Static and dynamic Bethe-Salpeter equations in the T-matrix approximation

Cite as: J. Chem. Phys. 156, 164101 (2022); https://doi.org/10.1063/5.0088364
Submitted: 16 February 2022 • Accepted: 03 April 2022•Accepted Manuscript Online: 05 April 2022 • Published Online: 26 April 2022

Pierre-François Loos and Pina Romaniello

View Online
Export Citation
CrossMark

ARTICLES YOU MAY BE INTERESTED IN

The \triangle SCF method for non-adiabatic dynamics of systems in the liquid phase The Journal of Chemical Physics 156, 130901 (2022); https://doi.org/10.1063/5.0083340

Highly accurate HF dimer \{\it ab initio\} potential energy surface
The Journal of Chemical Physics (2022); https://doi.org/10.1063/5.0083563
Electron Transfer and Spin Orbit Coupling: Can Nuclear Motion Lead To Spin Selective Rates?
The Journal of Chemical Physics (2022); https://doi.org/10.1063/5.0086554

Static and dynamic Bethe-Salpeter equations in the T-matrix approximation

Cite as: J. Chem. Phys. 156, 164101 (2022); doi: 10.1063/5.0088364
Submitted: 16 February 2022•Accepted: 3 April 2022 •

Export Citation
CrossMark Published Online: 26 April 2022

Pierre-François Loos ${ }^{1, \text { a) (D) }}$ and Pina Romaniello ${ }^{2,3, b)}$

Abstract

AFFILIATIONS ${ }^{1}$ Laboratoire de Chimie et Physique Quantiques (UMR 5626), Université de Toulouse, CNRS, UPS, Toulouse, France ${ }^{2}$ Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, Toulouse, France ${ }^{3}$ European Theoretical Spectroscopy Facility (ETSF)

${ }^{\text {a) }}$ Author to whom correspondence should be addressed: loos@irsamc.ups-tlse.fr
${ }^{\text {b }}$)Electronic mail: romaniello@irsamc.ups-tlse.fr

Abstract

While the well-established GW approximation corresponds to a resummation of the direct ring diagrams and is particularly well suited for weakly correlated systems, the T-matrix approximation does sum ladder diagrams up to infinity and is supposedly more appropriate in the presence of strong correlation. Here, we derive and implement, for the first time, the static and dynamic Bethe-Salpeter equations when one considers T-matrix quasiparticle energies and a T-matrix-based kernel. The performance of the static scheme and its perturbative dynamical correction are assessed by computing the neutral excited states of molecular systems. A comparison with more conventional schemes as well as other wave function methods is also reported. Our results suggest that the T-matrix-based formalism performs best in few-electron systems where the electron density remains low.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088364

I. INTRODUCTION

The $G W$ approximation ${ }^{1}$ of many-body perturbation theory ${ }^{2}$ is becoming a method of choice to target charged excitations (i.e., ionization potentials and electron affinities) in molecular systems. ${ }^{3-7}$ These so-called quasiparticle energies can be experimentally measured from direct and inverse photoemission spectroscopies. From a more theoretical point of view, GW corresponds to an elegant resummation of all direct ring diagrams from the particle-hole (ph) channel, which is particularly justified in the high-density or weakly correlated regime. ${ }^{8,9}$ Within the $G W$ approximation, the self-energy-one of the key quantities of Hedin's equations ${ }^{1}$-reads as

$$
\begin{equation*}
\Sigma^{G W}(1,2)=i G(1,2) W(1,2), \tag{1}
\end{equation*}
$$

where G is the one-body Green's function, W is the dynamically screened Coulomb potential, and, e.g., $1 \equiv\left(\sigma_{1}, \mathbf{r}_{1}, t_{1}\right)$ is a composite coordinate gathering spin, space, and time variables.

Alternatives to $G W$ do exist. For example, the T-matrix (or Bethe-Goldstone) approximation, first introduced in nuclear
physics, ${ }^{10-14}$ then in condensed matter physics, ${ }^{15-26,119}$ and more recently in quantum chemistry, ${ }^{27,28}$ sums to infinity the ladder diagrams from the particle-particle (pp) channel and is justified in the low-density or strongly correlated regime. ${ }^{13-15,29}$ While the two-point screened interaction W is the cornerstone of $G W$, the T-matrix approximation relies on a more complex (four-point) effective interaction-the so-called T matrix-yielding the following self-energy:

$$
\begin{equation*}
\Sigma^{G T}(1,2)=i \int G(4,3) T(1,3 ; 2,4) d 3 d 4 . \tag{2}
\end{equation*}
$$

The natural idea of combining the ph and pp channels is also possible and has been explored, for example, in the Hubbard dimer within many-body perturbation theory (see Ref. 22 and references therein) and the uniform electron gas 30 within coupled-cluster theory. ${ }^{29}$

One of the key features of the T-matrix approximation is its exactness up to the second order, thanks to the inclusion of second-order exchange diagrams. This class of diagrams, which are particularly important in few-electron molecular systems ${ }^{31-34}$ and
explain the improvement brought by the second-order screened exchange (SOSEX) correction applied to $G W,{ }^{35-37}$ is well known to be missing in the $G W$ approximation. Moreover, unlike W in the $G W$ approximation, the T-matrix approximation also contains spin-flip terms; the spin structure of the T-matrix allows one to describe important processes such as the emission of spin waves in ferromagnetics. ${ }^{38}$

In this work, we focus on neutral excitations and we explore how the T-matrix approximation performs within the BetheSalpeter equation (BSE) of many-body perturbation theory. ${ }^{39-42}$

Let us consider closed-shell electronic systems consisting of N electrons and K one-electron basis functions. The number of singly occupied and virtual (i.e., unoccupied) spinorbitals is $O=N$ and $V=K-O$, respectively. Let us denote the p th spinorbital as $\psi_{p}(\mathbf{x})$ and its one-electron energy as ε_{p}. The composite variable $\mathbf{x}=(\sigma, \mathbf{r})$ gathers spin (σ) and spatial (\mathbf{r}) variables. We assume real quantities throughout this paper: i, j, k, and l are occupied orbitals; a, b, c, and d are unoccupied orbitals; p, q, r, and s indicate arbitrary orbitals; and m labels single excitations, while n labels double electron attachments or double electron detachments.

II. CHARGED EXCITATIONS

By definition, in the quasiparticle approximation, the one-body Green's function is ${ }^{2}$

$$
\begin{equation*}
G\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} ; \omega\right)=\sum_{i} \frac{\psi_{i}\left(\boldsymbol{x}_{1}\right) \psi_{i}\left(\boldsymbol{x}_{2}\right)}{\omega-\varepsilon_{i}-i \eta}+\sum_{a} \frac{\psi_{a}\left(\boldsymbol{x}_{1}\right) \psi_{a}\left(\boldsymbol{x}_{2}\right)}{\omega-\varepsilon_{a}+i \eta}, \tag{3}
\end{equation*}
$$

where η is a positive infinitesimal and its nature is completely defined by the set of orbitals and the corresponding energies that are used to build it. For example, $G^{\mathrm{HF}}\left(\mathbf{x}_{1}, \mathbf{x}_{2} ; \omega\right)$ is the Hartree-Fock (HF) Green's function built from HF spinorbitals $\psi_{p}^{\mathrm{HF}}(\boldsymbol{x})$ and energies $\varepsilon_{p}^{\mathrm{HF}}$.

Contrary to the $G W$ approximation that relies on the (two-point) dynamically screened Coulomb potential W computed from a ph-random-phase approximation (ph-RPA) problem to target charged excitations, ${ }^{1-6}$ here we consider the GT approximation where one employs the (four-point) T matrix obtained from solving the pp-RPA equations.

