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ABSTRACT
By recasting the non-linear frequency-dependent GW quasiparticle equation into a linear eigenvalue problem, we explain the appearance of
multiple solutions and unphysical discontinuities in various physical quantities computed within the GW approximation. Considering the
GW self-energy as an effective Hamiltonian, it is shown that these issues are key signatures of strong correlation in the (N ± 1)-electron
states and can be directly related to the intruder state problem. A simple and efficient regularization procedure inspired by the similarity
renormalization group is proposed to avoid such issues and speed up the convergence of partially self-consistent GW calculations.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0089317

I. INTRODUCTION

The GW approximation of many-body perturbation theory1,2

allows us to compute accurately charged excitation (i.e., ionization
potentials, electron affinities, and fundamental gaps) in solids and
molecules.3–6 Its popularity in the molecular electronic structure
community is rapidly growing7–30 because of its relatively low com-
putational cost31–35 and somehow surprising accuracy for weakly
correlated systems.19,21,22,30,36,37

The idea behind the GW approximation is to recast the many-
body problem into a set of non-linear one-body equations. The
introduction of the self-energy Σ links the non-interacting Green’s
function G0 to its fully interacting version G via the following Dyson
equation:

G = G0 +G0ΣG. (1)

Electron correlation is then explicitly incorporated into one-body
quantities via a sequence of self-consistent steps known as Hedin’s
equations.1

In recent studies,38–42 we discovered that one can observe
(unphysical) irregularities and/or discontinuities in the energy sur-
faces of several key quantities (ionization potential, electron affinity,
fundamental and optical gaps, total and correlation energies, as
well as excitation energies) even in the weakly correlated regime.
These issues were discovered in Ref. 38 while studying a model

two-electron system,43–45 and they were further investigated in
Ref. 39, where we provided additional evidences and explanations
of these undesirable features in real molecular systems. In
particular, we showed that each branch of the self-energy Σ is asso-
ciated with a distinct quasiparticle solution, and that each switch
between solutions implies a significant discontinuity in the quasi-
particle energy due to the transfer of weight between two solutions
of the quasiparticle equation.39 Multiple solution issues in GW
appear frequently21,23,46 (even at finite temperature47,48), especially
for orbitals that are energetically far from the Fermi level, such as in
core ionized states49,50 and finite-temperature schemes.

In addition to obvious irregularities in potential energy sur-
faces that hamper the accurate determination of properties such as
equilibrium bond lengths and harmonic vibrational frequencies,40,41

one direct consequence of these discontinuities is the difficulty
to converge (partially) self-consistent GW calculations as the self-
consistent procedure jumps erratically from one solution to the
other even if convergence accelerator techniques such as DIIS39,51,52

or more elaborate schemes53 are employed. Note in passing that the
present issues do not only appear in GW as the T-matrix54–57 and
second-order Green’s function (or second Born) formalisms58–68

exhibit the same drawbacks.
It was shown that these problems can be tamed by using

a static Coulomb-hole plus screened-exchange (COHSEX)1,69–71

self-energy41 or by considering a fully self-consistent GW
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scheme,14,33,72–78 where one considers not only the quasiparticle
solution but also the satellites at each iteration.42 However, none
of these solutions is completely satisfying as a static approximation
of the self-energy can induce significant loss in accuracy and fully
self-consistent calculations can be quite challenging in terms of
implementation and cost.

In this paper, via an upfolding process of the non-linear
GW equation,79 we provide further physical insights into the
origin of these discontinuities by highlighting, in particular, the
role of intruder states. Inspired by regularized electronic structure
theories,80,81 these new insights allow us to propose a cheap and effi-
cient regularization scheme in order to avoid these issues and speed
up the convergence of partially self-consistent GW calculations.

