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The sampling of the configuration space in diffusion Monte Carlo is done using walkers moving randomly.
In a previous work on the Hubbard model [R. Assaraf, P. Azaria, M. Caffarel, and P. Lecheminant, Phys. Rev.
B 60, 2299 (1999).], it was shown that the probability for a walker to stay a certain amount of time in the
same state obeys a Poisson law and that the on-state dynamics can be integrated out exactly, leading to an
effective dynamics connecting only different states. Here, we extend this idea to the general case of a walker
trapped within domains of arbitrary shape and size. The equations of the resulting effective stochastic dynamics
are derived. The larger the average (trapping) time spent by the walker within the domains, the greater the
reduction in statistical fluctuations. A numerical application to the Hubbard model is presented. Although this
work presents the method for (discrete) finite linear spaces, it can be generalized without fundamental difficulties
to continuous configuration spaces.
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I. INTRODUCTION

Diffusion Monte Carlo (DMC) is a class of stochastic
methods for evaluating the ground-state properties of quantum
systems. They were extensively used in virtually all domains
of physics and chemistry where the many-body quantum
problem plays a central role (condensed-matter physics [1,2],
quantum liquids [3], nuclear physics [4,5], theoretical chem-
istry [6], etc). DMC can be used either for systems defined
in a continuous configuration space (typically, a set of parti-
cles moving in space) for which the Hamiltonian operator is
defined in a Hilbert space of infinite dimension or systems de-
fined in a discrete configuration space where the Hamiltonian
reduces to a matrix. Here, we shall consider only the discrete
case, that is, the general problem of calculating the lowest
eigenvalue and/or eigenstate of a (very large) matrix. The
generalization to continuous configuration spaces presents no
fundamental difficulty.

In essence, DMC is based on stochastic power methods,
a family of well-established numerical approaches able to
extract the largest or smallest eigenvalues of a matrix (see,
e.g., Ref. [7]). These approaches are particularly simple as
they merely consist in applying the matrix to be diagonalized
(or some simple function of it) as many times as required
on some arbitrary vector belonging to the linear space. Thus,
the basic step of the corresponding algorithm essentially re-
duces to successive matrix-vector multiplications. In practice,
power methods are employed under more sophisticated im-
plementations, such as, e.g., the Lanczòs algorithm (based
on Krylov subspaces) [7] or Davidson’s method where a di-
agonal preconditioning is performed [8]. When the size of
the matrix is too large, matrix-vector multiplications become
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unfeasible and probabilistic techniques to sample only the
most important contributions of the matrix-vector product are
required. This is the basic idea of DMC. There exist several
variants of DMC known under various names: Pure DMC
[9], DMC with branching [10], reptation Monte Carlo [11],
stochastic reconfiguration Monte Carlo [12,13], and so on.
Here, we shall place ourselves within the framework of pure
DMC whose mathematical simplicity is particularly appealing
when developing new ideas. However, all the ideas presented
in this work can be adapted without too much difficulty to
the other variants, so the denomination DMC must ultimately
be understood here as a generic name for this broad class of
methods.

Without entering into the mathematical details (which are
presented below), the main ingredient of DMC to perform
the matrix-vector multiplications probabilistically is to in-
troduce a stochastic matrix (or transition probability matrix)
that generates stepwise a series of states over which statisti-
cal averages are evaluated. The critical aspect of any Monte
Carlo scheme is the amount of computational effort required
to reach a given statistical error. Two important avenues to
decrease the error are the use of variance reduction techniques
(for example, by introducing improved estimators [14]) or
to improve the quality of the sampling (minimization of the
correlation time between states). Another possibility, at the
heart of the present work, is to integrate out exactly some
parts of the dynamics, thus reducing the number of degrees
of freedom and, hence, the amount of statistical fluctuations.

In previous works [15,16] it was shown that the probability
for a walker to stay a certain amount of time in the same state
obeys a Poisson law and that the on-state dynamics can be
integrated out to generate an effective dynamics connecting
only different states with some renormalized estimators for
the properties. Numerical applications showed that the statisti-
cal errors can be very significantly decreased. Here, we extend
this idea to the general case where a walker remains a certain
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amount of time in a finite domain no longer restricted to a
single state. It is shown how to define an effective stochastic
dynamics describing walkers moving from one domain to
another. The equations of the effective dynamics are derived
and a numerical application for a model (one-dimensional)
problem is presented. In particular, it shows that the statistical
convergence of the energy can be greatly enhanced when
domains associated with large average trapping times are con-
sidered.

It should be noted that the use of domains in quantum
Monte Carlo is not new. Domains were introduced within
the context of the Green’s function Monte Carlo (GFMC)
pioneered by Kalos [17,18] and later developed and applied by
Kalos and others [19–22]. In GFMC, an approximate Green’s
function that can be sampled is required for the stochastic
propagation of the wave function. In the so-called domain
GFMC version of GFMC introduced in Refs. [18,19] the
sampling is realized by using the restriction of the Green’s
function to a small domain consisting of the Cartesian product
of small spheres around each particle, the potential being
considered constant within the domain. Fundamentally, the
method presented in this work is closely related to the domain
GFMC, although the way we present the formalism in terms of
walkers trapped within domains and derive the equations may
appear different. However, we show here how to use domains
of arbitrary size, a new feature that greatly enhances the effi-
ciency of the simulations when domains are suitably chosen,
as illustrated in our numerical application.

Finally, from a general perspective, it is interesting to
emphasize that the present method illustrates how suitable
combinations of stochastic and deterministic techniques lead
to a more efficient and valuable method. In recent years, a
number of works exploited this idea and proposed hybrid
stochastic/deterministic schemes. Let us mention, for exam-
ple, the semi-stochastic approach of Petruzielo et al. [23],
two different hybrid algorithms for evaluating the second-
order perturbation energy in selected configuration interaction
methods [24,25], the approach of Willow et al. for computing
stochastically second-order many-body perturbation energies
[26], or the zero-variance Monte Carlo scheme for evaluating
two-electron integrals in quantum chemistry [27].

The paper is organized as follows. Section II presents
the basic equations and notations of DMC. First, the path-
integral representation of the Green’s function is given in
Sec. II A. Second, the probabilistic framework allowing the
Monte Carlo calculation of the Green’s function is presented
in Sec. II B. Section III is devoted to the use of domains in
DMC. We recall in Sec. III A the case of a domain consisting
of a single state. The general case is then treated in Sec. III B.
In Sec. III C, both the time- and energy-dependent Green’s
function using domains are derived. Section IV presents the
application of the approach to the one-dimensional Hubbard
model. Finally, in Sec.V, some conclusions and perspectives
are given.

II. DIFFUSION MONTE CARLO

A. Path-integral representation

As previously mentioned, DMC is a stochastic imple-
mentation of the power method defined by the following

operator:

T = 1 − τ (H − E1), (1)

where 1 is the identity operator, τ a small positive parameter
playing the role of a time step, E some arbitrary reference
energy, and H the Hamiltonian operator. For any initial vector
|�0〉 provided that 〈�0|�0〉 �= 0 and for τ sufficiently small,
we have

lim
N→∞

T N |�0〉 = |�0〉, (2)

where |�0〉 is the ground-state wave function, i.e., H |�0〉 =
E0|�0〉. The equality in Eq. (2) holds up to a global phase
factor playing no role in physical quantum averages. At large
but finite N , the vector T N |�0〉 differs from |�0〉 only by an
exponentially small correction, making it straightforward to
extrapolate the finite-N results to N → ∞.

Likewise, ground-state properties may be obtained at large
N . For example, in the important case of the energy, one can
project out the vector T N |�0〉 on some approximate vector,
|�T〉, as follows:

E0 = lim
N→∞

〈�0|T N |H�T 〉
〈�0|T N |�T 〉 . (3)

|�T〉 is known as the trial wave vector (function) and is chosen
as an approximation of the true ground-state vector.

