI is significantly more accurate than standard ground-state-
based CI, whereas close performances were found between ΔCISD and
EOM-CC2 and between ΔCISD+EN2 and EOM-CCSD. For larger systems, ΔCISD+Q delivers more accurate results than EOM-
CC2 and EOM-CCSD. The ΔCI route can handle challenging multireference problems, singly and doubly excited states, from
closed- and open-shell species, with overall comparable accuracy and thus represents a promising alternative to more established
methodologies. In its current form, however, it is reliable only for relatively low-lying excited states.

I. INTRODUCTION
Most molecular electronic structure methods rely on different
descriptions of ground and excited states. The ground state is
described first, at a given level of theory, providing a baseline for
later accessing the excited states, which in turn makes use of
another approach or a distinct formalism altogether. For
example, Kohn−Sham (KS) density-functional theory (DFT)
is a ground-state method,1−3 whereas the excited states are
obtained later with a linear response treatment of time-
dependent density-functional theory (TDDFT).4−7 Similarly,
the coupled-cluster (CC)8−11 equations are solved for the
ground state, whereas a diagonalization of the similarity-
transformed Hamiltonian is implied in excited-state calculations
based on the equation-of-motion (EOM)12,13 or linear-
response14,15 formalisms. Within configuration interaction
(CI) methods,16 the underlying formalism is the same for
ground and excited states, but typical implementations also rely
on a special treatment for the ground state, given the use of
ground-state Hartree−Fock (HF) orbitals and the fact that the
truncated CI space is spanned by excitations from the ground-
state HF determinant.
Whereas the above-mentioned methods rely on a single

determinant reference, enlarging the reference space with more
than one determinant gives rise to multireference approaches. In
multiconfigurational self-consistent field (MCSCF),17−20 the
wave function is expanded as a linear combination of an arbitrary
set of determinants, and the orbitals (and the coefficients of
these determinants) are optimized to make the energy

stationary. The most employed type of MCSCF is the complete
active space self-consistent field (CASSCF),18 which allows for
all determinants generated by distributing a given number of
electrons in a given number of active orbitals. Multireference CI
(MRCI) offers a route to go beyond MCSCF by considering
excited determinants generated from the reference space, which
in practice is limited to single and double excitations
(MRCISD). The MRCISD energy can be further improved
with so-called Davidson corrections.21−23

Apart from multireference approaches,23,24 single-reference
excited-state methods entail a formal distinction between the
targeted excited states and the ground state. It is thus important
to devise methods that minimize this unbalance as much as
possible, aiming at a more unified description of ground and
excited states while maintaining a modest computational cost.
This also means a more balanced description among the excited
states, and here we highlight the case of singly and doubly
excited states, which differ by the number of excited electrons
during the electronic transition. Most excited-state method-
ologies either fail to properly describe doubly excited states or
require higher-order excitations to be accounted for.25 In this
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sense, a methodology that offers comparable accuracy for singly
and doubly excited states would be equally desirable.
MCSCF methods can be either state-averaged, when the

reference space is optimized for an ensemble of (typically
equally weighted) states, or state-specific, when the optimization
is performed for one targeted state. The state-averaged strategy
is much more used in practice mostly because of the more
straightforward and reliable orbital optimization and the easier
calculation of transition properties (given the common set of
orbitals) when compared to the state-specific approach.26−33

However, state-averaged MCSCF faces several issues. It
struggles to describe higher-lying states or a large number of
states, the orbitals may favor some states to the detriment of
others,34−37 the potential energy curves can become discontin-
uous,36,38,39 and the calculation of energy derivatives is
complicated by the energy averaging.40−42 Many if not all of
these problems do not appear in state-specific MCSCF, which in
turn has to deal with a more challenging orbital optimization
problem.
In light of these motivations, there has been ever-growing

interest in state-specific MCSCF36,37,43,44 and state-specific
methods in general. The general principle is to employ a single
formalism, approaching each state of interest independently and
without resorting to any prior knowledge about the other states.
The first and probably the most well-known state-specific
method is ΔSCF,45,46 where excited states are described by a
single determinant and represent higher-lying solutions of the
HF or KS equations. By optimizing the orbitals for a non-Aufbau
determinant, ΔSCF attempts to recover relaxation effects
already at the mean-field level. There is a growing body of
evidence showing that DFT-based ΔSCF usually outperforms
TDDFT,43,47−56 most notably for doubly excited and charge
transfer states.50,51 However, ΔSCF still represents a major
limitation to open-shell singlet states because of strong spin
contamination associated with the single-determinant ansatz.
Restricted open-shell Kohn−Sham (ROKS)47,57 offers one way
around this problem, by optimizing the orbitals for a Lagrangian
that considers both the mixed-spin determinant and the triplet
determinant with spin projectionMs = 1. In wave function-based
methods, excited-state mean field (ESMF) theory43,52,53 has
been proposed as a state-specific MCSCF alternative to excited
states. In the ESMF approach, excited-state orbitals are
optimized for a CI with a single excitations (CIS) ansatz,16

and energies can be further corrected with second-order
Møller−Plesset (MP2) perturbation theory.43,58 An extension
of ESMF to DFT has also been proposed.59 Variants of CC
methods that directly target excited states have also been actively
pursued.60−63

An important practical question for all of the aforementioned
methods concerns the optimization of orbitals for excited states,
which typically appear as saddle point solutions in the orbital
parameter space,44,63−66 therefore being more difficult to obtain
than ground-state solutions.67−69 In this sense, specialized
algorithms for obtaining excited-state orbitals have been
proposed and developed by several groups.48−50,54,55 Related
methods that aim at describing multiple states within the same
theoretical framework, though usually in a state-averaged
fashion, include CASSCF,18 ensemble DFT,70−79 and multistate
TDDFT.80−84

II. STATE-SPECIFIC CI
Here we propose a particular realization of state-specific
MCSCF and MRCI as a route for excited-state calculations.