The non-Hermitian pp-RPA problem reads ${ }^{43-53}$

$$
\left(\begin{array}{cc}
\boldsymbol{A}^{\mathrm{pp}-\mathrm{RPA}} & \boldsymbol{B}^{\mathrm{pp}-\mathrm{RPA}} \tag{4}\\
-\left(\boldsymbol{B}^{\mathrm{pp}-\mathrm{RPA}}\right)^{\top} & -\boldsymbol{C}^{\mathrm{pp}-\mathrm{RPA}}
\end{array}\right) \cdot\binom{\boldsymbol{X}_{n}^{N \pm 2}}{\boldsymbol{Y}_{n}^{N \pm 2}}=\Omega_{n}^{N \pm 2}\binom{\boldsymbol{X}_{n}^{N \pm 2}}{\boldsymbol{Y}_{n}^{N \pm 2}},
$$

where the elements of various matrices are defined as

$$
\begin{gather*}
A_{a b, c d}^{\mathrm{pp}-\mathrm{RPA}}=\delta_{a b} \delta_{c d}\left(\varepsilon_{a}+\varepsilon_{b}\right)+\langle a b \| c d\rangle, \tag{5a}\\
B_{a b, i j}^{\mathrm{pp}-\mathrm{RPA}}=\langle a b \| i j\rangle, \tag{5b}\\
C_{i j, k l}^{\mathrm{pp}-\mathrm{RPA}}=-\delta_{i k} \delta_{j l}\left(\varepsilon_{i}+\varepsilon_{j}\right)+\langle i j \| k l\rangle, \tag{5c}
\end{gather*}
$$

and

$$
\begin{equation*}
\langle p q \| r s\rangle=\langle p q \mid r s\rangle-\langle p q \mid s r\rangle \tag{6}
\end{equation*}
$$

are two-electron integrals in the spinorbital basis, i.e.,

$$
\begin{equation*}
\langle p q \mid r s\rangle=\iint \psi_{p}\left(\boldsymbol{x}_{1}\right) \psi_{q}\left(\boldsymbol{x}_{2}\right) \frac{1}{\left|\boldsymbol{r}_{1}-\boldsymbol{r}_{2}\right|} \psi_{r}\left(\boldsymbol{x}_{1}\right) \psi_{s}\left(\boldsymbol{x}_{2}\right) d \boldsymbol{x}_{1} d \boldsymbol{x}_{2} . \tag{7}
\end{equation*}
$$

In the absence of instabilities (which should not appear in Coulombic systems with repulsive interactions only ${ }^{46}$), the pp-RPA problem yields $V(V-1) / 2$ positive eigenvalues Ω_{n}^{N+2} and $O(O-1) / 2$ negative eigenvalues Ω_{n}^{N-2}, which correspond to double attachments and double detachments, respectively. The pp-RPA correlation energy is given by ${ }^{45,46}$

$$
\begin{align*}
E_{\mathrm{c}}^{\mathrm{pp}-\mathrm{RPA}} & =+\sum_{n} \Omega_{n}^{N+2}-\operatorname{Tr}\left(\boldsymbol{A}^{\mathrm{pp}-\mathrm{RPA}}\right) \\
& =-\sum_{n} \Omega_{n}^{N-2}-\operatorname{Tr}\left(\boldsymbol{C}^{\mathrm{pp}-\mathrm{RPA}}\right), \tag{8}
\end{align*}
$$

Considering the time structure of the T-matrix approximation as $T(1,3 ; 2,4)=-\delta\left(t_{1}-t_{3}\right) \delta\left(t_{2}-t_{4}\right) \mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} ; \boldsymbol{x}_{4}, \boldsymbol{x}_{3} ; t_{1}-t_{2}\right),{ }^{2}$ the frequency-dependent T-matrix self-energy can be obtained from the Fourier transform of Eq. (2) as

$$
\begin{align*}
\Sigma^{G T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2} ; \omega\right)= & -i \int d \boldsymbol{x}_{3} d \boldsymbol{x}_{4} \int \frac{d \omega^{\prime}}{2 \pi} G\left(\boldsymbol{x}_{4}, \boldsymbol{x}_{3} ; \omega^{\prime}\right) \\
& \times \mathcal{T}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{3} ; \boldsymbol{x}_{2}, \boldsymbol{x}_{4} ; \omega+\omega^{\prime}\right) . \tag{9}
\end{align*}
$$

The correlation part of the T matrix can be constructed from the knowledge of the pp-RPA eigenvalues and eigenvectors. In the spinorbital basis, it is defined as $\mathcal{T}_{p q, r s}^{c}=\mathcal{T}_{p q, r s}-\langle p q \| r s\rangle$ and it has the following form: ${ }^{52}$

$$
\begin{equation*}
\mathcal{T}_{p q, r s}^{c}(\omega)=\sum_{n} \frac{\left\langle p q \mid \chi_{n}^{N+2}\right\rangle\left\langle r s \mid \chi_{n}^{N+2}\right\rangle}{\omega-\Omega_{n}^{N+2}+i \eta}-\sum_{n} \frac{\left\langle p q \mid \chi_{n}^{N-2}\right\rangle\left\langle r s \mid \chi_{n}^{N-2}\right\rangle}{\omega-\Omega_{n}^{N-2}-i \eta}, \tag{10}
\end{equation*}
$$

with

$$
\begin{align*}
& \left\langle p q \mid \chi_{n}^{N+2}\right\rangle=\sum_{c<d}\langle p q \| c d\rangle X_{c d, n}^{N+2}+\sum_{k<l}\langle p q \| k l\rangle Y_{k l, n}^{N+2}, \tag{11a}\\
& \left\langle p q \mid \chi_{n}^{N-2}\right\rangle=\sum_{c<d}\langle p q \| c d\rangle X_{c d, n}^{N-2}+\sum_{k<l}\langle p q \| k l\rangle X_{k l, n}^{N-2} . \tag{11b}
\end{align*}
$$

Combining Eqs. (3) and (10), the correlation part of the T-matrix self-energy reads ${ }^{2,22,27,28}$

$$
\begin{equation*}
\Sigma_{p q}^{G T}(\omega)=\sum_{i n} \frac{\left\langle p i \mid \chi_{n}^{N+2}\right\rangle\left\langle q i \mid \chi_{n}^{N+2}\right\rangle}{\omega+\varepsilon_{i}-\Omega_{n}^{N+2}+i \eta}+\sum_{a n} \frac{\left\langle p a \mid \chi_{n}^{N-2}\right\rangle\left\langle q a \mid \chi_{n}^{N-2}\right\rangle}{\omega+\varepsilon_{a}-\Omega_{n}^{N-2}-i \eta} . \tag{12}
\end{equation*}
$$

While the dynamical $G W$ self-energy corresponds to the downfolding of the 2 h 1 p and 2 p 1 h configurations on the 1 h and 1 p configurations via their coupling with the 1 h 1 p configurations, respectively, ${ }^{54}$ Eq. (12) shows that, in the case of the T-matrix approximation, the same 2 h 1 p and 2 p 1 h configurations are downfolded on the 1 p and 1 h configurations via their coupling with the 2 h and 2 p configurations, respectively.