To proceed further we introduce the time-dependent
Green’s matrix G(N ) defined as

G(N )
i j = 〈i|T N | j〉, (4)

where |i〉 and | j〉 are basis vectors. The denomination “time-
dependent Green’s matrix” is used here since G may be
viewed as a short-time approximation of the (time-imaginary)
evolution operator e−NτH , which is usually referred to as the
imaginary-time dependent Green’s function.

Introducing the set of N − 1 intermediate states,
{|ik〉}1�k�N−1, between each T in T N , G(N ) can be written in
the following expanded form:

G(N )
i0iN

=
∑

i1

∑
i2

· · ·
∑
iN−1

N−1∏
k=0

Tik ik+1 , (5)

where Ti j = 〈i|T | j〉. Here, each index ik runs over all basis
vectors.

In quantum physics, Eq. (5) is referred to as the path-
integral representation of the Green’s matrix (or function).
The series of states |i0〉, . . . , |iN 〉 is interpreted as a “path” in
the Hilbert space starting at vector |i0〉 and ending at vector
|iN 〉, where k plays the role of a time index. Each path is
associated with a weight

∏N−1
k=0 Tik ik+1 and the path-integral

expression of G can be recast in the more suggestive form
as follows:

G(N )
i0iN

=
∑

all paths |i1〉, . . . , |iN−1〉

N−1∏
k=0

Tik ik+1 . (6)

This expression allows a simple and vivid interpretation
of the solution. In the limit N → ∞, the iN th component of
the ground-state wave function (obtained as limN→∞ G(N )

i0iN
) is

the weighted sum over all possible paths arriving at vector
|iN 〉. This result is independent of the initial vector |i0〉, apart
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FIG. 1. Path-integral representation of the exact coefficient ci = 〈i|�0〉 of the ground-state wave function |�0〉 obtained as an infinite sum
of paths starting from |i0〉 and ending at |i〉 [see Eq. (6)]. Each path carries a weight

∏
k Tik ik+1 computed along it. The result is independent of

the choice of the initial state |i0〉, provided that 〈i0|�0〉 �= 0. Here, only four paths of infinite length are represented.

from some irrelevant global phase factor. We illustrate this
fundamental property pictorially in Fig. 1. When the size of
the linear space is small, the explicit calculation of the full
sums involving MN terms (where M is the size of the Hilbert
space) can be performed. In such a case, we are in the realm
of what one would call “deterministic” power methods, such
as the Lanczòs or Davidson approaches. If not, probabilistic
techniques for generating only the paths contributing signifi-
cantly to the sums are to be used. This is the central theme of
the present work.

B. Probabilistic framework

To derive a probabilistic expression for the Green’s matrix,
we introduce a guiding wave function |�+〉 having strictly
positive components, i.e., �+

i > 0, to perform a similarity
transformation of the operators G(N ) and T ,

T̄i j = �+
j

�+
i

Ti j, Ḡ(N )
i j = �+

j

�+
i

G(N )
i j . (7)

Note that, thanks to the properties of similarity transforma-
tions, the path-integral expression relating G(N ) and T [see
Eq. (6)] remains unchanged for Ḡ(N ) and T̄ .

Now the key idea to take advantage of probabilistic tech-
niques is to rewrite the matrix elements of T̄ as those of a
stochastic matrix multiplied by some residual weights (here,
not necessarily positive), namely,

T̄i j = pi→ jwi j . (8)

Here, we recall that a stochastic matrix is defined as a matrix
with positive entries that obeys∑

j

pi→ j = 1. (9)

Using this representation for T̄i j the similarity-transformed
Green’s matrix components can be rewritten as

Ḡ(N )
i0iN

=
∑

i1,...,iN−1

(
N−1∏
k=0

pik→ik+1

)
N−1∏
k=0

wik ik+1 , (10)

which is amenable to Monte Carlo calculations by generating
paths using the transition probability matrix pi→ j .

Let us illustrate this in the case of the energy as given by
Eq. (3). Taking |�0〉 = |i0〉 as the initial state, we have

E0 = lim
N→∞

∑
iN

G(N )
i0iN

(H�T)iN∑
iN

G(N )
i0iN

�TiN

, (11)

which can be rewritten probabilistically as

E0 = lim
N→∞

〈∏N−1
k=0 wik ik+1

(H�T )iN

�+
iN

〉
〈∏N−1

k=0 wik ik+1

�T iN

�+
iN

〉 , (12)

where 〈. . .〉 is the probabilistic average defined over the set of
paths |i1〉, . . . , |iN 〉 occurring with probability

Probi0 (i1, . . . , iN ) =
N−1∏
k=0

pik→ik+1 . (13)

Using Eq. (9) and the fact that pi→ j � 0, one can easily verify
that Probi0 is positive and obeys∑

i1,...,iN

Probi0 (i1, . . . , iN ) = 1, (14)

as it should.
The rewriting of T̄i j as a product of a stochastic matrix

times some general real weight does not introduce any con-
straint on the choice of the stochastic matrix, so that, in theory,
any stochastic matrix could be used. However, in practice, it
is highly desirable that the magnitude of the fluctuations of
the weight during the Monte Carlo simulation be as small as
possible. A natural solution is to choose a stochastic matrix as
close as possible to T̄i j . This is done as follows.

Let us introduce the following operator:

T + = 1 − τ (H+ − E+
L 1), (15)

where H+ is the matrix obtained from H by imposing the off-
diagonal elements to be negative

H+
i j =
{

Hi j, if i = j,
−|Hi j |, if i �= j.

(16)

Here, E+
L 1 is the diagonal matrix whose diagonal elements

are defined as

(E+
L )i =

∑
j H+

i j �
+
j

�+
i

. (17)

035130-3



ROLAND ASSARAF et al. PHYSICAL REVIEW B 107, 035130 (2023)

The vector E+
L is known as the local energy vector associated

with �+. By construction, the operator H+ − E+
L 1 in the

definition of T + [see Eq. (15)] was chosen to admit |�+〉
as a ground-state wave function with zero eigenvalue, i.e.,
(H+ − E+

L 1)|�+〉 = 0, leading to the relation

T +|�+〉 = |�+〉. (18)

We are now in the position to define the stochastic matrix
as

pi→ j = �+
j

�+
i

T +
i j =
{

1 − τ [H+
ii − (E+

L )i], if i = j,

τ
�+

j

�+
i
|Hi j | � 0, if i �= j.

(19)

As readily seen in Eq. (19), the off-diagonal terms of the
stochastic matrix are positive, while the diagonal terms can
be made positive if τ is chosen sufficiently small via the
condition

τ � 1

maxi |H+
ii − (E+

L )i| . (20)

The sum-over-states condition [see Eq. (9)]∑
j

pi→ j = 〈i|T +|�+〉
�+

i

= 1, (21)

follows from the fact that |�+〉 is eigenvector of T +, as
evidenced by Eq. (18). This ensures that pi→ j is indeed a
stochastic matrix.

At first sight, the condition defining the maximum value of
τ [see Eq. (20)] may appear rather tight since, for very large
matrices, it may impose an extremely small value of the time
step. However, in practice, during the simulation only a (tiny)
fraction of the linear space is sampled and the maximum ab-
solute value of H+

ii − (E+
L )i for the sampled states turns out to

be not too large. Hence, reasonable values of τ can be selected
without violating the positivity of the transition probability
matrix. Note that one can even eschew this condition via a
simple generalization of the transition probability matrix:

pi→ j =
�+

j

�+
i
|〈i|T +| j〉|∑

j
�+

j

�+
i
|〈i|T +| j〉|

= �+
j |T +

i j |∑
j �

+
j |T +

i j | . (22)

This new transition probability matrix with positive entries
reduces to Eq. (19) when T +

i j is positive as
∑

j �
+
j T +

i j = �+
i .