First, the orbitals are optimized at the MCSCF level, comprising
a minimal set of configuration state functions (CSFs), as
illustrated in Figure 1, which provides a state-specific reference.

By running separate calculations for the ground state and for a
targeted excited state, excitation energies can be obtained as the
energy difference between the individual total energies. We label
this approach ΔCSF, in close parallel to the ΔSCF method.
When compared with larger MCSCF choices, the compactness
ofΔCSF avoids redundant solutions and is expected to facilitate
the convergence toward excited states. For a single CSF ansatz in
particular, the CI coefficients are fixed by the desired spin
eigenstate, eliminating the redundancies associated with the
coupling between CI coefficients and orbital rotations.
Furthermore, by being a proper eigenstate of the total spin
operator, ΔCSF cures the spin-contamination problem of
ΔSCF, thus leading to truly state-specific orbitals and an
improved reference, particularly for singlet excited states.
Finally, being a mean-field method [with an N( )5 computa-
tional cost associated with the integral transformation, where N
is the number of basis functions],ΔCSF is intended to provide a
balanced set of reference wave functions for a subsequent, more
accurate calculation.
At this second stage, correlation effects are captured by

performing separate MRCI calculations for each state. Since
ground- and excited-state references are of mean-field quality
and are state-specific, this particular type of MRCI calculation is
labeled ΔCI here. When accounting for all single and double
excitations, we obtain theΔCISDmodel, which is now expected
to provide decent excitation energies with an N( )6 computa-
tional scaling. Notice that because we perform all singles and
doubles with respect to each reference determinant, the
maximum excitation degree is potentially higher than two
(except of course for a one-determinant reference). This also
applies to higher-order CI calculations. In this way, each state is
described as much as possible in a state-specific way with a
different set of orbitals as well as determinants. Also notice that
since we aim for a state-specific treatment of correlation, one
cannot anticipate which root of the CI calculation corresponds
to the state for which the orbitals have been optimized. It is not
uncommon, for instance, to find a targeted excited state lower in
energy than the physical ground state since the former is much

Figure 1. Types of configuration state functions (CSFs) employed as a
reference for different classes of excited states in ourΔCSF andΔCISD
approaches.
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more correlated than the latter in the corresponding state-
specific CI calculation. We identified the state of interest by
simply inspecting the coefficients of the reference determinants.
We can further compute the renormalized second-order

Epstein-Nesbet (EN2) perturbation correction85 from the
determinants left outside the truncated CISD space of each
calculation, giving rise to the ΔCISD+EN2 model. The EN2
perturbative correction involves a single loop over external
determinants that are connected to the internal determinants via
at most double excitations, thus entailing an overall N( )8

scaling associated with the number of quadruply excited
determinants. Despite this unfavorable scaling, the correspond-
ing prefactor of the EN perturbative correction is rather small,
making such calculations affordable. Alternatively, we could
calculate one of the several types of a posteriori Davidson
corrections21−23 in a state-specific fashion, leading to a ΔCISD
+Q approach. We recall that computing Davidson corrections is
virtually free such that ΔCISD+Q presents the same computa-
tional cost and N( )6 scaling as ΔCISD.86
The remaining question is how to build an appropriate

reference for each state of interest. Our general guideline is to
select the smallest set of CSFs that provides a qualitatively
correct description of the state of interest, as shown in Figure 1.
Here we adopted the spin-restricted formalism. The HF
determinant is the obvious choice for the ground state of
closed-shell singlets. For singly excited states of closed-shell
systems, we chose either one or two CSFs, depending on each
particular excited state. For most cases, a single CSF associated
with two unpaired electrons should be enough. Some excited
states, however, display strong multireference character, such as
those of N2, CO2, and acetylene, thus requiring two CSFs. For
genuine doubly excited states where a pair of opposite-spin
electrons are promoted from the same occupied to the same
virtual orbital, we selected a single determinant associated with
the corresponding double excitation. In turn, open-shell doubly
excited states were described with a single open-shell CSF (just
as for most singly excited states). For ground and excited states
of open-shell doublets, a single-determinant restricted open-
shell HF reference is adopted as well.
As mentioned before, our ΔCISD approach can be seen as a

type of MRCI, although with two key differences with respect to
typical realizations of MRCI.23 First, it relies on a minimal set of
CSFs as the reference space, whereas in typical applications of
MRCI the reference is built from a much larger complete active
space. This means that the CI space becomes more amenable in
the former approach, enabling calculations for larger systems.
The second important difference is that the reference inΔCISD
is state-specific, which is expected to favor the overall fitness of
the orbitals when compared with state-averaged orbitals of
standard MRCI (whenever excited states are involved). ΔCISD
also resembles the ESMF theory43,52,53 of Neuscamman and co-
workers in their underlying motivation: a state-specific mean-
field-like starting point, subject to a subsequent treatment of
correlation effects. In ΔCISD, however, the starting point is
much more compact and arguably closer to a mean-field
description than the CIS-like ansatz of ESMF. This makes the CI
expansion up to double excitations feasible in our approach,
though not in ESMF, which in turn resorts to generalized MP2
to describe correlation.43,58 This ΔCSF ansatz has already been
suggested as a more compact alternative to the ESMF one52 but
again in the spirit of recovering correlation at the MP2 level,

whereas we propose a state-specific CISD expansion that could
be followed by Davidson or EN2 perturbative corrections.

III. COMPUTATIONAL DETAILS
Our state-specific CI approach was implemented in QUANTUM
PACKAGE,85 whose determinant-driven framework provides a
very convenient platform for including arbitrary sets of
determinants in the CI expansion. In this way, we can easily
select only the determinants that are connected to the reference
determinants according to a given criterion provided by the user.
On top of that, the state-specific implementation further profits
from the configuration interaction using a perturbative selection
made iteratively (CIPSI) algorithm87−90 implemented in
QUANTUM PACKAGE, which allows for a large reduction of
the CI space without a loss of accuracy. At each iteration of the
CIPSI algorithm, the CI energies are obtained with theDavidson
iterative algorithm,91 which ends when the EN2 perturbation
correction computed in the truncated CI space lies below 0.01
mEh.