Within the (perturbative) one-shot GT scheme (labeled $G_{0} T_{0}$ in the following), the quasiparticle energies are obtained via the linearization of the quasiparticle equation, ${ }^{55-63}$ i.e.,

$$
\begin{equation*}
\varepsilon_{p}^{G_{0} T_{0}}=\varepsilon_{p}^{\mathrm{HF}}+Z_{p} \Sigma_{p p}^{G T}\left(\varepsilon_{p}^{\mathrm{HF}}\right) \tag{13}
\end{equation*}
$$

where we have assumed a HF starting point, and

$$
\begin{equation*}
Z_{p}=\left[1-\left.\frac{\partial \Sigma_{p p}^{T}(\omega)}{\omega}\right|_{\omega=\varepsilon_{p}^{\mathrm{HF}}}\right]^{-1} \tag{14}
\end{equation*}
$$

is the renormalization factor or weight of the quasiparticle solution. Other levels of (partial) self-consistency can be considered like the "eigenvalue" self-consistent GT (evGT) ${ }^{57,63-67}$ or the quasiparticle self-consistent $G T$ (qsGT) ${ }^{68-72}$ schemes.

III. NEUTRAL EXCITATIONS

As the one-body Green's function is the pillar of the $G W$ and $G T$ approximations, similarly the two-body Green's function G_{2} is the central quantity of the BSE formalism of many-body perturbation theory ${ }^{39-42}$ via its link with the two-body correlation function L, which satisfies the following Dyson equation:

$$
\begin{align*}
L\left(1,2 ; 1^{\prime}, 2^{\prime}\right)= & L_{0}\left(1,2 ; 1^{\prime}, 2^{\prime}\right)+\int L_{0}\left(1,4 ; 1^{\prime}, 3\right) \Xi(3,5 ; 4,6) \\
& \times L\left(6,2 ; 5,2^{\prime}\right) d 3 d 4 d 5 d 6 \tag{15}
\end{align*}
$$

where

$$
\begin{gather*}
i L_{0}\left(1,4 ; 1^{\prime}, 3\right)=G(1,3) G\left(4,1^{\prime}\right) \tag{16a}\\
i L\left(1,2 ; 1^{\prime}, 2^{\prime}\right)=-G_{2}\left(1,2 ; 1^{\prime}, 2^{\prime}\right)+G\left(1,1^{\prime}\right) G\left(2,2^{\prime}\right), \tag{16b}
\end{gather*}
$$

and

$$
\begin{equation*}
\Xi(3,5 ; 4,6)=i \frac{\delta \Sigma(3,4)}{\delta G(6,5)} \tag{17}
\end{equation*}
$$

is the so-called BSE kernel that takes into account the variation of Σ with respect to the variation of G. By taking into account the interaction of the excited electron and its hole left behind (the infamous excitonic effect), the BSE is able to reliably model (neutral) optical excitations as measured by absorption spectroscopy. The moderate cost of the BSE [which scales as $\mathcal{O}\left(K^{4}\right)$ in its standard implementation] and its all-round accuracy are the main reasons behind its growing popularity in the molecular electronic structure community.

In order to target neutral (singly) excited states, we first consider the static version of the BSE employing the GT quasiparticle energies [see Eq. (13)] as well as the T-matrix kernel [i.e., $\Sigma^{G T}$ in Eq. (17)]. In this case, the BSE@GT linear eigenvalue problem simply reads

$$
\left(\begin{array}{cc}
\boldsymbol{A}^{\mathrm{BSE}} & \boldsymbol{B}^{\mathrm{BSE}} \tag{18}\\
-\boldsymbol{B}^{\mathrm{BSE}} & -\boldsymbol{A}^{\mathrm{BSE}}
\end{array}\right) \cdot\binom{\boldsymbol{X}_{m}^{\mathrm{BSE}}}{\boldsymbol{Y}_{m}^{\mathrm{BSE}}}=\Omega_{m}^{\mathrm{BSE}}\binom{\boldsymbol{X}_{m}^{\mathrm{BSE}}}{\boldsymbol{Y}_{m}^{\mathrm{BSE}}}
$$

with

$$
\begin{gather*}
A_{i a, j b}^{\mathrm{BSE}}=\delta_{i j} \delta_{a b}\left(\varepsilon_{a}^{G T}-\varepsilon_{i}^{G T}\right)+\langle i b \| a j\rangle+\mathcal{T}_{i b, a j}^{c}(\omega=0), \tag{19a}\\
B_{i a, j b}^{\mathrm{BSE}}=\langle i j \| a b\rangle+\mathcal{T}_{i j, a b}^{c}(\omega=0) \tag{19b}
\end{gather*}
$$

The eigenvalues $\Omega_{m}^{\mathrm{BSE}}$ of Eq. (18) provide $O V$ singlet (i.e., spinconserved) and $O V$ triplet (i.e., spin-flip) single excitations. Note
that the spin structure of the BSE@GT equations is analogous to the BSE@ $G W$ version, ${ }^{92}$ and one can separately compute singlet and triplet excitation energies. Neglecting the coupling between excitations and de-excitations, i.e., $\boldsymbol{B}^{\mathrm{BSE}}=\mathbf{0}$, is known as the Tamm-Dancoff approximation (TDA).

Due to the frequency-independent nature of the static BSE, it is well known that one cannot access double (and higher) excitations. ${ }^{92-97}$ In order to go beyond the static approximation, it is possible to consider, within the dynamical TDA (dTDA) that neglects the frequency dependence of the coupling block \mathbf{B}, the dynamical version of the BSE (dBSE). ${ }^{40,94,96}$ In this case, one must solve the (non-linear) dynamical eigenvalue problem,

$$
\left(\begin{array}{cc}
\boldsymbol{A}^{\mathrm{dBSE}}\left(\Omega_{S}\right) & \boldsymbol{B}^{\mathrm{BSE}} \tag{20}\\
-\boldsymbol{B}^{\mathrm{BSE}} & -\boldsymbol{A}^{\mathrm{dBSE}}\left(-\Omega_{S}\right)
\end{array}\right) \cdot\binom{\boldsymbol{X}_{S}^{\mathrm{dBSE}}}{\boldsymbol{Y}_{S}^{\mathrm{dBSE}}}=\Omega_{S}\binom{\boldsymbol{X}_{S}^{\mathrm{dBSE}}}{\boldsymbol{Y}_{S}^{\mathrm{dBSE}}}
$$

with

$$
\begin{equation*}
A_{i a, j b}^{\mathrm{dBSE}}(\omega)=\delta_{i j} \delta_{a b}\left(\varepsilon_{a}^{G T}-\varepsilon_{i}^{G T}\right)+\langle i b \| a j\rangle+\widetilde{\mathcal{T}}_{i b, a j}^{c}(\omega) \tag{21}
\end{equation*}
$$

where, by following Strinati's seminal work, ${ }^{40}$ one can derive the following expression for the elements of the dynamical T matrix:

$$
\begin{align*}
\widetilde{\mathcal{T}}_{i b, a j}^{c}(\omega)= & \sum_{n} \frac{\left\langle i b \mid \chi_{n}^{N+2}\right\rangle\left\langle a j \mid \chi_{n}^{N+2}\right\rangle}{\omega-\Omega_{n}^{N+2}+\left(\varepsilon_{i}^{G T}+\varepsilon_{j}^{G T}\right)+i \eta} \\
& +\sum_{n} \frac{\left\langle i b \mid \chi_{n}^{N-2}\right\rangle\left\langle a j \mid \chi_{n}^{N-2}\right\rangle}{\omega+\Omega_{n}^{N-2}-\left(\varepsilon_{a}^{G T}+\varepsilon_{b}^{G T}\right)+i \eta}, \tag{22}
\end{align*}
$$

from which one can check that we recover the static expression (10) in the limit $\Omega_{n}^{N \pm 2} \rightarrow \infty$. Equation (22) highlights the interesting dynamical structure of the T matrix, where, similar to the dBSE@GW scheme, ${ }^{40,94,96}$ the 2 h 2 p configurations are downfolded on the 1 h 1 p configurations. ${ }^{98}$ Additional details about the derivation of Eq. (22) are reported in the Appendix.