Now, we need to make the connection between the transi-
tion probability matrix pi→ j , defined from the Hamiltonian
H+ via T + and the operator T associated with the exact
Hamiltonian H . This is done thanks to Eq. (8) that connects
pi→ j and Ti j through the weight

wi j = Ti j

T +
i j

, (23)

derived from Eqs. (7) and (19).
To calculate the probabilistic averages, an artificial (math-

ematical) “particle” called a walker (or psi-particle) is
introduced. During the Monte Carlo simulation, the walker
moves in configuration space by drawing new states with
probability pik→ik+1 , thus realizing the path of probability
Probi0 . Note that, instead of using a single walker, it is com-
mon to introduce a population of independent walkers and

to calculate the averages over this population. In addition,
thanks to the ergodicity property of the stochastic matrix (see,
for example, Ref. [9]), a unique path of infinite length from
which subpaths of length N can be extracted may also be
used. We shall not insist here on these practical details that
are discussed, for example, in Refs. [1,2].

III. DIFFUSION MONTE CARLO WITH DOMAINS

A. Single-state domains

During the simulation, walkers move from state to state
with the possibility of being trapped a certain number of times
in the same state before exiting to a different state. This fact
can be exploited to integrate out some parts of the dynamics,
thus leading to a reduction of the statistical fluctuations. This
idea was proposed some time ago and applied to the SU(N)
one-dimensional Hubbard model [14–16].

Considering a given state |i〉, the probability that a walker
remains exactly n times in |i〉 (with n � 1) and then exits to a
different state j (with j �= i) is

Pi→ j (n) = (pi→i )
n−1 pi→ j . (24)

Using the relation
∞∑

n=1

(pi→i )
n−1 = 1

1 − pi→i
(25)

and the normalization of the pi→ j’s [see Eq. (9)], one can
check that the probability is properly normalized, i.e.,

∑
j �=i

∞∑
n=1

Pi→ j (n) = 1. (26)

The probability of being trapped during n steps is obtained
by summing over all possible exit states

Pi(n) =
∑
j �=i

Pi→ j (n) = (pi→i )
n−1(1 − pi→i ), (27)

and this defines a Poisson law with an average number of
trapping events

n̄i =
∞∑

n=1

nPi(n) = 1

1 − pi→i
. (28)

Introducing the continuous time ti = niτ , the average trapping
time is thus given by

t̄i = [H+
ii − (E+

L )i]
−1, (29)

and, in the limit τ → 0, the Poisson probability takes the usual
form

Pi(t ) = 1

t̄i
exp

(
− t

t̄i

)
. (30)

The time-averaged contribution of the on-state weight can
then be easily calculated to be

w̄i =
∞∑

n=1

wn
iiPi(n) = Tii

T +
ii

1 − T +
ii

1 − Tii
. (31)

Details of the implementation of this effective dynamics can
be in found in Refs. [15,16].
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FIG. 2. Representation of a path in terms of exit states |Ik〉 and
trapping times |nk〉. The states |ik〉 along the path are represented by
small black circles and the exit states |Ik〉 by larger black squares.
By convention, the initial state is denoted using a capital letter,
i.e., |i0〉 = |I0〉 since it is the first state of the effective dynamics
involving only exit states. See text for additional comments on the
time evolution of the path.

B. Multistate domains

Let us now extend the results of Sec. III A to a general
domain. To do so, we associate to each state |i〉 a set of states,
called the domain of |i〉 denoted Di, consisting of the state
|i〉 plus a certain number of states. No particular constraints
on the type of domains are imposed. For example, domains
associated with different states may be identical and they may
or may not have common states. The only important condition
is that the set of all domains ensures the ergodicity property
of the effective stochastic dynamics, that is, starting from any
state, there is a nonzero probability to reach any other state in
a finite number of steps. In practice, it is not difficult to impose
such a condition.

Let us write an arbitrary path of length N as

|i0〉 → |i1〉 → · · · → |iN 〉, (32)

where the successive states are drawn using the transition
probability matrix pi→ j . This path belongs to the set of paths
that can be represented as follows:

(|I0〉, n0) → (|I1〉, n1) → · · · → (
∣∣Ip
〉
, np), (33)

where |I0〉 = |i0〉 is the initial state, n0 is the number of times
the walker remains in the domain of |i0〉 (with 1 � n0 �
N + 1), |I1〉 is the first exit state that does not belong to Di0 ,
n1 is the number of times the walker remains in Di1 (with
1 � n1 � N + 1 − n0), |I2〉 is the second exit state, and so on.
Here, the integer p (with 0 � p � N) indicates the number
of exit events occurring along the path. The two extreme
values, p = 0 and p = N , correspond to the cases where the
walker remains in the initial domain during the entire path and
where the walker exits a domain at each step, respectively.
In what follows, we shall systematically label exit states with
upper-case letters |Ik〉, while lower-case letters denote elemen-
tary states |ik〉. Making this distinction is important since the
effective stochastic dynamics used in practical Monte Carlo
calculations only involve exit states |Ik〉, the contribution from
the elementary states |ik〉 being exactly integrated out.

Figure 2 exemplifies how a path can be decomposed as
proposed in Eq. (33). To make things as clear as possible, let

us describe how the path drawn in Fig. 2 evolves in time. The
walker starts at |i0〉 in the domain Di0 . Then, it performs two
steps from |i0〉 to |i2〉 and leaves the domain at |i3〉, which
is thus the first exit state, i.e., |I1〉 = |i3〉. The trapping time
in Di0 is n0 = 3 since three states in Di0 are visited (namely,
|i0〉, |i1〉, and |i2〉). During the next steps, the domains DI1 ,
DI2 , and DI3 are successively visited with n1 = 2, n2 = 3,
and n3 = 1, respectively. The corresponding exit states are
|I2〉 = |i5〉, |I3〉 = |i8〉, and |I4〉 = |i9〉, respectively.

Generalizing the single-state case treated previously, let us
define the probability of remaining n times in the domain of
|I0〉 and to exit at |I〉 /∈ DI0 ,

PI0→I (n) =
∑

|i1〉∈DI0

· · ·
∑

|in−1〉∈DI0

pI0→i1 . . . pin−2→in−1 pin−1→I .

(34)
Since the sums are restricted to states belonging to the domain,
it is convenient to introduce a projector over each domain

PI =
∑

|i〉∈DI

|i〉〈i|, (35)

as well as the projection of T + overDI ,

T +
I = PI T

+PI , (36)

which governs the dynamics of the walkers trapped in this
domain. Using Eqs. (19) and (34), the probability can be
rewritten as

PI0→I (n) = 1

�+
I0

〈I0|(T +
I0

)n−1F+
I0

|I〉�+
I , (37)

where the operator F+
I = PI T +(1 − PI ), corresponding to the

last move connecting the inside and outside regions of the
domain, has the following matrix elements:

(F+
I )i j =

{
T +

i j , if |i〉 ∈ DI and | j〉 /∈ DI ,

0, otherwise.
(38)

Physically, F may be seen as a flux operator through the
boundary ofDI .

Knowing the probability of remaining n times in the do-
main and, then, exiting to some state, it is possible to obtain
the probability of being trapped n times in DI , just by sum-
ming over all possible exit states

PI (n) = 1

�+
I

〈I|(T +
I )n−1F+

I |�+〉. (39)

The normalization of this probability can be verified using the
fact that

(T +
I )n−1F+

I = (T +
I )n−1T + − (T +

I )n, (40)

leading to 1

∞∑
n=0

PI (n) = 1

�+
I

∞∑
n=1

[〈I|(T +
I )n−1|�+〉 − 〈I‖(T +

I )n|�+〉] = 1.

(41)

1The property results from the fact that the series is a telescoping
series and that the general term 〈I|(T +

I )n|�+〉 goes to zero as n goes
to infinity.
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The average trapping time defined as t̄I = n̄Iτ where n̄I =∑
n nPI (n) is calculated to be

t̄I = 1

�+
I

〈I|[PI (H+ − E+
L 1)PI ]

−1|�+〉. (42)

In practice, the various quantities restricted to the domain will
be computed by inverting the matrix (H+ − E+

L 1) inDI . Note
that it is possible only if the dimension of the domains is not
too large (say, less than a few thousand).