90 Our state-specific CI implementation can be employed
for different selection criteria for the excited determinants,
based, for example, on the seniority number,92 the hierarchy
parameter,93 or the excitation degree. Here, we considered the
more traditional excitation-based CI. After the CI calculation,
we computed the renormalized EN2 perturbation correction85

from the determinants left outside the truncated CI space, which
is relatively cheap because of the semistochastic nature of our
algorithm.94 We also evaluate the seven variants of Davidson
corrections discussed in ref 23.
To get state-specific orbitals, we first ran a CIS calculation and

obtained the natural transition orbitals (NTOs),95 which proved
to bemore suitable guess orbitals than the canonical HF orbitals.
The dominant hole and particle NTOs are taken as the singly
occupied orbitals, and for pronounced multireference states, the
second most important pair of NTOs was also considered (as
illustrated in Figure 1). For the doubly excited states, a non-
Aufbau occupation of the canonical HF orbitals was used as
guess orbitals, based on the expected character of the excitation.
The orbital optimization was performed with the Newton−
Raphson method, also implemented in Quantum Pack-
age.63,65

Having our state-specific approaches presented, our main goal
here is to assess their performance in describing electronic
excited states. For that, we calculated vertical excitation energies
for an extensive set of 294 electronic transitions for systems,
states, and geometries provided in the QUEST database.96 We
considered small-97,98 and medium-sized99,100 organic com-
pounds, radicals, “exotic” systems101 and doubly excited
states.98−100 The set of excited states comprises closed-shell
(singlets and triplets) and open-shell (doublets) systems,
ranging from one to six non-hydrogen atoms and of various
character (valence and Rydberg states as well as singly and
doubly excited states). We employed the aug-cc-pVDZ basis set
for systems having up to three non-hydrogen atoms and the 6-
31+G(d) basis set for the larger ones. We compared the
excitation energies obtained with our state-specific approaches
against more established alternatives, such as CIS,102 CIS with
perturbative doubles [CIS(D)],103,104 CC with singles and
doubles (CCSD),13,105−107 and the second-order approximate
CC with singles and doubles (CC2),108,109 with the latter two
understood as EOM-CC. The excitation energies obtained with
the different methodologies were gauged against very accurate
reference values, of high-order CC or extrapolated full CI
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quality.97−99,101 The complete set of reference methods and
energies is provided in the Supporting Information.

IV. RESULTS AND DISCUSSION
A. Orbital Optimization. Our first important result is that

the combination of the Newton−Raphson method starting with
NTOs proved to be quite reliable in converging the ΔCSF
ansatz to excited-state solutions. To a great extent, this is
assigned to the compact reference of ΔCSF, which avoids the
redundant solutions associated with larger MCSCF references.
In most cases, the orbitals are optimized with relatively few
iterations (typically less than 10) and to the correct targeted
state. A second-order method such as Newton−Raphson is
required if the targeted solution is a saddle point in the orbital
rotation landscape, which is expected to be the case for excited
states.44,66

At convergence, the number of negative eigenvalues of the
orbital Hessian matrix, i.e., the saddle point order, can provide
further insights into the topology of the solutions for a givenCSF
ansatz. The full list of saddle point orders is shown in the
Supporting Information. For the closed-shell systems, we found
that the lowest-lying solution (global minimum) obtained with
the open-shell CSF is always an excited state since it cannot
properly describe the closed-shell character of the ground state.
In turn, higher-lying excited states tend to appear as saddle
points of increasing order as one goes up in energy, even though
this behavior is not very systematic. It was not uncommon, for
example, to encounter two different excited states as local
minima or that share the same saddle point order. For some
systems, we searched for symmetry-broken solutions of excited
states by rotating the orbitals along the direction associated with
a negative eigenvalue of the orbital Hessian, but this procedure
leads to solutions representing different states. We did not
explore this exhaustively, though, and we cannot rule out the
existence of symmetry-broken excited-state solutions. It is also
worth mentioning that the starting orbitals typically presented a
much larger number of negative Hessian eigenvalues that
decreased in the course of orbital optimization. This means that
the saddle point order cannot be anticipated on the basis of
information about the unrelaxed orbitals or the expected
ordering of the states.
Importantly, state-specific solutions could be found for

different types of states, including singly and doubly excited
states, for closed-shell singlets and open-shell doublets, and for
the first as well as higher-lying states of a given point group
symmetry. For this last class of states, however, our single CSF
approach is not always reliable, especially for fully symmetric
higher-lying states. In some cases, a closed-shell determinant is
also important (as revealed by the subsequent CISD calculation)
but remains outside the open-shell CSF reference. In these
situations, employing both open- and closed-shell determinants
in the reference is expected to improve the description of these
higher-lying excited states, and we plan to explore this approach
in the future. More generally, convergence issues would be
expected at energies displaying a high density of excited states.
The excited-state reference could also be based on single-

determinant ΔSCF orbitals rather than the ΔCSF orbitals we
have adopted. However, the former method is heavily spin-
contaminated, being an exact mixture of singlet and triplet,
whereas the latter method targets one spin multiplicity at a time.
In this way, the excitation energies obtained with ΔCSF appear
above (for singlets) and below (for triplets) the single energy
obtained withΔSCF, overall improving the comparison with the

reference values. In turn, we compared ΔSCF and ΔCSF
excited-state orbitals for ΔCISD calculations and found overall
little differences in the excitation energies. Still, we think ΔCSF
is preferable because it delivers truly state-specific orbitals,
whereas ΔSCF produces the same orbitals for the singlet and
triplet states and is thus less state-specific.
B. State-Specific vs Standard CI. The state-specific ΔCI

approach offers a well-defined route toward full CI by increasing
the excitation degree, by analogy to standard ground-state-based
CI methods. We explored both routes by calculating 16
excitation energies for small systems, by considering up to
quadruple excitations. (The full set of results is available in the
Supporting Information.) Even though this is a small set for
obtaining significant statistics, it is enough to showcase the main
trends when comparing state-specific and ground-state-based CI
methods. The mean signed error (MSE), mean absolute error
(MAE), and root-mean-square error (RMSE) are shown in
Table 1. The convergence for standard CI is quite slow, with