Because solving a non-linear eigenvalue problem is computationally challenging, here we rely on the perturbative scheme developed in Ref. 96 in order to access dynamically corrected single excitations for which additional relaxation effects coming from higher excitations are taken into account. ${ }^{92,94,96,97,99-104}$ Below, we quickly recap this dynamical perturbative scheme.

Based on Rayleigh-Schrödinger perturbation theory, the nonlinear eigenproblem (20) can be split as a zeroth-order static reference and a first-order dynamic perturbation such that

$$
\begin{align*}
& \left(\begin{array}{cc}
\boldsymbol{A}^{\mathrm{dBSE}}\left(\Omega_{S}\right) & \boldsymbol{B}^{\mathrm{BSE}} \\
-\boldsymbol{B}^{\mathrm{BSE}} & -\boldsymbol{A}^{\mathrm{BSE}}\left(-\Omega_{S}\right)
\end{array}\right) \\
& \quad=\left(\begin{array}{cc}
\boldsymbol{A}^{\mathrm{BSE}} & \boldsymbol{B}^{\mathrm{BSE}} \\
-\boldsymbol{B}^{\mathrm{BSE}} & -\boldsymbol{A}^{\mathrm{BSE}}
\end{array}\right)+\left(\begin{array}{cc}
\boldsymbol{A}^{(1)}\left(\Omega_{S}\right) & \mathbf{0} \\
\mathbf{0} & -\boldsymbol{A}^{(1)}\left(-\Omega_{S}\right)
\end{array}\right) \tag{23}
\end{align*}
$$

with

$$
\begin{equation*}
A_{i a, j b}^{(1)}(\omega)=\widetilde{\mathcal{T}}_{i b, a j}^{c}(\omega)-\mathcal{T}_{i b, a j}^{c}(\omega=0) \tag{24}
\end{equation*}
$$

As usual, one can naturally expand the Sth BSE excitation energy and its corresponding eigenvector as

$$
\begin{gather*}
\Omega_{S}=\Omega_{S}^{\mathrm{BSE}}+\Omega_{S}^{(1)}+\cdots, \tag{25a}\\
\binom{\boldsymbol{X}_{S}}{\boldsymbol{Y}_{S}}=\binom{\boldsymbol{X}_{S}^{\mathrm{BSE}}}{\boldsymbol{Y}_{S}^{\mathrm{BE}}}+\binom{\boldsymbol{X}_{S}^{(1)}}{\boldsymbol{Y}_{S}^{(1)}}+\cdots .
\end{gather*}
$$

Solving the static BSE [see Eq. (18)] yields the (zeroth-order) static $\Omega_{S}^{\mathrm{BSE}}$ excitation energies and their corresponding eigenvectors $\boldsymbol{X}_{S}^{\mathrm{BSE}}$ and $\boldsymbol{Y}_{S}^{\mathrm{BSE}}$. The first-order correction to the Sth excitation energy is, within the dTDA,

$$
\begin{equation*}
\Omega_{S}^{(1)}=\left(\boldsymbol{X}_{S}^{\mathrm{BSE}}\right)^{\top} \cdot \boldsymbol{A}^{(1)}\left(\Omega_{S}^{\mathrm{BSE}}\right) \cdot \boldsymbol{X}_{S}^{\mathrm{BSE}} . \tag{26}
\end{equation*}
$$

This correction can be renormalized by computing, at no extra cost, the renormalization factor, which reads

$$
\begin{equation*}
\zeta_{s}=\left[1-\left.\left(\boldsymbol{X}_{S}^{\mathrm{BSE}}\right)^{\top} \cdot \frac{\partial \boldsymbol{A}^{(1)}\left(\Omega_{S}\right)}{\Omega_{S}}\right|_{\Omega_{S}=\Omega_{S}^{\mathrm{BSE}}} \cdot \boldsymbol{X}_{S}^{\mathrm{BSE}}\right]^{-1} \tag{27}
\end{equation*}
$$

This yields our final expression for the dynamically corrected BSE excitation energies,

$$
\begin{equation*}
\Omega_{S}^{\mathrm{dyn}}=\Omega_{S}^{\mathrm{stat}}+\Delta \Omega_{S}^{\mathrm{dyn}}=\Omega_{S}^{\mathrm{BSE}}+\zeta_{S} \Omega_{S}^{(1)} . \tag{28}
\end{equation*}
$$

Note again that the present perturbative scheme does not allow one to access double excitations as only excitations calculated within the static approach can be dynamically corrected.

IV. COMPUTATIONAL DETAILS

The present formalism has been implemented in the electronic structure package QuAcK, ${ }^{105}$ which is freely available at https://github.com/pfloos/QuAcK. We consider here only systems with closed-shell singlet ground states. Thus, the $G W$ and $G T$ calculations are performed by considering a (restricted) HF starting point and standard Gaussian basis sets (defined with cartesian functions) are employed. Note that all quasiparticle energies, which are obtained via Eq. (13), are corrected in the same way. Finally, the infinitesimal η is set to zero for all calculations. The evGT and qSGT schemes have been also implemented but are not considered here, mainly because, for the small molecular systems studied here (see below), we have observed very small differences between one-shot and self-consistent quasiparticle energies. Although the dynamical correction is computed throughout in the dTDA, the zeroth-order excitonic Hamiltonian [see Eq. (18)] is always the "full" BSE static Hamiltonian, i.e., without TDA. Reference full configuration interaction (FCI) calculations have been performed using QUANTUM PACKAGE. ${ }^{106}$

In terms of computational cost, the overall scaling of BSE@GT is equivalent to BSE@ $G W$ as they both correspond to seeking the lowest eigenvalues of a matrix of size $(2 \mathrm{OV} \times 2 \mathrm{OV})$. Searching iteratively for the lowest eigenstates can be routinely performed via Davidson's algorithm with a $\mathcal{O}\left(K^{4}\right)$ computational cost. ${ }^{107}$ The cost of the dynamical correction, which is thoroughly discussed in

Ref. 96, is more expensive but is again equivalent in both formalisms. Both the computational cost associated with the computation of the T-matrix and screening W scale as $\mathcal{O}\left(K^{6}\right)$ in their standard implementation as one must obtain all the eigenvalues and eigenvectors of the pp-RPA and ph-RPA problems, respectively. ${ }^{108}$ However, the prefactor of the pp-RPA calculation is significantly larger than its phRPA counterpart due to the larger size of the pp-RPA matrices and its non-Hermitian nature. ${ }^{45-48,50-52}$ Moreover, within the T-matrix formalism, one must compute both the singlet and triplet contributions of the T-matrix, while for singlet states, only the singlet part of W is required. Although similar approaches remain to be developed for the T-matrix formalism, contour deformation and density fitting techniques can be efficiently implemented in the case of $G W$ to reduce the scaling to $\mathcal{O}\left(K^{3}\right) .{ }^{109-111}$

V. RESULTS AND DISCUSSION

A. Excited states of the hydrogen molecule

As a first didactical example, we consider the lowest singlet and triplet excited states of the hydrogen molecule H_{2} and the variation of the respective vertical transition energies upon dissociation. The excitation energies associated with these low-lying excited states are represented in Fig. 1 as the function of the internuclear distance $R_{\mathrm{H}-\mathrm{H}}$ at the FCI (black), BSE@ $G_{0} W_{0}$ (blue), and BSE@ $G_{0} T_{0}$ (red) levels with the cc-pVTZ basis. The variation of the HOMO and LUMO quasiparticle energies, as well as the HOMO-LUMO gap computed at the $G_{0} W_{0}$ and $G_{0} T_{0}$ levels, is depicted in Fig. 2. This shows that, as already observed in the Hubbard dimer ${ }^{22}$ and in molecular systems, ${ }^{27}$ the $G_{0} W_{0}$ and $G_{0} T_{0}$ quasiparticle energies are similar near the Fermi level.