Here, for the sake of simplicity, we consider the one-shot
G0W0,69,82–89 but the same analysis can be performed in the
case of (partially) self-consistent schemes, such as evGW69,89–92

(where one updates only the quasiparticle energies) and qsGW7,93–97

(where both quasiparticle energies and orbitals are updated at each
iteration). Moreover, we consider a Hartree–Fock (HF) starting
point, but it can be straightforwardly extended to a Kohn–Sham
starting point. Throughout this article, p and q are general (spatial)
orbitals; i, j, k, and l denote occupied orbitals; a, b, c, and d are vacant
orbitals; and m labels single excitations i→ a. Atomic units are used
throughout.

II. DOWNFOLDING: THE NON-LINEAR GW PROBLEM
Within the G0W0 approximation, in order to obtain the quasi-

particle energies and the corresponding satellites, one solve, for each
spatial orbital p and assuming real values of the frequency ω, the
following (non-linear) quasiparticle equation:

ϵHF
p + Σc

p(ω) − ω = 0, (2)

where ϵHF
p is the pth HF orbital energy, and the correlation part of

the G0W0 self-energy is constituted by a hole (h) and a particle (p)
term as follows:

Σc
p(ω) = ∑

im

2(pi∣m)2

ω − ϵHF
i +ΩRPA

m
+∑

am

2(pa∣m)2

ω − ϵHF
a −ΩRPA

m
. (3)

Within the Tamm–Dancoff approximation (that we enforce here for
the sake of simplicity), the screened two-electron integrals are given
by

(pq∣m) = ∑
ia
(pq∣ia)XRPA

ia,m , (4)

where ΩRPA
m and XRPA

m are, respectively, the mth eigenvalue
and eigenvector of the random-phase approximation (RPA)
problem, i.e.,

ARPA ⋅ XRPA
m = ΩRPA

m XRPA
m , (5)

with

ARPA
ia,jb = (ϵHF

a − ϵHF
i )δijδab + (ia∣bj) (6)

and

(pq∣ia) = ∬ ϕp(r1)ϕq(r1)
1

∣r1 − r2∣
ϕi(r2)ϕa(r2)dr1dr2 (7)

are two-electron integrals over the HF (spatial) orbitals ϕp(r).
Because one must compute all the RPA eigenvalues and eigen-
vectors to construct the self-energy (3), the computational cost is
O(O3V3) = O(K6), where O and V are the number of occupied and
virtual orbitals, respectively, and K = O + V is the total number of
orbitals.

As a non-linear equation, Eq. (2) has many solutions ϵGW
p,s

(where the index s is numbering solutions) and their correspond-
ing weights are given by the value of the following renormalization
factor:

0 ≤ Zp,s =
⎡⎢⎢⎢⎢⎣

1 − ∂Σc
p(ω)
∂ω

∣
ω=ϵGW

p,s

⎤⎥⎥⎥⎥⎦

−1

≤ 1. (8)

In a well-behaved case, one of the solution (the so-called quasipar-
ticle) ϵGW

p has a large weight Zp. Note that we have the following
important conservation rules:98–100

∑
s

Zp,s = 1, ∑
s

Zp,sϵGW
p,s = ϵHF

p , (9)

which physically shows that the mean-field solution of unit weight is
“scattered” by the effect of correlation in many solutions of smaller
weights.

In standard GW calculations in solids,2 one assigns a quasipar-
ticle peak to the solution of the Dyson equation (1) that is associated
with the largest value of the spectral function,

S(ω) = 1
π
∣ Im G(ω)∣. (10)

III. UPFOLDING: THE LINEAR GW PROBLEM
The non-linear quasiparticle equation (2) can be exactly trans-

formed into a larger linear problem via an upfolding process where
the 2h1p and 2p1h sectors are upfolded from the 1h and 1p sectors,
respectively.79,101–104 For each orbital p, this yields a linear eigenvalue
problem of the form