CISD largely overestimating the excitation energies and CISDT
leading to more decent results, which are improved at the
CISDTQ level. In turn, we found that ΔCI displays much more
accurate results and accelerated convergence than their ground-
state-based counterparts. At theΔCISD level, the accuracy is far
superior to that of standard CISD, being comparable to that of
CISDT. Going one step further (ΔCISDT) does not lead to a
visible improvement, whereas the state-specific quadruple
excitations of ΔCISDTQ recover much of the remaining
correlation energy of each state and hence the very accurate
excitation energies. These observations parallel the common
knowledge that the ground-state correlation energy is mostly
affected by the double excitations and that quadruples are more
important than triples, meaning that the state-specific ΔCI
approach manages to capture correlation effects in a reasonably
balanced way for ground and excited states. This also motivates
us to investigate various flavors of the Davidson correction,
which attempts to capture the missing contribution from the
quadruple excitations. As will be discussed in more detail later,
the popular Pople correction,22 labeled ΔCISD+PC from here
on, was found to be somewhat more accurate than the others.
The comparable MAEs of ΔCISD and CISDT can be
understood from the observation that the doubly excited
determinants accessed from the excited-state reference can be

Table 1. Mean Signed Error (MSE), Mean Absolute Error
(MAE), and Root-Mean Square Error (RMSE) in Units of eV,
with Respect to Reference Theoretical Values, for the Set of
16 Excitation Energies Listed in the Supporting Information

method MSE MAE RMSE

CISD +3.91 3.91 4.08
CISDT +0.07 0.17 0.19
CISDTQ +0.13 0.13 0.15
ΔCISD −0.14 0.18 0.22
ΔCISDT −0.20 0.20 0.23
ΔCISDTQ −0.02 0.02 0.03
ΔCISD+EN2 −0.00 0.03 0.03
ΔCISD+PC −0.10 0.14 0.13
CIS(D) −0.03 0.35 0.40
CC2 −0.05 0.32 0.37
CCSD +0.01 0.08 0.09
CC3 +0.01 0.03 0.06
CCSDT −0.01 0.02 0.02
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achieved only via triple excitations from the ground-state
reference. The comparison between state-specific and ground-
state-based CI for a given excitation degree (ΔCISD against
CISD and ΔCISDTQ against CISDTQ) shows that the MAEs
are reduced by 1 order of magnitude in the former route when
compared with the latter. However, no gain is observed from
CISDT to ΔCISDT.
C. State-Specific CI vs Other Methods.We now start the

discussion on how well our state-specific CI approaches
compare with more established methods by presenting in
Figure 2 and Table 2 the distribution of errors and statistical
measures associated with a set of 237 singly excited states of
closed-shell systems.

At the ΔCSF level, the excitation energies are systematically
underestimated, thus resulting in a substantially negative MSE.
A large absolute MSE would be expected from any mean-field
approach. At least to some extent, the bias toward under-
estimated energies appears because the CSF reference for the
excited states (typically containing two determinants) already
recovers some correlation, whereas the one-determinant HF
reference of the ground state does not. The MAE of the ΔCSF
approach (0.62 eV) is comparable to that of CIS (0.65 eV). The
overall similar performance of these two methods is somewhat
expected since the orbital relaxation that takes place in the state-
specific CSF is partially described via the single excitations of
CIS.

Moving to the ΔCISD level, we find that correlation effects
are described in a reasonably balanced way for the ground and
excited states. The MAE is significantly reduced (0.18 eV) with
respect to that ofΔCSF, being smaller than that in CIS(D) (0.21
eV) and comparable to that in CC2 (0.17 eV). The absolute
MSE also decreases but remains negative, whereas the other CI-
or CC-based methods present positive MSEs. This shows that
there is still some bias toward a better description of excited
states at the ΔCISD level, probably due to the two-determinant
reference (compared to one determinant for the ground state).
In addition, higher-lying fully symmetric states are not as well
described at theΔCISD level, reflecting the lack of a closed-shell
determinant in the reference, as discussed above. However, we
did not discard these states from the statistics.
The perturbative correction introduced with the ΔCISD

+EN2 approach reduces the statistical errors even more,
showing the same MAE as that of CCSD (0.06 eV). At times,
however, the EN2 correction leads to erroneous results due to
the presence of intruder states, which sometimes appear for the
more problematic higher-lying states of a given symmetry. We
discarded 10 out of 294 problematic cases when evaluating the
statistics of the ΔCISD+EN2 results. Instead of relying on
perturbation theory to correct the CISD total energies, we can
resort to one of the Davidson corrections.23 Even though this
correction is not as accurate as the EN2 perturbative energy,
more often than not it improves upon ΔCISD, with virtually no
additional computational cost. For the ΔCISD+Q statistics, we
discarded 12 out of 294 data points where ∥c∥ < 0.9, in which c
gathers the coefficients of the reference determinants in the CI
expansion. We found that all seven ΔCISD+Q variants provide
MAEs in the 0.10−0.12 eV range, with the individual
distribution of errors and statistical measures presented in
Figure 3. As alluded to before, the Pople corrected flavor,
ΔCISD+PC, is arguably the most well-behaved, with fewer
outlier excitation energies and the lowest MAE of 0.10 eV.
We also surveyed the performance of our state-specific

methods for 10 genuine doubly excited states25 and 47 excited
states of open-shell doublets (doublet−doublet transitions),101
in which both sets were extracted from the QUEST database.96

The statistical measures are shown in Table 3, together with
those of singly excited states of closed-shell systems. The
important finding in this comparison is that state-specific

Figure 2.Distribution of errors in excitation energies with respect to reference theoretical values and the corresponding mean signed error (MSE) and
mean absolute error (MAE) for various excited-state methodologies.