Overall, as evidenced by Fig. 1, the performance of BSE@ $G_{0} W_{0}$ and BSE@ $G_{0} T_{0}$ is analogous for this system. For the lowest singlet excited state of $\mathrm{B}^{1} \Sigma_{u}^{+}$symmetry, the T-matrix-based formalism is slightly better when $R_{\mathrm{H}-\mathrm{H}}$ increases but ultimately fails to reproduce the FCI results. For the $\mathrm{E}^{1} \Sigma_{g}^{+}$state, $\mathrm{BSE} @ G_{0} T_{0}$ is more accurate than BSE@ $G_{0} W_{0}$ for small bond length and the scenario is reversed after the avoided crossing with the doubly excited state of $\mathrm{F}^{1} \Sigma_{g}^{+}$ symmetry. Of course, both formalisms cannot "see" the $\mathrm{F}^{1} \Sigma_{g}^{+}$states as the static BSE formalism is blind to double excitations. Therefore, it cannot model properly the avoided crossing between $\mathrm{E}^{1} \Sigma_{g}^{+}$ and $\mathrm{F}^{1} \Sigma_{g}^{+}$states. For the $\mathrm{B}^{1} \Sigma_{u}^{+}$and $\mathrm{C}^{1} \Pi_{u}$ states, $\mathrm{BSE} @ G_{0} W_{0}$ and BSE@ $G_{0} T_{0}$ reproduces fairly well the FCI potential energy curves with a modest preference for the latter.

Similar observations can be made for the triplet states, the $G W$ and $G T$-based formalisms yielding very similar excitation energies, except for the $c^{3} \Pi_{u}$ state for which $\mathrm{BSE} @ G_{0} W_{0}$ has clearly the edge. Moreover, triplet instabilities seem to affect BSE@ $G_{0} T_{0}$ slightly earlier than BSE@ $G_{0} W_{0}$.

In Fig. 3, we show the energy shift provided by the dynamical correction for the lowest singlet and lowest triplet excited states of H_{2} as the function of $R_{\mathrm{H}-\mathrm{H}}$. These dynamically corrected schemes are labeled dBSE@ $G_{0} W_{0}$ and dBSE@ $G_{0} T_{0}$. For the singlet state of B ${ }^{1} \Sigma_{u}^{+}$ symmetry, the dynamical correction slightly improves the excitation energies at small internuclear distances for both schemes, while, for larger bond lengths, an improvement is only visible at the T-matrix level. Note that, for this system with few electrons, the dynamical corrections are quite small in magnitude. In the case of the

FIG. 1. Singlet (left) and triplet (right) excitation energies (in eV) of H_{2} as a function of the internuclear distance $R_{\text {H-H }}$ (in \AA) computed at the FCl (black), $\mathrm{BSE} @ \mathrm{G}_{0} W_{0}$ (blue), and BSE@ $G_{0} T_{0}$ (red) levels with the cc-pVTZ basis. Raw data are reported in the supplementary material.

FIG. 2. HOMO and LUMO quasiparticle energies as well as the HOMO-LUMO gap (in eV) of H_{2} as the function of the internuclear distance $R_{\mathrm{H}-\mathrm{H}}$ (in \AA) computed at the $G_{0} W_{0}$ (blue) and $G_{0} T_{0}$ (red) levels with the cc-pVTZ basis. Raw data are reported in the supplementary material.
triplet state of $\mathrm{b}^{3} \Sigma_{u}^{+}$symmetry, the dynamical correction worsens the results compared to FCI, especially in the case of BSE@ $G_{0} W_{0}$.

B. Excited states of beryllium hydride

As a second example, we consider the symmetric dissociation of linear molecule beryllium hydride $\left(\mathrm{BeH}_{2}\right)$, a system for which one can assume that screening plays a more important role than in the previous example. The variation of the lowest singlet and triplet excitation energies as the function of the distance $R_{\mathrm{Be}-\mathrm{H}}$ is shown in Fig. 4, while the quasiparticle energies of the frontier orbitals and the associated (fundamental) gap computed at the $G_{0} W_{0}$ and $G_{0} T_{0}$ levels are depicted in Fig. 5. All calculations are performed with the cc-pVDZ basis. Again, one notes that the $G_{0} W_{0}$ and $G_{0} T_{0}$ quasiparticle energies are very similar near the Fermi level. Therefore, one can safely assume that any significant variation of the excitation energies computed within the $G W$ - and $G T$-based formalisms originates mainly from their distinct kernel. The excitation energies computed with the dynamical schemes, $\mathrm{dBSE} @ G_{0} W_{0}$ and $\mathrm{dBSE} @ G_{0} T_{0}$, are reported as thin solid lines. Here, one can show that dynamical corrections improve agreement between BSE and FCI in most cases.

For the four lowest singlet excited states (left panel of Fig. 4), $\mathrm{dBSE} @ G_{0} T_{0}$ is clearly better than $\mathrm{dBSE} @ G_{0} W_{0}$, while the opposite trend is observed for the four lowest triplet states (right panel of Fig. 4). Note that, for large $R_{\mathrm{Be}-\mathrm{H}}$, the two BSE-based schemes provide only a qualitative description of the excited states with errors of several eVs. Nonetheless, the overall ordering of the excited states is globally respected.

C. Excited states of water

As a third and final example, we compute the excitation energies associated with the two lowest singlet and two lowest triplet

FIG. 3. Error with respect to FCl for the lowest singlet (left) and the lowest triplet (right) excitation energies of H_{2} as the function of the internuclear distance $R_{\text {H-H }}$ (in \AA) computed within the static schemes ($\mathrm{BSE} @ G_{0} W_{0}$ and BSE@ $G_{0} T_{0}$) and the dynamically corrected schemes ($\mathrm{dBSE} @ G_{0} W_{0}$ and dBSE@ $G_{0} T_{0}$). The cc-pVTZ basis is employed for all calculations. Raw data are reported in the supplementary material.

FIG. 4. Singlet (left) and triplet (right) excitation energies (in eV) of BeH_{2} as a function of the distance $R_{\mathrm{Be}-\mathrm{H}}$ (in \AA) computed at the FCl (black), $\mathrm{BSE@G}_{0} W_{0}$ (blue), and $B S E @ G_{0} T_{0}$ (red) levels with the cc-pVDZ basis. The dynamically corrected BSE excitation energies are represented as thin lines for dBSE@ $G_{0} W_{0}$ (blue) and dBSE@G $G_{0} T_{0}$ (red). Raw data are reported in the supplementary material.