H(p) ⋅ c(p,s) = ϵGW
p,s c(p,s), (11)

with

H(p) =
⎛
⎜⎜⎜⎜
⎝

ϵHF
p V2h1p

p V2p1h
p

(V2h1p
p )⊺ C2h1p 0

(V2p1h
p )⊺ 0 C2p1h

⎞
⎟⎟⎟⎟
⎠

, (12)

where

C2h1p
ija,kcl = [(ϵ

HF
i + ϵHF

j − ϵHF
a )δjlδac − 2( ja∣cl)]δik, (13)

C2p1h
iab,kcd = [(ϵ

HF
a + ϵHF

b − ϵHF
i )δikδac + 2(ai∣kc)]δbd, (14)
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and the corresponding coupling blocks read

V2h1p
p,klc =

√
2(pk∣cl), V2p1h

p,kcd =
√

2(pd∣kc). (15)

The size of this eigenvalue problem is 1 +O2V +OV2 = O(K3), and
it has to be solved for each orbital that one wishes to correct. Thus,
this step scales as O(K9) with conventional diagonalization algo-
rithms. Note, however, that the blocks C2h1p and C2p1h do not need
to be recomputed for each orbital. Of course, this O(K9) scheme
is purely illustrative and current state-of-the-art GW implementa-
tion scales as O(K3) because of efficient contour deformation and
density fitting techniques.35,46,105

It is crucial to understand that diagonalizing H(p) [see Eq. (12)]
is completely equivalent to solving the quasiparticle equation (2).
This can be further illustrated by expanding the secular equation
associated with Eq. (12),

det[H(p) − ω1] = 0, (16)

and comparing it with Eq. (2) by setting

Σc
p(ω) =V2h1p

p ⋅ (ω1 − C2h1p)
−1
⋅ (V2h1p

p )
⊺

+V2p1h
p ⋅ (ω1 − C2p1h)

−1
⋅ (V2p1h

p )
⊺

, (17)

where 1 is the identity matrix. Because the renormalization factor (8)
corresponds to the projection of the vector c(p,s) onto the reference
(or internal) space, the weight of a solution (p, s) is given by the first
coefficient of their corresponding eigenvector c(p,s), i.e.,

Zp,s = [c(p,s)
1 ]

2
. (18)

One can see this downfolding process as the construction of a
frequency-dependent effective Hamiltonian where the internal space
is composed by a single Slater determinant of the 1h or 1p sec-
tor and the external (or outer) space by all the 2h1p and 2p1h
configurations.79,106,107 The main mathematical difference between
the two approaches is that, by diagonalizing Eq. (12), one has direct
access to the internal and external components of the eigenvectors
associated with each quasiparticle and satellite, and not only their
projection in the reference space as shown by Eq. (18).

The element ϵHF
p of H(p) [see Eq. (12)] corresponds to the

(approximate) relative energy of the (N ± 1)-electron reference
determinant (compared to the N-electron HF determinant), while
the eigenvalues of the blocks C2h1p and C2p1h, which are ϵHF

i −ΩRPA
m

and ϵHF
a +ΩRPA

m , respectively, provide an estimate of the relative
energy of the 2h1p and 2p1h determinants. In some situations,
one (or several) of these determinants from the external space may
become of similar energy than the reference determinant, resulting
in a vanishing denominator in the self-energy (3). Hence, these two
diabatic electronic configurations may cross and form an avoided
crossing, and this outer-space determinant may be labeled as an
intruder state. As we shall see below, discontinuities, which are
ubiquitous in molecular systems, arise in such scenarios.

IV. AN ILLUSTRATIVE EXAMPLE
In order to illustrate the appearance and the origin of these

multiple solutions, we consider the hydrogen molecule in the
6-31G basis set, which corresponds to a two-electron system
with four spatial orbitals (one occupied and three virtuals). This
example was already considered in our previous work,39 but here
we provide further insights on the origin of the appearances of these
discontinuities. The downfolded and upfolded G0W0 schemes have
been implemented in the electronic structure package QuAcK,108

which is freely available at https://github.com/pfloos/QuAcK. These
calculations are based on restricted HF eigenvalues and orbitals.
We denote as ∣11̄⟩ the N-electron ground-state Slater determinant,
where the orbital 1 is occupied by one spin-up and one spin-down
electron. Similar notations will be employed for the (N ± 1)-electron
configurations.