Table 2. Mean Signed Error (MSE), Mean Absolute Error
(MAE), and Root-Mean Square Error (RMSE), in Units of
eV, with Respect to Reference Theoretical Values, for the Set
of 237 Excitation Energies for Singly Excited States of
Closed-Shell Systems Listed in the Supporting Information

method MSE MAE RMSE

ΔCSF −0.55 0.62 0.74
ΔCISD −0.11 0.18 0.23
ΔCISD+EN2 +0.04 0.08 0.12
ΔCISD+PC −0.07 0.10 0.17
CIS +0.19 0.65 0.68
CIS(D) +0.09 0.21 0.27
CC2 +0.01 0.17 0.25
CCSD +0.05 0.08 0.11
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methods provide reasonably similar MAEs for the three types of
excited states. For instance, ΔCISD has MAEs of 0.18 eV for
singly excited states of closed-shell singlets, 0.17 eV for the
doublet−doublet transition, and 0.16 eV for doubly excited
states. This contrasts with the case of more familiar methods,
which cannot describe doubly excited states unless higher-order
excitations are included.25 We notice that the MSE of ΔCSF is
more negative for singly excited states of closed-shell molecules
(−0.55 eV) than for doubly excited states (−0.20 eV), being
closer to zero for doublet−doublet transitions (+0.07 eV),
which reflects the one-determinant reference adopted for both
the excited and ground states in the latter cases. However, this
difference does not translate into comparatively smaller errors in
the correlated results.
For the doubly excited states, we further compare in Table 4

the performance of state-specific CI against that of higher-order

CC methods. The accuracy of the ΔCSF mean-field model is
superior to that of CC3 and approaches that of CCSDT, which
highlights the importance of orbital relaxation for doubly excited
states. ΔCISD is significantly more accurate than CCSDT,
whereas the perturbative and Davidson corrections bring a small
improvement. Recent developments and promising results with
state-specific CC54,62−64 and DFT50,51 for doubly excited states
are worth mentioning. However, these approaches are still
restricted to states dominated by a single closed-shell
determinant, whereas the ΔCISD approach can handle both
closed- and open-shell doubly excited states. Out of the 10
doubly excited states we investigated, only 5 (beryllium,
ethylene, formaldehyde, nitroxyl, and nitrosomethane) can be
qualitatively described with a single closed-shell determinant,
whereas at least 2 determinants are needed for the remaining 5
states: 2 closed-shell determinants for glyoxal and for the two
states of the carbon dimer (C2) and 4 closed-shell determinants
for the two states of the carbon trimer (C3).
D. Types of Excitations. The performance of our state-

specific methods can also be assessed for specific types of excited
states, e.g., for ππ* transitions or for systems of a given size. This
is shown in Table 5, which compares the MAEs across different
categories, whereas the corresponding MSEs and RMSEs can be
found in Tables S1 and S2 in the Supporting Information. Many
trends can be identified, but here, we highlight the most
notorious and interesting ones.
Starting with spin multiplicity, we found that the ΔCISD

results are comparable for singlets and triplets, whereas the
perturbative correction has a more pronounced effect for the
triplets, bringing the MAE down to 0.06 eV, the same as

Figure 3. Distribution of errors in excitation energies with respect to reference theoretical values and corresponding mean signed error (MSE) and
mean absolute error (MAE), for various forms of the Davidson-correctedΔCISD+Qmodels. The different types of Davidson corrections can be found
in ref 23.

Table 3. Mean Signed Error (MSE), Mean Absolute Error (MAE), and Root-Mean Square Error (RMSE), in Units of eV, with
Respect to Reference Theoretical Values, for the Excitation Energies of 237 Singly-Excited States (Set A) and 10 Doubly-Excited
States (Set B) from Closed-Shell Singlets and of 47 Singly-Excited States from Open-Shell Doublets (Set C) Listed in the
Supporting Information

ΔCSF ΔCISD ΔCISD+EN2 ΔCISD+PC

no. states MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE MSE MAE RMSE

set A 237 −0.55 0.62 0.74 −0.11 0.18 0.23 +0.04 0.08 0.12 −0.07 0.10 0.17
set B 10 −0.20 0.46 0.64 +0.03 0.16 0.22 −0.05 0.13 0.16 −0.10 0.13 0.16
set C 47 +0.07 0.49 0.64 +0.07 0.17 0.25 −0.02 0.07 0.11 −0.03 0.09 0.16
all sets 294 −0.44 0.61 0.72 −0.07 0.17 0.23 +0.02 0.08 0.12 −0.06 0.10 0.17

Table 4. Mean Signed Error (MSE) and Mean Absolute Error
(MAE), in Units of eV, with Respect to Reference Theoretical
Values, for the Set of 10 Doubly-Excited States Listed in the
Supporting Information

method MSE MAE

ΔCSF −0.20 0.46
ΔCISD +0.03 0.16
ΔCISD+EN2 −0.05 0.13
ΔCISD+PC +0.02 0.13
CC3 +0.85 0.85
CCSDT +0.38 0.38
CCSDTQ +0.03 0.03
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obtained with CCSD. To some extent, the worse performance of
the EN2 correction for the singlets stems from intruder states
(most noticeably the ground state when it has the same point
group symmetry as the targeted excited state). We also found
that the Davidson corrections bring a somewhat larger
improvement for triplets than for singlets, with some flavors
having MAEs of 0.07 eV for the triplets, which is essentially as
accurate as CCSD (MAE of 0.06 eV). For the doublet−doublet
transitions, the EN2 and + Q corrections are as helpful as they
are for the triplets (Tables 3 and 4).
Regarding the character of the excitations, we found that