C. Time-dependent Green’s matrix using domains

In this section, we generalize the path-integral expression
of the Green’s matrix, Eq. (6), to the case where domains
are used. To do so, we need to introduce the Green’s matrix
restricted to each domain as follows:

G(N ),D
i j = 〈i|T N

i | j〉, (43)

where Ti is the projection of the operator T over the domain
Di of |i〉

Ti = PiT
+Pi, (44)

and Pi is the projector, Pi =∑|k〉∈Di
|k〉〈k|, Eq. (35).

Using the representation of the paths in terms of exit states
and trapping times [see Eq. (33)], the set of paths can be par-
titioned according to the number p of exit states. As already
noted above, the number of exit states ranges from p = 0 (no
exit of the initial domain) to p = N (exit of the current domain
at each time step). We shall denote Cp the set of paths with p
exit states. The time-dependent Green’s matrix, Eq. (5), is then
rewritten as

G(N )
i0iN

=
N∑

p=0

∑
Cp

∑
(i1,...,iN−1 )∈Cp

N−1∏
k=0

〈ik|T |ik+1〉. (45)

Cp can be partitioned further by considering the subset of
paths, denoted by CI,n

p , having (|Ik〉, nk ), for 0 � k � p, as exit
states and trapping times. We recall that, by definition of the
exit states, |Ik〉 /∈ DIk−1 . The total time must be conserved, so
the relation

∑p
k=0 nk = N + 1 must be fulfilled. Now, the con-

tribution of CI,n
p to the path integral is obtained by summing

over all elementary paths (i1, ..., iN−1) of this set, thus giving

∑
(i1,...,iN−1 )∈CI,n

p

N−1∏
k=0

〈ik|T |ik+1〉

=
⎡
⎣p−1∏

k=0

〈Ik|(TIk )nk−1FIk |Ik+1〉
⎤
⎦〈Ik|(TIp )np |iN 〉. (46)

Finally, collecting all contributions the Green’s matrix is writ-
ten as

G(N )
i0iN

= G(N ),D
i0iN

+
N∑

p=1

∑
|I1〉/∈DI0 ,...,|Ip〉/∈DIp−1

∑
n0�1

· · ·
∑
np�1

δ∑p
k=0 nk ,N+1

×
⎡
⎣p−1∏

k=0

〈Ik|(TIk )nk−1FIk |Ik+1〉
⎤
⎦G

(np−1),D
IpiN

, (47)

where δi, j is a Kronecker delta. This expression is the path-
integral representation of the Green’s matrix using only
the variables (|Ik〉, nk ) of the effective dynamics defined over
the set of domains. The standard formula for G(N )

i0iN
derived

above [see Eq. (6)] may be considered as the particular case
where the walker exits of the current state |ik〉 at each step (no
domains are introduced), leading to a number of exit events
p equal to N . In this case, we have |Ik〉 = |ik〉, nk = 1 (for
0 � k � N), and we are left only with the pth component
of the sum, that is, G(N )

i0iN
=∏N−1

k=0 〈Ik|FIk |Ik+1〉, with F = T ,

thus recovering Eq. (6). Note that the first contribution G(N ),D
i0iN

corresponds to the case p = 0 and collects all contributions to
the Green’s matrix coming from paths remaining indefinitely
in the domain of |i0〉 (no exit event). This contribution is
isolated from the sum in Eq. (47) since, as a domain Green’s
matrix, it is calculated exactly and is not subject to a stochastic
treatment. Note also that the last state |iN 〉 is never an exit state
because of the very definition of our path representation.

To compute G(N )
i0iN

by resorting to Monte Carlo techniques,
let us reformulate Eq. (47) using the transition probability
PI→J (n) introduced in Eq. (37). We first rewrite Eq. (47)
under the form

G(N )
i0iN

= G(N ),D
i0iN

+ �+
i0

N∑
p=1

∑
|I1〉/∈DI0 ,...,|Ip〉/∈DIp−1

∑
n0�1

· · ·
∑
np�1

× δ∑p
k=0 nk ,N+1

p−1∏
k=0

[
�+

Ik+1

�+
Ik

〈Ik|(TIk )nk−1FIk |Ik+1〉
]

×
G

(np−1),D
IpiN

�+
Ip

. (48)

Introducing the weights

WIkIk+1 = 〈Ik|(TIk )nk−1FIk |Ik+1〉
〈Ik|(T +

Ik
)nk−1F+

Ik
|Ik+1〉 , (49)

and using the effective transition probability Eq. (37), we get

G(N )
i0iN

= G(N ),D
i0iN

+ �+
i0

N∑
p=1

∑
(I,n)p,N

⎛
⎝p−1∏

k=0

WIkIk+1

⎞
⎠

×
⎛
⎝p−1∏

k=0

PIk→Ik+1 (nk )

⎞
⎠ 1

�+
Ip

G
(np−1),D
IpiN

, (50)

where, for clarity,
∑

(I,n)p,N
is used as a short-hand notation

for
∑

|I1〉/∈DI0 ,...,|Ip〉/∈DIp−1

∑
n0�1 · · ·∑np�1 with the constraint∑p

k=0 nk = N + 1.
Under this form, G(N )

i0iN
is now amenable to Monte Carlo cal-

culations by generating paths using the transition probability
matrix PI→J (n). For example, in the case of the energy, we
start from

E0 = lim
N→∞

∑
iN

G(N )
i0iN

(H�T)iN∑
iN

G(N )
i0iN

�TiN

, (51)
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which can be rewritten probabilistically as

E0 = lim
N→∞

G(N ),D
i0iN

+ �+
i0

∑N
p=1

〈(∏p−1
k=0 WIkIk+1

)
Hnp,Ip

〉
p

G(N ),D
i0iN

+ �+
i0

∑N
p=1

〈(∏p−1
k=0 WIkIk+1

)
Snp,Ip

〉
p

,

(52)
where 〈· · · 〉p is the probabilistic average defined over the set
of paths with p exit events of probability

∏p−1
k=0 PIk→Ik+1 (nk ),

and

Hnp,Ip = 1

�+
Ip

∑
iN

G
(np−1),D
IpiN

(H�T )iN , (53)

Snp,Ip = 1

�+
Ip

∑
iN

G
(np−1),D
IpiN

(�T )iN , (54)

two quantities taking into account the contribution of the trial
wave function at the end of the path.

In practice, the present Monte Carlo algorithm is a simple
generalization of the standard diffusion Monte Carlo algo-
rithm. Stochastic paths starting at |I0〉 are generated using
the probability PIk→Ik+1 (nk ) and are stopped when

∑
k nk is

greater than some target value N . Averages of the weight prod-
ucts
∏p−1

k=0 WIkIk+1 times the end-point contributions (H/S)np,Ip

are computed for each p. The generation of the paths can
be performed using a two-step process. First, the integer nk

is drawn using the probability PIk (n) [see Eq. (39)] and then
the exit state |Ik+1〉 is drawn using the conditional probability
PIk→Ik+1 (nk )/PIk (nk ).

D. Domain Green’s function Monte Carlo

The aim of this section is to show that it is possible to
go further by integrating out the trapping times nk of the
preceding expressions, thus defining a new effective stochastic
dynamics involving now only the exit states. Physically, it
means that we are going to compute exactly the time evolu-
tion of all stochastic paths trapped in each domain. We shall
present two different ways to derive the new dynamics and
renormalized probabilistic averages. The first one, called the
pedestrian way, consists in starting from the preceding time
expression for G and making the explicit integration over
the nk’s. The second, more direct and elegant, is based on the
Dyson equation.