In Fig. 1, we report the variation of the quasiparticle energies
of the four orbitals as functions of the internuclear distance RH−H.
One can easily diagnose two problematic regions showing obvious
discontinuities around RH−H = 1.2 Å for the LUMO+1 (p = 3) and
RH−H = 0.5Å for the LUMO+2 (p = 4). As thoroughly explained
in Ref. 39, if one relies on the linearization of the quasiparticle
equation (2) to compute the quasiparticle energies, i.e., ϵGW

p ≈ ϵHF
p

+ ZpΣc
p(ϵHF

p ), these discontinuities are transformed into irregulari-
ties as the renormalization factor cancels out the singularities of the
self-energy.

Figure 2 shows the evolution of the quasiparticle energy, the
energetically close-by satellites and their corresponding weights as
functions of RH−H. Let us first look more closely at the region around
RH−H = 1.2Å involving the LUMO+1 [Fig. 2 (left)]. As one can see,
an avoided crossing is formed between two solutions of the quasi-
particle equation (s = 4 and s = 5). Inspection of their corresponding
eigenvectors reveals that the (N + 1)-electron determinants prin-
cipally involved are the reference 1p determinant ∣11̄3⟩ and an
excited (N + 1)-electron determinant of configuration ∣122̄⟩ that
becomes lower in energy than the reference determinant for RH−H
> 1.2Å. By construction, the quasiparticle solution diabatically fol-
lows the reference determinant ∣11̄3⟩ through the avoided crossing
(thick lines in Fig. 2), which is precisely the origin of the energetic
discontinuity.

A similar scenario is at play in the region around RH−H = 0.5Å
for the LUMO+2 [Fig. 2 (right)] but it now involves three solutions
(s = 5, s = 6, and s = 7). The electronic configurations of the Slater

FIG. 1. Quasiparticle energies ϵGW
p as functions of the internuclear distance RH−H

(in Å) of H2 at the G0W 0@HF/6-31G level.
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FIG. 2. Selection of quasiparticle and satellite energies ϵGW
p,s (solid lines) and their renormalization factor Zp,s (dashed lines) as functions of the internuclear distance RH−H

(in Å) for the LUMO+1 (p = 3) and LUMO+2 (p = 4) orbitals of H2 at the G0W 0@HF/6-31G level. The quasiparticle solution (which corresponds to the solution with the
largest weight) is represented as a thicker line.

determinant involved are the ∣11̄4⟩ reference determinant as well as
two external determinants of configuration ∣12̄3⟩ and ∣123̄⟩. These
states form two avoided crossings in rapid successions, which create
two discontinuities in the energy surface (see Fig. 1). In this region,
although the ground-state wave function is well described by the
N-electron HF determinant, a situation that can be safely labeled as
single-reference, one can see that the (N + 1)-electron wave func-
tion involves three Slater determinants and can then be labeled
as a multi-reference (or strongly correlated) situation with near-
degenerate electronic configurations. Therefore, one can conclude
that this downfall of GW is a key signature of strong correlation in
the (N ± 1)-electron states that yield a significant redistribution of
weights among electronic configurations.

V. INTRODUCING REGULARIZED GW METHODS
One way to alleviate the issues discussed above and to mas-

sively improve the convergence properties of self-consistent GW
calculations is to resort to a regularization of the self-energy without
altering too much of the quasiparticle energies.