ΔCISD is considerably better for Rydberg (MAE of 0.12 eV)
than for valence (MAE of 0.21 eV) excited states. In turn, the
EN2 correction has a larger impact on valence excitations,
making little difference for the Rydberg states, such that the
ΔCISD+EN2 results become comparable for both types of
excitation, with MAEs of 0.08 to 0.10 eV. Additional trends can
be observed when dividing the valence excitations into nπ*, ππ*,
or σπ* and the Rydberg excitations as taking place from n or π
orbitals. Our state-specific methods are typically more accurate
for nπ* excitations than for ππ* excitations. ΔCISD+EN2, for
example, is as accurate as CCSD for nπ* transitions, with
corresponding MAEs of 0.06 eV. We also found that the less
common σπ* excitations are much better described across all
methods than the more typical nπ* and ππ* transitions. For this
type of state,ΔCISD+EN2 is the best-performing method, with
MAEs as small as 0.03 eV. When the Rydberg states are
separated by the character of the hole orbital, n or π, additional
interesting features can be seen. Except for CCSD, all of the
othermethods considered here providemore accurate results for
the Rydberg excitations involving the π orbitals. Not only that,
but theMAEs are quite small and comparable across all methods
(except for ΔCSF and CIS), ranging from 0.06 to 0.11 eV.
Surprisingly, CIS is much more accurate for π Rydberg (MAE of
0.29 eV) than for n Rydberg (MAE of 1.17 eV) excitations.
The third and most important line of comparison concerns

the system size. Under this criterion, we divided the excited
states into three groups, small, medium, and large, depending on
the number of non-hydrogen atoms (Table 5). We found that
ΔCSF becomes more accurate as the system size increases,
which we assign to a diminishing effect of the one- vs two-
determinant imbalance discussed above. As the system size
increases, the correlation energy recovered by the two
determinants of the excited states (at the ΔCSF level) is
expected to become smaller in comparison to the total

correlation energy (associated with the full Hilbert space),
thus alleviating this imbalance. In contrast, CISD should provide
less accurate total energies for larger systems due to its well-
known lack of size consistency. This issue would be expected to
reflect on excitation energies to some degree, which are not
absolute but relative energies. However, a more balanced
reference provided by ΔCSF might compensate for the lack of
size consistency when larger systems are targeted. Indeed,
ΔCISD presents comparable MAEs across the three sets of
system size (0.15 to 0.18 eV). In contrast, ΔCISD+Q and
ΔCISD+EN2 seem to go opposite ways: the former becomes
more accurate, and the latter, less accurate as a function of
system size. Similarly, CC2 becomes more accurate and CCSD
loses accuracy as the system size increases,99,110 to the point
where the theoretically more approximate CC2 becomes the
favored methodological choice. It remains to be seen how the
absence of size-consistency in ΔCISD impairs the results for
even larger systems compared to those considered here and the
extent to which Davidson or perturbative corrections reduce this
problem. For molecules containing five or six non-hydrogen
atoms, ΔCISD+EN2 becomes practically as accurate as CCSD,
with MAEs in the 0.10−0.12 eV range. The ΔCISD+Q models
turn out to be the most accurate choice for systems of this size,
with MAEs ranging from 0.07 to 0.09 eV (Table S3 in the
Supporting Information) and ΔCISD+PC displaying a MAE of
only 0.07 eV. In particular, it is more accurate than CCSD while
sharing the same N( )6 computational scaling and more
accurate than CC2, despite remaining less black-box and more
expensive than the N( )5 scaling of the latter. Overall, the
present statistics position our state-specific approaches as
encouraging alternatives for describing larger systems despite
the remaining issues regarding higher-lying excited states. The
MAEs of the seven variants of Davidson corrections, separated
by type of excitation, are presented in Table S3 of the Supporting
Information. We recall that different basis sets have been used
(the aug-cc-pVDZ basis set for systems with up to three non-
hydrogen atoms and the 6-31+G(d) basis set for the larger
ones), which could have some impact on the trends as a function
of system size for a givenmethod. Despite the different basis sets,
the comparison between different methods for a given system
size remains valid.
E. Specific Applications. Butadiene, glyoxal, C2 and C3 are

particularly interesting and challenging systems that deserve a
dedicated discussion. The excitation energies are gathered in
Tables 6, 7, 8, and 9, respectively.

Table 5. Mean Absolute Error, in Units of eV, with Respect to Reference Theoretical Values for Different Types of Singly Excited
States of Closed-Shell Systems Listed in the Supporting Information