1. Pedestrian way

Let us define the energy-dependent Green’s matrix

GE
i j = τ

∞∑
N=0

〈i|T N | j〉 = 〈i|(H − E1)−1| j〉. (55)

The denomination “energy-dependent” is chosen here since
this quantity is the discrete version of the Laplace transform
of the time-dependent Green’s function in a continuous space,
usually known under this name.2 The remarkable property is

2As τ → 0 and N → ∞ with Nτ = t , the operator T N converges
to e−t (H−E1). We then have GE

i j → ∫∞
0 dt〈i|e−t (H−E1)| j〉, which is

the Laplace transform of the time-dependent Green’s function
〈i|e−t (H−E1)| j〉.

that, thanks to the summation over N up to infinity, the con-
strained multiple sums appearing in Eq. (47) can be factorized
in terms of a product of unconstrained sums, as follows:

∞∑
N=1

N∑
p=1

∑
n0�1

· · ·
∑
np�1

δ∑p
k=0 nk ,N+1F (n0, . . . , nN )

=
∞∑

p=1

∞∑
n0=1

· · ·
∞∑

np=1

F (n0, . . . , nN ), (56)

where F is some arbitrary function of the trapping times.
Using the fact that GE

i j = τ
∑∞

N=0 G(N )
i j , where G(N )

i j is given
by Eq. (47), and summing over the variables nk , we get

GE
i0iN = GE ,D

i0iN
+

∞∑
p=1

∑
I1 /∈D0,...,Ip /∈Dp−1

[
p−1∏
k=0

〈Ik|[Pk (H − E1)Pk]−1

× (−H )(1 − Pk )|Ik+1〉
]

GE ,D
IpiN

, (57)

where GE ,D is the energy-dependent domain’s Green matrix
defined as GE ,D

i j = τ
∑∞

N=0〈i|T N
i | j〉.

As a didactical example, the Appendix reports the exact
derivation of this formula in the case of a two-state system.

2. Dyson equation

In fact, there is a more direct way to derive the same
equation by resorting to the Dyson equation. Starting from the
well-known equality

(H − E1)−1 = (H0 − E1)−1 + (H0 − E1)−1

× (H0 − H )(H − E1)−1, (58)

where H0 is some arbitrary reference Hamiltonian, we have
the Dyson equation

GE
i j = GE

0,i j +
∑

kl

GE
0,ik (H0 − H )kl G

E
l j, (59)

with GE
0,i j = 〈i|(H0 − E1)−1| j〉. Let us choose H0 such that

〈i|H0| j〉 = 〈i|PiHPi| j〉 for all i and j. Then, the Dyson equa-
tion (59) becomes

GE
i j = GE ,D

i j +
∑

k

〈i|[Pi(H − E1)Pi]
−1(H0 − H )|k〉GE

k j .

(60)
Using the following identity:

[Pi(H − E1)Pi]
−1(H0 − H )

= [Pi(H − E1)Pi]
−1(PiHPi − H )

= [Pi(H − E1)Pi]
−1(−H )(1 − Pi ), (61)

the Dyson equation may be written under the form

GE
i j = GE ,D

i j +
∑
k /∈Di

〈i|[Pi(H − E1)Pi]
−1(−H )(1 − Pi )|k〉GE

k j,

(62)
which is identical to Eq. (57) when GE

i j is expanded iteratively.
Let us use as effective transition probability density

PI→J = 1

�+(I )
〈I|[PI (H+ − E+

L 1)PI ]
−1

× (−H+)(1 − PI )|J〉�+(J ), (63)
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and the weight

W E
IJ = 〈I|[PI (H − E1)PI ]−1(−H )(1 − PI )|J〉

〈I|[PI (H+ − E+
L 1)PI ]

−1(−H+)(1 − PI )|J〉
. (64)

Using Eqs. (34), (37), and (40), one can easily verify that
PI→J � 0 and

∑
J PI→J = 1. Finally, the probabilistic expres-

sion reads

GE
i0iN = GE ,D

i0iN
+

∞∑
p=1

�+
i0

〈⎛⎝p−1∏
k=0

W E
IkIk+1

⎞
⎠GE ,D

IpiN

�+
Ip

〉
. (65)

3. Energy estimator

To calculate the energy, we introduce the following
estimator:

E(E ) = 〈I0|(H − E1)−1|H�T〉
〈I0|(H − E1)−1|�T〉 , (66)

which is the counterpart of the quantity EN = 〈I0|T N |H�T〉
〈I0|T N |�T〉 used

in the time-dependent formalism. In this case, the energy was
easily obtained by taking the large N-limit of EN , see Eq. (3).
Here, the situation is not as simple and we must find a way to
extract the energy from E(E ).

Using the spectral decomposition of H , we have

E(E ) =
∑

i
Eici

Ei−E∑
i

ci
Ei−E

, (67)

where ci = 〈I0|�i〉〈�i|�T〉 and �i are the eigenstates of H ,
i.e., H |�i〉 = Ei|�i〉. The important observation is that for all
eigenstates we have E(Ei ) = Ei. Thus, to get the ground-state
energy we propose to search for the solution of the nonlinear
equation E(E ) = E in the vicinity of E0.

In practical Monte Carlo calculations, the DMC energy is
obtained by computing a finite number of components Hp and
Sp defined as follows:

EDMC(E , pmax) = H0 +∑pmax
p=1 HDMC

p

S0 +∑pmax
p=1 SDMC

p

. (68)

For p � 1, Eq. (65) gives

HDMC
p = �+

i0

〈⎛⎝p−1∏
k=0

W E
IkIk+1

⎞
⎠HIp

〉
, (69)

SDMC
p = �+

i0

〈⎛⎝p−1∏
k=0

W E
IkIk+1

⎞
⎠SIp

〉
, (70)

where

HIp = 1

�+
Ip

∑
iN

GE ,D
IpiN

(H�T )iN , (71)

SIp = 1

�+
Ip

∑
iN

GE ,D
IpiN

(�T )iN . (72)

For p = 0, the two components are exactly evaluated as

H0 = 〈I0|[PI0 (H − E1)PI0 ]−1|H�T〉, (73)

S0 = 〈I0|[PI0 (H − E1)PI0 ]−1|�T〉. (74)

Note that the evaluation of (H0, S0) is possible as long as the
size of the domain is small enough to allow the calculation
of the inverse matrix. Avoiding the stochastic calculation of
quantities, such as H0 or S0, that can be evaluated analytically
is computationally very appealing as the statistical error asso-
ciated with these quantities is completely removed. We thus
suggest extending the exact calculation of Hp and Sp to higher
p values, up to the point where the exponential increase of the
number of intermediate states involved in the explicit sums
makes the calculation unfeasible.

Finally, EDMC(E , pex, pmax) is evaluated in practice as fol-
lows

EDMC(E , pex, pmax) =
∑pex−1

p=0 Hp +∑pmax
p=pex

HDMC
p∑pex−1

p=0 Sp +∑pmax
p=pex

SDMC
p

, (75)

where pex is the number of components computed exactly. Let
us emphasize that, since the magnitude of Hp and Sp decreases
as a function of p, most of the statistical error is removed
by computing the dominant terms analytically. This will be
illustrated in the numerical application presented below.

It is easy to check that, in the vicinity of the exact energy
E0, E(E ) is a linear function of E − E0. Therefore, in practice,
we compute the value of E(E ) for several values of E and fit
these data using a linear, quadratic, or a more complicated
function of E to obtain, via extrapolation, an estimate of E0.
To have a precise extrapolation of the energy, it is best to
compute E(E ) for values of E as close as possible to the
exact energy. However, as E → E0, both the numerators and
denominators of Eq. (67) diverge. This is reflected by the fact
that one needs to compute more and more p-components with
an important increase in statistical fluctuations. Thus, from a
practical point of view, a trade-off has to be found between
the quality of the extrapolation and the amount of statistical
fluctuations.