From a general perspective, a regularized GW self-energy reads

Σ̃c
p(ω; η) = ∑

im
2(pi∣m)2 fη(ω − ϵHF

i +ΩRPA
m )

+∑
am

2(pa∣m)2 fη(ω − ϵHF
a −ΩRPA

m ), (19)

FIG. 3. Comparison between non-regularized (solid lines) and regularized (dashed lines) energies as functions of the internuclear distance RH−H (in Å) for the LUMO
+1 (p = 3) and LUMO+2 (p = 4) orbitals of H2 at the G0W 0@HF/6-31G level. The quasiparticle solution is represented as a thicker line.
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where various choices for the “regularizer” fη are possible. The main
purpose of fη is to ensure that Σ̃c

p(ω; η) remains finite even if one
of the denominators goes to zero. The regularized solutions ϵ̃GW

p,s
are then obtained by solving the following regularized quasiparticle
equation:

ϵHF
p + Σ̃c

p(ω; η) − ω = 0. (20)

Of course, by construction, one must have

lim
η→0

Σ̃c
p(ω; η) = Σc

p(ω). (21)

The most common and well-established way of regularizing
Σ is via the simple energy-independent regularizer

fη(Δ) = (Δ ± iη)−1 (22)

(with η > 0),2,13,20,46 a strategy somehow related to the imaginary
shift used in multiconfigurational perturbation theory.109 Note
that this type of broadening is customary in solid-state calcula-
tions; hence, such regularization is naturally captured in many
codes.2 In practice, an empirical value of η around 100 meV is
suggested. Other choices are legitimate like the regularizers con-
sidered by Head-Gordon and coworkers within orbital-optimized
second-order Møller–Plesset theory (MP2), which have the speci-
ficity of being energy-dependent.80,110 In this context, the real
version of the simple energy-independent regularizer (22) has
been shown to damage thermochemistry performance and was
abandoned.111,112

Our investigations have shown that the energy-dependent
regularizer

fκ(Δ) =
1 − e−2Δ2

/κ2

Δ
(23)

derived from the (second-order) perturbative analysis of the similar-
ity renormalization group (SRG) equations113–115 by Evangelista116

is particularly convenient and effective for our purposes. Increasing
κ gradually integrates out states with denominators Δ larger than κ,
while the states with Δ≪ κ are not decoupled from the reference
space, hence avoiding intruder state problems.117

Figure 3 compares the non-regularized and regularized quasi-
particle energies in the two regions of interest for various
η and κ values. It clearly shows how the regularization of the GW
self-energy diabatically linked the two solutions to get rid of the
discontinuities. However, this diabatization is more or less accurate
depending on (i) the actual form of the regularizer and (ii) the value
of η or κ.

Let us first discuss the simple energy-independent regular-
izer given by Eq. (22) [Fig. 3 (top)]. Mathematically, in order to
link smoothly two solutions, the value of η has to be large enough
so that the singularity lying in the complex plane at the avoided
crossing is moved to the real axis (see Ref. 118 and references
therein). This value is directly linked to the difference in energy
between the two states at the avoided crossing and is thus, by
definition, energy-dependent. This is clearly evidenced in Fig. 3
where, depending on the value of η, the regularization is more
or less effective. For example, around RH−H = 1.1Å (top-left), a

value of 0.1 Eh (green curve) is appropriate, while at RH−H = 0.5
Å (top-right), this value does not seem to be large enough. Note
also that η = 0.1Eh is significantly larger than the suggested value
of 100 meV, and if one uses smaller η values, the regularization is
clearly inefficient.

Let us now discuss the SRG-based energy-dependent regular-
izer provided in Eq. (23) [Fig. 3 (bottom)]. For κ = 10Eh, the value
is clearly too large inducing a large difference between the two sets
of quasiparticle energies (purple curves). For κ = 0.1Eh, we have
the opposite scenario where κ is too small and some irregulari-
ties remain (green curves). We have found that κ = 1.0Eh is a good
compromise that does not alter significantly the quasiparticle ener-
gies while providing a smooth transition between the two solutions.
Moreover, although the optimal κ is obviously system-dependent,
this value performs well in all scenarios that we have encountered.