FIG. 5. HOMO and LUMO quasiparticle energies as well as the HOMO-LUMO gap (in eV) of BeH_{2} as the function of the internuclear distance $R_{\mathrm{Be}-\mathrm{H}}$ (in \AA) computed at the BSE@Go W_{0} (blue) and BSE@ $G_{0} T_{0}$ (red) levels with the cc-pVDZ basis. Raw data are reported in the supplementary material.
excited states of water at equilibrium geometry (see Fig. 6). Note that all these excited states are of Rydberg nature and correspond to $n \rightarrow 3 s$ and $n \rightarrow 3 p$ transitions for the B_{1} and A_{2} states, respectively. ${ }^{113}$ In addition to the BSE-based models studied in the present paper, we have selected well-known wave function methods, ${ }^{114-117}$
namely, configuration interaction with singles (CIS), CIS with perturbative doubles [CIS(D)], time-dependent Hartree-Fock (TDHF), and FCI (taken as reference), and computed the excitation energies of these transitions. It is worth mentioning here that the TDHF (or RPAx) equations within the TDA are strictly equivalent to the CIS equation ${ }^{117}$ and that CIS(D) is a simple perturbative double correction to CIS and can be considered as an excited-state analog of second-order Møller-Plesset perturbation theory. ${ }^{115,116}$

Two key observations can be made: (i) BSE@ $G_{0} W_{0}$ is by far the best performer with a slight overestimation on the order of 0.1 eV (as compared to FCI) and (ii) BSE@ $G_{0} T_{0}$ systematically underestimates the excitation energies [similarly to CIS(D)] and outperforms CIS, CIS(D), and TDHF for the singlet states only. These general trends are also observed for other systems, and they well evidence the crucial role of screening in $G W$, hinting that a screened version of the T-matrix formalism as proposed in Ref. 22 might be a promising way for improvement.

VI. CONCLUSION

We have derived and implemented, for the first time, the static and dynamic Bethe-Salpeter equations when one considers T-matrix quasiparticle energies and a T-matrix-based kernel. The performance of the static scheme and its perturbative dynamical correction have been assessed by computing the neutral excited states of several molecular systems. Our results suggest that, in the context of the computation of molecular excitation energies, the BSE@GT formalism performs best in few-electron systems where the electron density remains low. The overall accuracy of the present scheme still needs to be assessed for larger systems (where screening is known to be more important). For such purposes, a comprehensive benchmark study would be required and we are planning to do so in the future.

It would be interesting to investigate its performance for the computation of ground-state correlation energies within the adiabatic connection fluctuation dissipation formalism, where BSE@GW has been shown to be particularly outstanding. ${ }^{89,90,118}$ The combination of $G T$ and $G W$ via the range separation of the Coulomb operator to avoid double counting of the low-order diagrams is

FIG. 6. Error with respect to FCl for the singlet (left) and triplet (right) excitation energies (in eV) of $\mathrm{H}_{2} \mathrm{O}$ at equilibrium geometry computed at various levels of theory with the aug-cc-pVDZ basis. The geometry and the reference FCI values have been extracted from the QUEST database. ${ }^{112}$ Raw data are reported in the supplementary material.
also a promising avenue. The work along these lines is currently in progress. Finally, the unrestricted and spin-flip extensions of the present formalism are currently being developed.

SUPPLEMENTARY MATERIAL

See the supplementary material for the raw data of each figure.

ACKNOWLEDGMENTS

The authors would like to thank Roberto Orlando for useful discussions. P.-F.L. thanks the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (Grant Agreement No. 863481) for funding. This project has also received financial support from the Centre National de la Recherche Scientifique (CNRS) through the 80|PRIME program and has been supported through the EUR grant NanoX under Grant No. ANR-17-EURE-0009 in the framework of the "Programme des Investissements d'Avenir."

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

The data that support the findings of this study are available within the article and its supplementary material.

APPENDIX: BSE WITH A DYNAMICAL T-MATRIX KERNEL

In order to derive the dynamical kernel $\widetilde{\mathcal{T}}_{i b, a j}^{c}$ given in Eq. (22), we follow Ref. 55 (see also Ref. 90) and start from the equation for the BSE amplitude,

$$
\begin{equation*}
\chi_{S}\left(1,1^{\prime}\right)=\int d 3 d 4 d 5 d 6 L_{0}\left(1,4,1^{\prime}, 3\right) \Xi(3,5,4,6) \chi_{S}(6,5) \tag{A1}
\end{equation*}
$$

where L_{0} is given by Eq. (16a) and the T-matrix kernel is

$$
\begin{equation*}
\Xi(3,5,4,6)=i \frac{\delta \Sigma(3,4)}{\delta G(6,5)} \approx-T(3,5,4,6) . \tag{A2}
\end{equation*}
$$

Equation (A1) is derived by assuming that (i) the (resonant) pole $\omega_{S}=E_{S}-E_{0}>0$ of L is isolated from the other poles (which is usually the case for neutral excitations in finite systems) and (ii) the poles of L_{0} are different from ω_{S} (which is also generally the case). The so-called T-matrix self-energy Σ is given by Eq. (2) with ${ }^{2,22}$

$$
\begin{align*}
T(3,8,4,7)= & -v(3,8) \delta(3,4) \delta(7,8)+v(3,8) \delta(4,8) \delta(3,7) \\
& +i \int d 1^{\prime} d 2^{\prime} v(3,8) G\left(3,1^{\prime}\right) G\left(8,2^{\prime}\right) T\left(1^{\prime}, 2^{\prime}, 4,7\right), \tag{A3}
\end{align*}
$$

where v is the bare Coulomb operator, and we neglect the functional derivative $\delta T / \delta G$ in the kernel Ξ. The first two terms in the
right-hand side of Eq. (A3) are the Hartree and exchange contributions to the T-matrix, whereas the last term is the correlation contribution. Making the time dependence of Eq. (A1) explicit and defining $T(3,5,4,6)=-\delta\left(\tau_{35}^{+}\right) \delta\left(\tau_{64}^{+}\right) \mathcal{T}\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}, \boldsymbol{x}_{4}, \boldsymbol{x}_{6} ; \tau_{34}\right)$, one obtains

$$
\begin{align*}
& \chi_{S}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1^{\prime}}, \tau_{11^{\prime}}\right) e^{-i \omega_{S}\left(t_{1}+t_{1^{\prime}}\right) / 2} \\
&=-i \int d \boldsymbol{x}_{3} d \boldsymbol{x}_{4} d \boldsymbol{x}_{5} d \boldsymbol{x}_{6} \int d t_{3} d t_{4} G\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{3} ; \tau_{13}\right) \\
& \times G\left(\boldsymbol{x}_{4}, \boldsymbol{x}_{1^{\prime}} ; \tau_{11^{\prime}}\right) \mathcal{T}\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}, \boldsymbol{x}_{4}, \boldsymbol{x}_{6} ; \tau_{34}\right) \chi_{S}\left(\boldsymbol{x}_{6}, \boldsymbol{x}_{5} ;-\tau_{34}\right) \\
& \times e^{-i \omega_{S} \tau_{34} / 2} \tag{A4}
\end{align*}
$$

[where $\tau_{i j}=t_{i}-t_{j}$ and $\tau_{i j}^{+}=t_{i}^{+}-t_{j}$ with $\left.t_{i}^{+}=t_{i}+\eta\left(\eta \rightarrow 0^{+}\right)\right]$and

$$
\begin{align*}
& \mathcal{T}\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}, \boldsymbol{x}_{4}, \boldsymbol{x}_{6} ; \tau_{34}\right) \\
&= v\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}\right) \delta\left(\tau_{34}\right) \delta\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{4}\right) \delta\left(\boldsymbol{x}_{6}, \boldsymbol{x}_{5}\right)-v\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}\right) \delta\left(\tau_{34}\right) \\
& \times \delta\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{6}\right) \delta\left(\boldsymbol{x}_{4}, \boldsymbol{x}_{5}\right)+i \int d \boldsymbol{x}_{7} d \boldsymbol{x}_{8} \int d t_{7} v\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}\right) \\
& \times G\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{7} ; \tau_{37}\right) G\left(\boldsymbol{x}_{5}, \boldsymbol{x}_{8} ; \tau_{37}^{+}\right) \mathcal{T}\left(\boldsymbol{x}_{7}, \boldsymbol{x}_{8}, \boldsymbol{x}_{4}, \boldsymbol{x}_{6} ; \tau_{74}\right) . \tag{A5}
\end{align*}
$$