IV. NUMERICAL APPLICATION TO THE HUBBARD
MODEL

A. Hamiltonian and trial wave function

Let us consider the one-dimensional Hubbard Hamiltonian
for a chain of N sites

H = −t
∑
〈i j〉σ

â+
iσ â jσ + U

∑
i

n̂i↑n̂i↓, (76)

where 〈i j〉 denotes the summation over two neighboring sites,
â+

iσ (âiσ ) is the fermionic creation (annihilation) operator of a
spin-σ electron (with σ = ↑ or ↓) on site i, n̂iσ = â+

iσ âiσ the
number operator, t the hopping amplitude, and U the on-site
Coulomb repulsion. We consider a chain with an even number
of sites and open boundary conditions at half-filling, that is,
N↑ = N↓ = N/2. In the site representation, a general vector
of the Hilbert space can be written as

|n〉 = |n1↑, . . . , nN↑, n1↓, . . . , nN↓〉, (77)

where niσ = 0 or 1 is the number of electrons of spin σ on site
i.

For the one-dimensional Hubbard model with open bound-
ary conditions, the components of the ground-state vector
have the same sign (say, ci > 0). It is then possible to equate
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the guiding and trial vectors, i.e., |c+〉 = |cT〉. As a trial wave
function, we shall employ a generalization of the Gutzwiller
wave function [28]

〈n|cT〉 = e−αnD (n)−βnA(n), (78)

where nD(n) is the number of doubly occupied sites for the
configuration |n〉 and nA(n) the number of nearest-neighbor
antiparallel pairs defined as

nA(n) =
∑
〈i j〉

ni↑n j↓δni↑,1δn j↓,1. (79)

The parameters α and β are optimized by minimizing the
variational energy of the trial wave function, i.e.,

Ev(α, β ) = 〈cT|H |cT〉
〈cT|cT〉 . (80)

B. Domains

As discussed above, the efficiency of the method depends
on the choice of states forming each domain. As a general
guiding principle, it is advantageous to build domains asso-
ciated with a large average trapping time to integrate out the
most important part of the Green’s matrix.

Here, as a first illustration of the method, we shall consider
the large-U regime of the Hubbard model where the construc-
tion of such domains is rather natural. Indeed, at large U and
half-filling, the Hubbard model approaches the Heisenberg
limit where only the 2N states with no double occupancy
nD(n) = 0 have a significant weight in the wave function.
The contribution of the other states vanishes as U increases
with a rate increasing sharply with nD(n). In addition, for
a given number of double occupations, configurations with
large values of nA(n) are favored due to their high electronic
mobility. Therefore, we build domains associated with small
nD and large nA in a hierarchical way as described below.

For simplicity and reducing the number of matrix inver-
sions to perform, we shall consider only one nontrivial domain
called here the main domain and denoted as D. This domain
will be chosen common to all states belonging to it, that is,

Di = D for|i〉 ∈ D. (81)

For the other states, we choose a single-state domain as

Di = |i〉 for|i〉 /∈ D. (82)

To defineD, let us introduce the following set of states:

Si j = |n〉 : nD(n) = i ∧ nA(n) = j. (83)

D is defined as containing the set of states having up to
nmax

D double occupations and, for each state with a number of
double occupations equal to m, a number of nearest-neighbor
antiparallel pairs between nmin

A (m) and nmax
A (m). Here, nmax

A (m)
is fixed and set at its maximum value for a given m, i.e.,
nmax

A (m) = max(N − 1 − 2m, 0). Using these definitions, the
main domain is taken as the union of some elementary
domains

D =
nmax

D⋃
nD=0

D
[
nD, nmin

A (nD)
]
, (84)

where the elementary domains are defined as

D
[
nD, nmin

A (nD)
] = nmax

A (nD )⋃
j=nmin

A (nD )

SnD j . (85)

The two quantities defining the main domain are thus nmax
D

and nmin
A (m). To give an illustrative example, let us consider

the four-site case. There are six possible elementary domains

D(0, 3) = S03, D(0, 2) = S03 ∪ S02,

D(0, 1) = S03 ∪ S02 ∪ S01, D(1, 1) = S11,

D(1, 0) = S11 ∪ S10, D(2, 0) = S20,

where

S03 = |↑,↓,↑,↓〉, |↓,↑,↓,↑〉, (the two Neel states),

S02 = |↑,↓,↓,↑〉, |↓,↑,↑,↓〉,
S01 = |↑,↑,↓,↓〉, |↓,↓,↑,↑〉,
S11 = |↑↓,↑,↓, 0〉, |↑↓, 0,↑,↑〉 + . . .,

S10 = |↑↓,↑, 0,↓〉, |↑↓, 0,↑,↓〉 + . . .,

S20 = |↑↓,↑↓, 0, 0〉 + . . ..

For the three last cases, the dots indicate that one must also
consider the remaining states obtained by permuting the posi-
tion of the pairs.

C. DMC simulations

Let us now present our DMC calculations for the Hubbard
model. In what follows, we shall restrict ourselves to the case
of the Green’s function Monte Carlo approach where trapping
times are integrated out exactly.

Let us begin with a small chain of four sites with U = 12.
From now on, we shall take t = 1. The size of the linear space

is
(4

2

)2 = 36 and the ground-state energy obtained by exact
diagonalization is E0 = −0.768068 . . .. The two variational
parameters of the trial vector are optimized and fixed at the
values of α = 1.292 and β = 0.552 with a variational energy
Ev = −0.495361 . . .. In what follows, |I0〉 is systematically
chosen as one of the two Néel states, e.g., |I0〉 = |↑,↓,↑, . . .〉.

Figure 3 shows the convergence of HDMC
p , Eq. (69), as a

function of p for different values of the reference energy E .
We consider the simplest case where a single-state domain is
associated to each state. Five different values of E are chosen,
namely E = −1.6, −1.2, −1.0, −0.9, and −0.8. Only H0 is
computed analytically (pex = 0). At the scale of the figure, the
error bars are too small to be seen.

When E is far from the exact value, the convergence is very
rapid and only a few terms of the p-expansion are necessary.
In contrast, when E approaches the exact energy, a slower
convergence is observed, as expected from the divergence of
the matrix elements of the Green’s matrix at E = E0 where
the expansion does not converge at all. The oscillations of the
curves as a function of p are due to a parity effect specific
to this system. In practice, it is not too much of a problem
since a smoothly convergent behavior is nevertheless observed
for the even- and odd-parity curves. The ratio EDMC(E , pex =
1, pmax), Eq. (75), as a function of E is presented in Fig. 4.
Here, pmax is taken sufficiently large so that the convergence
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FIG. 3. One-dimensional Hubbard model with N = 4 and U =
12. Hp as a function of p for E = −1.6, −1.2, −1.0, −0.9, and
−0.8. H0 is computed analytically and Hp (p > 0) is computed
stochastically. Error bars are smaller than the symbol size.

at large p is reached. The values of E are −0.780, −0.790,
−0.785, −0.780, and −0.775. For small E , the curve is ex-
trapolated using the so-called two-component expression

E(E ) =
ε0c0
ε0−E + ε1c1

ε1−E
c0

ε0−E + c1
ε1−E

, (86)

which considers only the first two terms of the exact expres-
sion of E(E ) [see Eq. (67)]. Here, the fitting parameters that
need to be determined are c0, ε0, c1, and ε1. The estimate of
the energy obtained from E(E ) = E is −0.76807(5) in full
agreement with the exact value of −0.768068 . . ..

Table I illustrates the dependence of the Monte Carlo re-
sults upon the choice of the domain. The reference energy
is E = −1. The first column indicates the various domains
consisting of the union of some elementary domains as ex-
plained above. The first line of the table gives the results
when one uses a single-state domain for all states and the
last one for the maximal domain containing the full linear
space. The size of the various domains is given in the second
column, the average trapping time for the state |I0〉 in the third
column, and an estimate of the speed of convergence of the
p-expansion for the energy in the fourth column. To quantify
the rate of convergence, we report the quantity pconv, defined

FIG. 4. One-dimensional Hubbard model with N = 4 and U =
12. E(E ) as a function of E . The horizontal and vertical lines are
at E(E0) = E0 and E = E0, respectively. E0 = −0.768068 . . . is the
exact energy. The dotted line is the two-component extrapolation
defined in Eq. (86). Error bars are smaller than the symbol size.