no. states ΔCSF ΔCISD ΔCISD+EN2 ΔCISD+PC CIS CIS(D) CC2 CCSD

all states 237 0.62 0.18 0.08 0.10 0.65 0.21 0.17 0.08
singlet 127 0.56 0.17 0.10 0.12 0.68 0.22 0.19 0.10
triplet 110 0.69 0.18 0.06 0.09 0.61 0.19 0.15 0.06
valence 155 0.65 0.21 0.08 0.10 0.61 0.19 0.14 0.08
Rydberg 82 0.56 0.12 0.10 0.11 0.72 0.24 0.22 0.08
nπ* 56 0.60 0.16 0.06 0.07 0.54 0.10 0.09 0.06
ππ* 80 0.75 0.26 0.10 0.12 0.74 0.27 0.20 0.10
σπ* 18 0.39 0.13 0.03 0.06 0.26 0.11 0.07 0.04
n Rydberg 40 0.61 0.12 0.12 0.14 1.17 0.37 0.39 0.07
π Rydberg 38 0.46 0.10 0.08 0.09 0.29 0.11 0.06 0.10
1 to 2 non-H atoms 69 0.83 0.18 0.06 0.12 0.71 0.24 0.23 0.06
3 to 4 non-H atoms 122 0.57 0.18 0.09 0.10 0.70 0.20 0.16 0.08
5 to 6 non-H atoms 46 0.41 0.15 0.12 0.07 0.43 0.18 0.12 0.10
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The dark 21Ag excited state of butadiene is a notoriously
famous example, having received much attention. (See ref 25
and references therein.) Prior studies had assigned it as a doubly
excited state due to important contributions from doubly excited
determinants.111,112 More recently, though, it has been
reassigned as a singly excited state,113 meaning that the doubly
excited determinants actually represent strong orbital relaxation
effects (single excitations from the dominant singly excited
determinant). Here, our state-specific results (shown in Table 6)
support this interpretation, since one CSF associated with a
single excitation provided reasonable excitation energies,
whereas attempts to employ a doubly excited reference
produced much higher-lying solutions. At the ΔCSF level, we
obtained an excitation energy (7.18 eV) comparable to themuch
more expensive CCSD (7.20 eV), although still overestimating
the CCSDTQ reference value of 6.56 eV.99 This result
demonstrates the ability of ΔCSF to capture orbital relaxation
effects at only a mean-field cost, which in contrast needs at least
double excitations in EOM-CC. The inclusion of correlation at
the ΔCISD level brings the excitation energy down to 6.93 eV.
An important question in butadiene concerns the energy gap
between the 21Ag dark state and the lower-lying 11Bu bright state,
whose correct ordering has only recently been settled.114 Having
theCCSDTQ reference value of 0.15 eV for the energy gap,99 we
observe that EOM-CC methods considerably overestimate it
(0.94 eV in CC2 and 0.65 eV in CCSD), whereas the state-
specific methods deliver improved results (0.65 eV inΔCSF and
0.39 eV in ΔCISD).

Another challenging system is glyoxal, which presents excited
states of genuine multireference character.115 While the first pair
of NTOs has a dominant weight, the second pair is non-
negligible. In this sense, most of the first excited states of glyoxal
lie between the cases of most singly excited states (that can be
qualitatively described with one CSF) and those that need two
CSFs. Being an intermediate case, here we performed ΔCISD
calculations with references containing one or two CSFs, for the
first two singlet states and the first four triplet states (results
presented in Table 7). With one CSF only, ΔCSF typically
overestimates the reference excitation energies, with the
corresponding ΔCISD improving the overall comparison. For
this set of six excited states, the associated MAEs are 1.14 eV for
ΔCSF and 0.65 eV for ΔCISD when using a single CSF as the
reference. Despite the improvement at the CISD level, this is still
limited by the lack of an actual multiconfigurational reference for

Table 6. Excitation Energies of Butadiene, in Units of eV,
According to Different Methodologiesa

method 11Bu 21Ag MSE MAE 11Bu/21Ag gap

ΔCSF 6.53 7.18 +0.37 0.37 0.65
ΔCISD 6.54 6.93 +0.25 0.25 0.39
ΔCISD+EN2 6.51 5.59b

ΔCISD+PC 6.48 1.61b

CIS 6.30 7.56 +0.44 0.44 1.25
CIS(D) 6.15 7.53 +0.49 0.49 1.12
CC2 6.32 7.26 +0.31 0.40 0.94
CCSD 6.55 7.20 +0.39 0.39 0.65
reference method 6.41 6.56 0.15

aThe reference method is CCSDTQ.100 Only the lowest-lying
optically bright (11Bu) and dark (21Ag) states and their energy gaps
are compared here. Seven more states have been computed, which can
also be found in the Supporting Information. bIntruder state problem
for this state.

Table 7. Excitation Energies of Glyoxal, in Units of eV, According to Different Methodologiesa

method 11Au 11Bg 13Au 13Bg 13Bu 13Ag MSE MAE

ΔCSF(1) 4.11 5.88 3.53 5.50 4.69 7.44 +0.97 1.14
ΔCSF(2) 3.34 4.56 2.70 3.91 3.86 5.06 −0.31 0.58
ΔCISD(1) 3.49 5.27 3.00 4.85 5.37 7.23 +0.65 0.65
ΔCISD(2) 3.12 4.51 2.59 3.97 4.75 5.90 −0.08 0.22
ΔCISD(1)+EN2 3.16 4.86 2.80 4.46 5.57 7.00 +0.42 0.42
ΔCISD(2)+EN2 3.17 4.57 2.61 4.08 5.10 6.27 +0.08 0.15
ΔCISD(1)+PC 3.10 4.72 2.70 4.32 5.35 6.74 +0.27 0.27
ΔCISD(2)+PC 2.92 4.33 2.50 3.91 5.03 6.19 −0.07 0.08
reference method 2.94 4.31 2.55 3.95 5.20 6.35

aEach number in parentheses represents the number of CSFs considered in the reference. The reference method is CCSDTQ for the singlets100

and CCSDT for the triplets.99

Table 8. Excitation Energies of C2, in Units of eV, According
to Different Methodologiesa

method 11Δg 21Σg
+ MSE MAE

ΔCSF 0.83 1.37 −1.26 1.26
ΔCISD 1.80 2.33 −0.29 0.29
ΔCISD+EN2 2.16 2.35 −0.10 0.10
ΔCISD+PC 2.09 2.18 −0.24 0.24
CC3 3.11 3.28 +0.84 0.84
CCSDT 2.63 2.87 +0.40 0.40
CC4 2.34 2.60 +0.11 0.11
CCSDTQ 2.24 2.52 +0.02 0.02
reference method 2.21 2.50

aThe coupled-cluster and reference (extrapolated full configuration
interaction) results are from ref 98.