Using the Fourier transform $G(\tau)=\int \frac{d \omega}{2 \pi} G(\omega) e^{-i \omega \tau}$, changing the variable from t_{3} to τ_{34} and taking the limit $t_{1^{\prime}}=t_{1}^{+}$, we have

$$
\begin{align*}
\chi_{S}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1^{\prime}}, 0^{-}\right)= & -i \int d \boldsymbol{x}_{3} d \boldsymbol{x}_{4} d \boldsymbol{x}_{5} d \boldsymbol{x}_{6} \int d \tau_{34} \int \frac{d \omega^{\prime}}{2 \pi} \\
& \times G\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{3} ; \omega^{\prime}+\omega_{S}\right) G\left(\boldsymbol{x}_{4}, \boldsymbol{x}_{1^{\prime}} ; \omega^{\prime}\right) e^{i \omega^{\prime} \tau_{34}} \\
& \times \mathcal{T}\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}, \boldsymbol{x}_{4}, \boldsymbol{x}_{6} ; \tau_{34}\right) \chi_{S}\left(\boldsymbol{x}_{6}, \boldsymbol{x}_{5} ;-\tau_{34}\right) \\
& \times e^{-i \omega_{S} \tau_{34} / 2} \tag{A6}
\end{align*}
$$

Using the Lehman representation of the one-body Green's function in the quasiparticle approximation given by Eq. (3), and multiply the left- and right-hand sides by $\left(\varepsilon_{a}-\varepsilon_{i}-\omega_{S}\right) \int d \boldsymbol{x}_{1} d \boldsymbol{x}_{1}^{\prime} \psi_{a}\left(\boldsymbol{x}_{1}\right) \psi_{i}\left(\boldsymbol{x}_{1}^{\prime}\right)$, we obtain

$$
\begin{align*}
\left(\varepsilon_{a}-\varepsilon_{i}\right. & \left.-\omega_{S}\right) \int d \boldsymbol{x}_{1} d \boldsymbol{x}_{1}^{\prime} \psi_{a}\left(\boldsymbol{x}_{1}\right) \psi_{i}\left(\boldsymbol{x}_{1}^{\prime}\right) \chi_{S}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1^{\prime}}, 0^{-}\right) \\
= & -\int d \boldsymbol{x}_{3} d \boldsymbol{x}_{4} d \boldsymbol{x}_{5} d \boldsymbol{x}_{6} \int d \tau_{34} \psi_{a}\left(\boldsymbol{x}_{3}\right) \psi_{i}\left(\boldsymbol{x}_{4}\right) \\
& \times\left[\Theta\left(\tau_{34}\right) e^{i \varepsilon_{i} \tau_{34}}+\Theta\left(-\tau_{34}\right) e^{i\left(\varepsilon_{a}-\omega_{S}\right) \tau_{34}}\right] \\
& \times \mathcal{T}\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}, \boldsymbol{x}_{4}, \boldsymbol{x}_{6} ; \tau_{34}\right) \chi_{S}\left(\boldsymbol{x}_{6}, \boldsymbol{x}_{5} ;-\tau_{34}\right) e^{i \omega_{5} \tau_{34} / 2} \tag{A7}
\end{align*}
$$

(where Θ is the Heaviside step function) using the fact that

$$
\begin{equation*}
\Theta(\pm \tau) e^{-i \alpha \tau}=\mp \frac{1}{2 \pi i} \lim _{\eta \rightarrow 0^{+}} \int d \omega \frac{1}{\omega-\alpha \pm i \eta} e^{-i \omega \tau} . \tag{A8}
\end{equation*}
$$

For the resonant case, i.e., $\omega_{S}>0$, we have

$$
\begin{align*}
\chi_{S}\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{1^{\prime}}, \tau_{1}\right)= & -e^{i \omega_{s}\left|\tau_{1}\right| / 2} \sum_{j b} \psi_{b}\left(\boldsymbol{x}_{1}\right) \psi_{j}\left(\boldsymbol{x}_{1^{\prime}}\right)\langle N| \hat{c}_{j}^{\dagger} \hat{c}_{b}|N, S\rangle \\
& \times\left[\Theta\left(\tau_{1}\right) e^{-i \varepsilon_{b} \tau_{1}}+\Theta\left(-\tau_{1}\right) e^{-i \varepsilon_{j} \tau_{1}}\right], \tag{A9}
\end{align*}
$$

where \hat{c}_{p}^{\dagger} and \hat{c}_{p} are the usual creation and annihilation operators, respectively, and $|N\rangle$ and $|N, S\rangle$ are the ground state and the S th
excited state, respectively, of the N-electron system. After some algebraic steps, one obtains

$$
\begin{align*}
&-\left(\varepsilon_{a}-\varepsilon_{i}-\omega_{S}\right)\langle N| \hat{c}_{i}^{\dagger} \hat{c}_{a}|N, S\rangle \\
&= \sum_{j b}\langle N| \hat{c}_{j}^{\dagger} \hat{c}_{b}|N, S\rangle\left\{\frac{i}{2 \pi} \int d \omega \lim _{\eta \rightarrow 0^{+}} \mathcal{T}_{i b, a j}(\omega) e^{-i \omega \eta}\right. \\
&\left.\times\left[\frac{1}{\omega_{S}-\omega+\varepsilon_{j}+\varepsilon_{i}+i \eta}+\frac{1}{\omega_{S}+\omega-\varepsilon_{b}-\varepsilon_{a}+i \eta}\right]\right\}, \tag{A10}
\end{align*}
$$

where we have defined

$$
\begin{align*}
\mathcal{T}_{i b, a j}\left(\tau_{34}\right)= & \int d \boldsymbol{x}_{3} d \boldsymbol{x}_{4} d \boldsymbol{x}_{5} d \boldsymbol{x}_{6} \psi_{a}\left(\boldsymbol{x}_{3}\right) \psi_{i}\left(\boldsymbol{x}_{4}\right) \\
& \times \mathcal{T}\left(\boldsymbol{x}_{3}, \boldsymbol{x}_{5}, \boldsymbol{x}_{4}, \boldsymbol{x}_{6} ; \tau_{34}\right) \psi_{b}\left(\boldsymbol{x}_{6}\right) \psi_{j}\left(\boldsymbol{x}_{5}\right) . \tag{A11}
\end{align*}
$$