TABLE I. One-dimensional Hubbard model with N = 4, U =
12, E = −1, α = 1.292, β = 0.552, and pex = 4. The simulation
is performed with 20 independent blocks and 105 stochastic paths
starting from the Néel state. t̄I0 is the average trapping time for
the Néel state. pconv is a measure of the convergence of EDMC as a
function of p (smallest value of p for which the energy is roughly
stabilized to five decimal places). See text for more details.

Domain Size t̄I0 pconv EDMC(E = −1)

Single 1 0.026 88 −0.75276(3)
D(0, 3) 2 2.1 110 −0.75276(3)
D(0, 2) 4 2.1 106 −0.75275(2)
D(0, 1) 6 2.1 82 −0.75274(3)
D(0, 3) ∪D(1, 1) 14 4.0 60 −0.75270(2)
D(0, 3) ∪D(1, 0) 26 6.2 45 −0.752730(7)
D(0, 2) ∪D(1, 1) 16 10.1 36 −0.75269(1)
D(0, 2) ∪D(1, 0) 28 34.7 14 −0.7527240(6)
D(0, 1) ∪D(1, 1) 18 10.1 28 −0.75269(1)
D(0, 1) ∪D(1, 0) 30 108.7 11 −0.75272400(5)
D(0, 3) ∪D(1, 1) ∪D(2,0) 20 4.1 47 −0.75271(2)
D(0, 3) ∪D(1, 0) ∪D(2,0) 32 6.5 39 −0.752725(3)
D(0, 2) ∪D(1, 1) ∪D(2,0) 22 10.8 30 −0.75270(1)
D(0, 2) ∪D(1, 0) ∪D(2,0) 34 52.5 13 −0.7527236(2)
D(0, 1) ∪D(1, 1) ∪D(2,0) 24 10.8 26 −0.75270(1)
D(0, 1) ∪D(1, 0) ∪D(2,0) 36 ∞ 1 −0.75272390

as the smallest value of p for which the energy is roughly
stabilized to five decimal places. The smaller pconv, the better
the convergence is. Although this is a rough estimate, it is
sufficient here for our purpose. As clearly seen, the speed of
convergence is directly related to the magnitude of t̄I0 . The
longer the stochastic trajectories remain trapped within the do-
main, the better the convergence. Of course, when the domain
is chosen to be the full space, the average trapping time be-
comes infinite. Let us emphasize that the rate of convergence
has no reason to be related to the size of the domain. For
example, the domain D(0, 3) ∪D(1, 0) has a trapping time
for the Néel state of 6.2, while the domainD(0, 2) ∪D(1, 0),
having almost the same number of states (28 states), has an
average trapping time about six times longer. Finally, the last
column gives the energy obtained for E = −1. The energy is
expected to be independent of the domain and to converge to a
common value, which is indeed the case here. The exact value,
E(E = −1) = −0.75272390 . . ., can be found in the last row
of Table I for the case of a domain corresponding to the full
space. In sharp contrast, the statistical error depends strongly
on the type of domains used. As expected, the largest error
of 3 × 10−5 is obtained in the case of a single-state domain
for all states. The smallest statistical error is obtained for the
“best” domain having the largest average trapping time. Using
this domain leads to a reduction in the statistical error as large
as about three orders of magnitude, which nicely illustrates
the critical importance of the domains employed.

As explained above, it is very advantageous to calculate
exactly as many (Hp, Sp) as possible to avoid statistical error
on the largest components. Ideally, this should be done up to
the value of p for which the calculation of these quantities
whose cost increases exponentially is possible. Table II shows
the results both for the case of a single-state domain and for
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TABLE II. One-dimensional Hubbard model with N = 4, U =
12, and E = −1. Dependence of the statistical error on the en-
ergy with the number of p-components pex calculated analytically
in the expression of the energy, EDMC(E , pex, pmax), Eq. (75). The
simulation is performed the same way as in Table I. Results are
presented when a single-state domain is used for all states and when
D(0, 1) ∪D(1, 0) is chosen as the main domain.

pex Single state D(0, 1) ∪D(1, 0)

0 4.3 × 10−5 347 × 10−8

1 4.0 × 10−5 377 × 10−8

2 3.7 × 10−5 43 × 10−8

3 3.3 × 10−5 46 × 10−8

4 2.6 × 10−5 5.6 × 10−8

5 2.5 × 10−5 6.0 × 10−8

6 2.3 × 10−5 0.7 × 10−8

7 2.2 × 10−5 0.6 × 10−8

8 2.2 × 10−5 0.05 × 10−8

the domain having the largest average trapping time, namely,
D(0, 1) ∪D(1, 0) (see Table I). Table II reports the statisti-
cal fluctuations of the energy for the simulation of Table I.
Results show that it is indeed worth computing exactly as
many components as possible. For the single-state domain,
the statistical error is reduced by a factor of 2 when passing
from no analytical computation, pex = 0, to the case where
eight components for Hp and Sp are computed exactly. For the
best domain, the impact is much more important with a huge
reduction of about three orders of magnitude in the statistical
error.

Table III reports the energies convergence as a function of p
alongside their statistical error on the last digit for E = −0.8,
−0.795, −0.79, −0.785, and −0.78. The values are displayed
in Fig. 4. As seen, the behavior of E as a function of E
is almost perfectly linear. The extrapolated values obtained
from the five values of the energy with three different fitting
functions are reported. Fitting the data using a simple linear
function leads to an energy of −0.7680282(5) (to be com-
pared with the exact value of −0.768068 . . .). A small bias
of about 4 × 10−5 is observed. This bias vanishes within the

TABLE III. One-dimensional Hubbard model with N = 4, U =
12, α = 1.292, β = 0.552, and pex = 4. The main domain is
D(0, 1) ∪D(1, 0). The simulation is performed with 20 independent
blocks and 106 stochastic paths starting from the Néel state. The fits
are performed with the five values of E reported in this table.

E EDMC(E )

−0.8 −0.7654686(2)
−0.795 −0.7658622(2)
−0.79 −0.7662607(3)
−0.785 −0.7666642(4)
−0.78 −0.7670729(5)
E0 linear fit −0.7680282(5)
E0 quadratic fit −0.7680684(5)
E0 two-component fit −0.7680676(5)
E0 exact −0.768068 . . .

TABLE IV. One-dimensional Hubbard model with N = 4. Aver-
age trapping time as a function of U . (α, β ) and Ev are the parameters
and variational energy of the trial wave function, respectively. Eex

is the exact energy obtained by diagonalization of the Hamiltonian
matrix. The main domain isD(0, 1) ∪D(1, 0).

U (α, β ) Ev Eex t̄I0

8 (0.908, 0.520) −0.770342 . . . −1.117172 . . . 33.5
10 (1.116, 0.539) −0.604162 . . . −0.911497 . . . 63.3
12 (1.292, 0.552) −0.495361 . . . −0.768068 . . . 108.7
14 (1.438, 0.563) −0.419163 . . . −0.662871 . . . 171.7
20 (1.786, 0.582) −0.286044 . . . −0.468619 . . . 504.5
50 (2.690, 0.609) −0.110013 . . . −0.188984 . . . 8040.2
200 (4.070, 0.624) −0.026940 . . . −0.047315 . . . 523836.0

statistical error when resorting to more flexible fitting func-
tions, such as a quadratic function of E or the two-component
representation given by Eq. (86). Our final value is in full
agreement with the exact value with about six decimal places.

Table IV shows the evolution of the average trapping times
and extrapolated energies as a function of U when using
D(0, 1) ∪D(1, 0) as the main domain. We also report the
variational and exact energies together with the values of the
optimized parameters of the trial wave function. As U in-
creases the configurations with zero or one double occupation
become more and more predominant and the average trapping
time increases. For very large values of U (say, U � 12) the
increase of t̄I0 becomes particularly steep.