Table 9. Excitation Energies of C3, in Units of eV, According
to Different Methodologiesa

method 11Δg 21Σg
+ MSE MAE

ΔCSF 5.10 5.88 −0.06 0.06
ΔCISD 5.17 5.93 +0.01 0.04
ΔCISD+EN2 5.29 5.29b

ΔCISD+PC 5.12 4.19b

CC3 6.65 7.20 +1.38 1.38
CCSDT 5.82 6.49 +0.61 0.61
CCSDTQ 5.31 6.00 +0.11 0.11
reference method 5.21 5.88

aThe coupled-cluster and reference (extrapolated full configuration
interactions) results are from ref 25. bIntruder state problem for this
state.
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these states. When two CSFs are employed as the reference for
the excited states, theMAEs are reduced to 0.58 eV (ΔCSF) and
0.22 eV (ΔCISD), which can be further decreased to 0.08 eV
withΔCISD+PC.We thus recommend augmenting the excited-
state reference whenever it displays at least some multireference
character, and the weight of the first pairs of NTOs could serve
as an easy proxy for this.
Finally, we comment on the lowest-lying 11Δg and higher-

lying 21Σg
+ doubly excited states of C2 and C3, which would

require at least CCSDTQ quality calculations to become
accurate to within 0.1 eV.25 C2 displays a strong multireference
ground state, and thus we employed two CSFs as the reference:
the closed-shell HF and the determinant associated with the
(σ2s*)2 → (σ2p dz

)2 transition. For its doubly excited states, we
employed the two CSFs needed to describe both doubly excited
states generated from the HF determinant through the (π2pdx

)2 →
(σ2pdz

)2 and (π2p dy
)2 → (σ2pdz

)2 excitations, with π2p dx
and π2pdy

being
degenerate orbitals. In C3, the multireference character of the
ground state is weaker, and thus we adopted a single HF
determinant as a reference. In turn, four CSFs are needed for its
doubly excited states, built from the HF determinant by
performing (σg)2 → (π2pdx

* )2, (σg)2 → (π2p dy
* )2, (σu)2 → (π2p dx

* )2, and
(σu)2 → (π2p dy

* )2 transitions, where π2p dx
* and π2p dy

* are degenerate
orbitals. We therefore reassign the doubly excited states of C3 as
(σ)2 → (π*)2, which had been first assigned as (π)2 → (σ*)2.25
Notice that, for both systems, what differentiates 11Δg and 21Σg

+

is essentially the phase between the two CSFs differing by the
occupation of the degenerate orbitals (π in C2, π* in C3). Thus,
the higher-lying state orbitals were obtained by optimizing for
the second CI root associated with the reference (two CSFs in
C2, four in C3). The computed excitation energies of C2 and C3
are shown in Tables 8 and 9, respectively. We found thatΔCISD
is more accurate than CCSDT for C2 and even more accurate
than CCSDTQ for C3.

V. CONCLUSIONS
Here we have presented and benchmarked a particular state-
specific realization of MCSCF and MRCI as a route to perform
excited-state calculations. The orbitals are optimized for a
targeted state with a minimal set of CSFs, serving as the
reference wave function for the CI calculations, which can be
further corrected with Epstein-Nesbet perturbation theory or
with a posteriori Davidson corrections. We surveyed these
methods against more established alternatives by computing
excitation energies for a vast class of molecules and types of
excitations from the QUEST database. State-specific CI was
found to be substantially more accurate than the standard CI
methods based on a ground-state reference. Importantly, it
delivers reliable results across different types of excited states,
most notably when comparing singly and doubly excited states,
and can easily handle ground and excited states of a
multireference nature. The overall accuracy of ΔCISD rivals
that of CC2 (MAEs of 0.17 to 0.18 eV), whereasΔCISD+EN2 is
comparable to CCSD (MAEs of 0.08 eV), withΔCISD+Q lying
in between (MAE of 0.10 to 0.12 eV). For larger systems,
ΔCISD+Q leads to more accurate results (MAE of 0.07 to 0.09
eV) than CC2 and CCSD (MAEs of 0.10 to 0.12 eV).
There are many exciting possibilities to be pursued from this

work. One is to develop analogous state-specific coupled-cluster
methods. In light of the huge improvement we have observed
when going from ground-state-based to state-specific CI, we

expect a similar gain when comparing EOM-CC to state-specific
CCmethods where tailored CSFs are employed as the reference
wave function.116−118 One could also develop state-specific
implementations of seniority-based92 and hierarchy-based93 CI
for excited states. It would be important to assess the
performance of our state-specific approaches to charge-transfer
states and even larger systems, which would require switching
from a determinant-driven to an integral-driven implementa-
tion. In addition, it remains to be seen how the methods
presented here behave out of the equilibrium geometry,
particularly in strong correlation regimes. Although evaluating
nonorthogonal matrix elements is more challenging than their
orthogonal analogs, the calculation of static properties such as
dipole moments and oscillator strengths is possible thanks to the
recent generalized extension of the nonorthogonal Wick’s
theorem proposed by Burton.119,120 Yet another exciting
possibility is to move from a state-specific to a state-averaged
reference while contemplating only a small set of important
determinants for describing a given set of states. We recall that
the very compact reference wave function employed here is what
currently limits the ΔCI method to relatively low-lying excited
states. For instance, missing important determinants in the
reference space give rise to intruder states encountered in some
of the ΔCISD+EN2 calculations. In particular, including the
Aufbau closed-shell determinant in the reference should
improve the case of fully symmetric excited states. More
generally, when two states of the same symmetry are strongly
coupled, a larger reference should be considered as well. These
issues are expected to become more prominent at higher
energies, due to an increasing number of excited states.
Developments toward more suitable reference wave functions
could enable the ΔCI method to target higher-lying excited
states.
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