FIG. 4. Difference between regularized and non-regularized quasiparticle ener-
gies ϵ̃GW

p − ϵGW
p computed with κ = 1.0Eh as functions of the internuclear distance

RH−H (in Å) of H2 at the G0W 0@HF/6-31G level. Similar graphs for κ = 0.1Eh and
κ = 10Eh are provided in the supplementary material.
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However, it can be certainly refined for specific applications. For
example, in the case of regularized MP2 theory (where one relies
on a similar energy-dependent regularizer), a value of κ = 1.1 has
been found to be optimal for noncovalent interactions and transition
metal thermochemistry.110

To further evidence this, Fig. 4 reports the difference between
regularized (computed at κ = 1.0Eh with the SRG-based regularizer)
and non-regularized quasiparticle energies as functions of RH−H for
each orbital. The principal observation is that, in the absence of
intruder states, the regularization induces an error below 10 meV for
the HOMO (p = 1) and LUMO (p = 2), which is practically viable.
Of course, in the troublesome regions (p = 3 and p = 4), the correc-
tion brought by the regularization procedure is larger (as it should),
but it has the undeniable advantage to provide smooth curves.
Similar graphs for κ = 0.1Eh and κ = 10Eh [and the simple regular-
izer given in Eq. (22)] are provided in the supplementary material,
where one clearly sees that the larger the value of κ, the larger
the difference between regularized and non-regularizer quasiparticle
energies.

As a final example, we report in Fig. 5 the ground-state poten-
tial energy surface of the F2 molecule obtained at various levels of
theory with the cc-pVDZ basis. In particular, we compute, with
and without regularization, the total energy at the Bethe–Salpeter
equation (BSE) level16,119–121 within the adiabatic connection fluc-
tuation dissipation formalism40,122,123 following the same protocol
as detailed in Ref. 40. These results are compared to high-level
coupled-cluster (CC) calculations extracted from the same work:
CC with singles and doubles (CCSD)124 and the non-perturbative
third-order approximate CC method (CC3).125 As already shown in
Ref. 40, the potential energy surface of F2 at the BSE@G0W0@HF
(blue curve) is very “bumpy” around the equilibrium bond length

FIG. 5. Ground-state potential energy surface of F2 around its equilibrium geo-
metry obtained at various levels of theory with the cc-pVDZ basis set. Similar
graphs for κ = 0.1Eh and κ = 10Eh are provided in the supplementary material.

and it is clear that the regularization scheme (black curve computed
with κ = 1.0Eh) allows us to smooth it out without significantly alter-
ing the overall accuracy. Moreover, while it is extremely challenging
to perform self-consistent GW calculations without regularization,
it is now straightforward to compute the BSE@evGW@HF potential
energy surface (gray curve). For the sake of completeness, similar
graphs for κ = 0.1Eh and κ = 10Eh are provided in the supplemen-
tary material. For κ = 0.1Eh, one still has issues. In particular, the
BSE@evGW@HF calculations do not converge for numerous values
of the internuclear distance. Interestingly, for κ = 10Eh, the smooth
BSE@G0W0@HF and BSE@evGW@HF curves are superposed and
of very similar quality as CCSD.

VI. CONCLUDING REMARKS
In this paper, we have provided mathematical and physi-

cal explanations behind the appearance of multiple solutions and
discontinuities in various physical quantities computed within
the GW approximation. More precisely, we have evidenced that
intruder states are the main cause behind these issues and that
this downfall of GW is a key signature of strong correlation.
A simple and efficient regularization procedure inspired by the
similarity renormalization group has been proposed to remove
these discontinuities without altering too much the quasiparticle
energies. Moreover, this regularization of the self-energy signifi-
cantly speeds up the convergence of (partially) self-consistent GW
methods. We hope that these new physical insights and technical
developments will broaden the applicability of Green’s function
methods in the molecular electronic structure community and
beyond.

SUPPLEMENTARY MATERIAL

See the supplementary material for the raw data associated
with each figure as well as additional figures showing the effect of
the regularizer and its parameter, with, in particular, the difference
between non-regularized and regularized quasiparticle energies for
H2 and the ground-state potential energy surface of F2 around its
equilibrium geometry.
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