Finally, in Table V, we report the results obtained for
larger systems at U = 12 for a chain size ranging from N = 4
(36 states) to N = 12 (∼106 states). No careful construction
of domains maximizing the average trapping time has been
performed, we merely chose domains of reasonable size (no
more than 2682) by taking not too large a number of double
occupations (only nD = 0, 1) and not too small a number of
nearest-neighbor antiparallel pairs. As seen, as the number
of sites increases, the average trapping time for the chosen
domains decreases. This point is, of course, undesirable since
the efficiency of the approach may gradually deteriorate when
considering large systems. A more elaborate way of con-
structing domains is clearly desirable in this case. The exact
energies extrapolated using the two-component function are
also reported. Similarly to what has been done for N = 4,
the extrapolation is performed using about five values of the
reference energy. The extrapolated DMC energies are in full
agreement with the exact value within the error bar. However,
an increase in statistical error is observed when the system
size increases. To get lower error bars, more accurate trial
wave functions may be considered, better domains, and also
larger simulation times. Of course, it will also be particularly
interesting to take advantage of the fully parallelizable char-
acter of the algorithm to get much lower error bars. All these
aspects will be considered in a forthcoming work.

V. SUMMARY AND PERSPECTIVES

In this work, it is shown how to integrate out exactly —
within a DMC framework — the contribution of all stochastic
trajectories trapped in some given domains of the Hilbert
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TABLE V. Ground-state energy of the one-dimensional Hubbard model for different sizes and U = 12. The parameters (α, β ) of the trial
wave function and the corresponding variational energy Ev are reported. t̄I0 is the average trapping time for the Néel state. The extrapolated
DMC energies EDMC are obtained using the two-component fitting function, Eq. (86). EDMC values are in full agreement with the exact values
Eex computed by diagonalization of the Hamiltonian matrix.

N Hilbert space size Domain Domain size (α, β ) t̄I0 Ev EDMC Eex

4 36 D(0, 1) ∪D(1, 0) 30 (1.292, 0.552) 108.7 −0.495361 −0.7680676(5) −0.768068
6 400 D(0, 1) ∪D(1, 0) 200 (1.124, 0.689) 57.8 −0.633297 −1.215389(9) −1.215395
8 4 900 D(0, 1) ∪D(1, 0) 1 190 (0.984, 0.788) 42.8 −0.750995 −1.6637(2) −1.66395
10 63 504 D(0, 5) ∪D(1, 4) 2 682 (0.856, 0.869) 31.0 −0.855958 −2.1120(7) −2.113089
12 853 776 D(0, 8) ∪D(1, 7) 1 674 (0.739, 0.938) 16.7 −0.952127 −2.560(6) −2.562529

space. The corresponding equations are derived in a general
context. In such a way, a new effective stochastic dynamics
connecting only domains (and not the individual states) is
defined. A key property of this effective dynamics is that
it does not depend on the “shape” of the domains used for
each state. Therefore, rather general domains (with or without
overlap) can be considered.

To obtain the effective transition probability (which pro-
vides the probability of going from one domain to another)
and the corresponding renormalized estimators, the Green’s
functions restricted to each domain must be computed analyt-
ically, that is, in practice, matrices of the size of the number of
states for the sampled domains have to be inverted. This is the
main computationally intensive step of the present approach.
The efficiency of the method is directly related to the impor-
tance of the average time spent by the stochastic trajectories
in each domain.

Being able to define domains with large average trapping
times is the key aspect of the method since it may lead to
some important reduction of the statistical error, as illustrated
in our numerical applications. Therefore, a trade-off has to
be found between maximizing the average trapping time and
minimizing the cost of computing the domain Green’s func-
tions. In practice, there is no general rule to construct such
domains. For each system at hand, one needs to determine,
on physical grounds, which regions of the configuration space
are preferentially sampled by the stochastic trajectories and to
build domains of minimal size enclosing such regions.

In the first application presented here on the one-
dimensional Hubbard model, we exploit the physics of the
large-U regime that is known to approach the Heisenberg limit
where double occupations have small weights. This simple
example has been chosen to illustrate the various aspects of
the approach.

Our goal is, of course, to tackle much larger sys-
tems, like those treated by state-of-the-art methods, such
as selected Configuration Interaction (sCI) [29–34], full
configuration interaction quantum Monte Carlo (FCIQMC)
[35,36], auxiliary field quantum Monte Carlo (AFQMC)
[37], or density matrix renormalization group (DMRG)
[38,39]. Here, we mainly focus on the theoretical aspects
of the approach. To consider larger systems, an elaborate
implementation of the present method is necessary to keep
under control the cost of the simulation. This is outside the
scope of the present study and will be presented in a forth-
coming work.
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APPENDIX: PARTICULAR CASE OF A 2 × 2 MATRIX

For the simplest case of a system containing only two
states, |1〉 and |2〉, the fundamental equation given in Eq. (57)
simplifies to

I = 〈I0|(H − E1)−1|�〉

= 〈I0|[P0(H − E1)P0]−1|�〉 +
∞∑

p=1

Ip, (A1)

with

Ip =
∑

I1 /∈D0,...,Ip /∈Dp−1

[
p−1∏
k=0

〈Ik|[Pk (H − E1)Pk]−1

× (−H )(1 − Pk )|Ik+1〉
]

× 〈Ip|[Pp(H − E1)Pp]−1|�〉. (A2)

To treat simultaneously the two possibilities for the final state,
i.e., |iN 〉 = |1〉 or |2〉, Eq. (57) has been slightly generalized to
the case of a general vector for the final state written as

|�〉 = �1|1〉 + �2|2〉. (A3)

Let us choose a single-state domain for both states, namely,
D1 = |1〉 and D2 = |2〉. Note that, due to the simplicity of
the present two-state model, there are only two possible de-
terministic “alternating” paths, namely, |1〉 → |2〉 → |1〉, . . .
and |2〉 → |1〉 → |2〉, . . ..
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For the sake of convenience, we introduce the following
quantities:

A1 = 〈1|[P1(H − E1)P1]−1(−H )(1 − P1)|2〉, (A4)

A2 = 〈2|[P2(H − E1)P2]−1(−H )(1 − P2)|1〉, (A5)

and

C1 = 〈1|[P1(H − E1)P1]−1|�〉, (A6)

C2 = 〈2|[P2(H − E1)P2]−1|�〉. (A7)

Without loss of generality, let us choose, for example, |I0〉 =
|1〉. Then, it is easy to show that

I2k+1 = C2

A2
(A1A2)k+1, I2k = C1(A1A2)k, (A8)

which yields

∞∑
p=1

Ip = C2

A2

∞∑
p=1

(A1A2)p + C1

∞∑
p=1

(A1A2)p = A1
C2 + C1A2

1 − A1A2
,

(A9)
and

〈1|(H − E1)−1|�〉 = C1 + A1
C2 + C1A2

1 − A1A2
. (A10)

For a 2 × 2 matrix of the form

H =
(

H11 H12

H12 H22

)
, (A11)

it is easy to evaluate the Ai’s. Using Eqs. (A4) and (A5), one
gets, for i = 1 or 2,

Ai = − H12

Hii − E
, Ci = 1

Hii − E
�i, (A12)

which finally yields

〈1|(H − E1)−1|�〉 = H22 − E



�1 − H12



�2, (A13)

where 
 is the determinant of H .
Alternatively, the quantity 〈1|(H − E1)−1|�〉 in the left-

hand side of Eq. (A13) can be directly calculated using the
inverse of the matrix defined in Eq. (A11), yielding

(H − E1)−1|�〉 = 1

H − E1

(
�1

�2

)

= 1




(
H22 − E −H21

−H21 H11 − E

)(
�1

�2

)
.

(A14)

As readily seen, the first component of the vector (H −
E1)−1|�〉 is identical to the one given in Eq. (A13), thus
confirming independently the validity of this equation.
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