Using the definition $X_{i a, S}=\langle N| \hat{c}_{i}^{\dagger} \hat{c}_{a}|N, S\rangle$, we arrive at

$$
\begin{equation*}
\left(\varepsilon_{a}-\varepsilon_{i}-\omega_{S}\right) X_{i a, S}+\sum_{j b} X_{j b, S}\langle i b \| a j\rangle+\sum_{j b} X_{j b, S} \widetilde{\mathcal{T}}_{i b, a j}^{c}\left(\omega_{S}\right)=0, \tag{A12}
\end{equation*}
$$

where the spectral representation of the dynamical T-matrix is

$$
\begin{align*}
\widetilde{\mathcal{T}}_{i b, a j}^{c}\left(\omega_{S}\right)= & \frac{i}{2 \pi} \int d \omega \lim _{\eta \rightarrow 0^{+}} \mathcal{T}_{i b, a j}^{c}(\omega) e^{-i \omega \eta} \\
& \times\left[\frac{1}{\omega_{S}-\omega+\varepsilon_{j}+\varepsilon_{i}+i \eta}+\frac{1}{\omega_{S}+\omega-\varepsilon_{b}-\varepsilon_{a}+i \eta}\right], \tag{A13}
\end{align*}
$$

with $\mathcal{T}_{i b, a j}^{c}=\mathcal{T}_{i b, a j}-\langle i b \| a j\rangle$ being the correlation part of \mathcal{T}. Equation (A12) represents a non-linear eigenvalue equation to calculate the positive excitation energies of a system, which can be rewritten as

$$
\begin{equation*}
\sum_{j b} A_{i a, j b}\left(\omega_{S}\right) X_{j b, S}=\omega_{S} X_{i a, S}, \tag{A14}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{i a, j b}\left(\omega_{S}\right)=\left(\varepsilon_{a}-\varepsilon_{i}\right) \delta_{i j} \delta_{a b}+\langle i b \| a j\rangle+\widetilde{\mathcal{T}}_{i b, a j}^{c}\left(\omega_{S}\right) . \tag{A15}
\end{equation*}
$$

If one drops the dynamical part $\widetilde{\mathcal{T}}^{c}$, one ends up with the usual time-dependent Hartree-Fock (TDHF) equations. ${ }^{117}$ To calculate the correlation contribution, one can employ Eq. (10) in Eq. (A13), and, after integration over the frequency, one obtains Eq. (22).

REFERENCES

${ }^{1}$ L. Hedin, Phys. Rev. 139, A796 (1965).
${ }^{2}$ R. M. Martin, L. Reining, and D. M. Ceperley, Interacting Electrons: Theory and Computational Approaches (Cambridge University Press, 2016).
${ }^{3}$ F. Aryasetiawan and O. Gunnarsson, Rep. Prog. Phys. 61, 237 (1998).
${ }^{4}$ G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002).
${ }^{5}$ L. Reining, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1344 (2017).
${ }^{6}$ D. Golze, M. Dvorak, and P. Rinke, Front. Chem. 7, 377 (2019).
${ }^{7}$ F. Bruneval, N. Dattani, and M. J. van Setten, Front. Chem. 9, 749779 (2021).
${ }^{8}$ M. Gell-Mann and K. A. Brueckner, Phys. Rev. 106, 364 (1957).
${ }^{9}$ P. Nozières and D. Pines, Phys. Rev. 111, 442 (1958).
${ }^{10}$ H. A. Bethe and J. Goldstone, Proc. R. Soc. London, Ser. A 238, 551 (1957).
${ }^{11}$ G. Baym and L. P. Kadanoff, Phys. Rev. 124, 287 (1961).
${ }^{12}$ G. Baym, Phys. Rev. 127, 1391 (1962).
${ }^{13}$ P. Danielewicz, Ann. Phys. 152, 239 (1984).
${ }^{14}$ P. Danielewicz, Ann. Phys. 152, 305 (1984).
${ }^{15}$ A. Liebsch, Phys. Rev. B 23, 5203 (1981).
${ }^{16}$ N. E. Bickers and D. J. Scalapino, Ann. Phys. 193, 206 (1989).
${ }^{17}$ N. E. Bickers and S. R. White, Phys. Rev. B 43, 8044 (1991).
${ }^{18}$ M. I. Katsnelson and A. I. Lichtenstein, J. Phys.: Condens. Matter 11, 1037 (1999).
${ }^{19}$ M. I. Katsnelson and A. I. Lichtenstein, Eur. Phys. J. B 30, 9 (2002).
${ }^{20}$ V. P. Zhukov, E. V. Chulkov, and P. M. Echenique, Phys. Rev. B 72, 155109 (2005).
${ }^{21}$ M. Puig von Friesen, C. Verdozzi, and C.-O. Almbladh, Phys. Rev. B 82, 155108 (2010).
${ }^{22}$ P. Romaniello, F. Bechstedt, and L. Reining, Phys. Rev. B 85, 155131 (2012).
${ }^{23}$ J. Gukelberger, L. Huang, and P. Werner, Phys. Rev. B 91, 235114 (2015).
${ }^{24}$ M. C. T. D. Müller, S. Blügel, and C. Friedrich, Phys. Rev. B 100, 045130 (2019).
${ }^{25}$ C. Friedrich, Phys. Rev. B 100, 075142 (2019).
${ }^{26}$ T. Biswas and A. K. Singh, npj Comput. Mater. 7, 189 (2021).
${ }^{27}$ D. Zhang, N. Q. Su, and W. Yang, J. Phys. Chem. Lett. 8, 3223 (2017).
${ }^{28}$ J. Li, Z. Chen, and W. Yang, J. Phys. Chem. Lett. 12, 6203 (2021).
${ }^{29}$ J. J. Shepherd, T. M. Henderson, and G. E. Scuseria, Phys. Rev. Lett. 112, 133002 (2014).
${ }^{30}$ P. F. Loos and P. M. W. Gill, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 6, 410 (2016).
${ }^{31}$ M. E. Casida and D. P. Chong, Phys. Rev. A 44, 5773 (1991).
${ }^{32}$ J. V. Ortiz, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 3, 123 (2013).
${ }^{33}$ S. Hirata, M. R. Hermes, J. Simons, and J. V. Ortiz, J. Chem. Theory Comput. 11, 1595 (2015).
${ }^{34}$ S. Hirata, A. E. Doran, P. J. Knowles, and J. V. Ortiz, J. Chem. Phys. 147, 044108 (2017).
${ }^{35}$ P. Romaniello, S. Guyot, and L. Reining, J. Chem. Phys. 131, 154111 (2009).
${ }^{36}$ X. Ren, N. Marom, F. Caruso, M. Scheffler, and P. Rinke, Phys. Rev. B 92, 081104 (2015).
${ }^{37}$ P.-F. Loos, P. Romaniello, and J. A. Berger, J. Chem. Theory Comput. 14, 3071 (2018).
${ }^{38}$ V. P. Zhukov, E. V. Chulkov, and P. M. Echenique, Phys. Rev. Lett. 93, 096401 (2004).
${ }^{39}$ E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232 (1951).
${ }^{40}$ G. Strinati, Riv. Nuovo Cimento 11, 1 (1988).
${ }^{41}$ X. Blase, I. Duchemin, and D. Jacquemin, Chem. Soc. Rev. 47, 1022 (2018).
${ }^{42}$ X. Blase, I. Duchemin, D. Jacquemin, and P.-F. Loos, J. Phys. Chem. Lett. 11, 7371 (2020).
${ }^{43}$ P. Ring and P. Schuck, The Nuclear Many-Body Problem (Springer, 2004).
${ }^{44}$ H. van Aggelen, Y. Yang, and W. Yang, Phys. Rev. A 88, 030501 (2013).
${ }^{45}$ D. Peng, S. N. Steinmann, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 104112 (2013).
${ }^{46}$ G. E. Scuseria, T. M. Henderson, and I. W. Bulik, J. Chem. Phys. 139, 104113 (2013).
${ }^{47}$ Y. Yang, H. van Aggelen, S. N. Steinmann, D. Peng, and W. Yang, J. Chem. Phys. 139, 174110 (2013).
${ }^{48}$ Y. Yang, H. van Aggelen, and W. Yang, J. Chem. Phys. 139, 224105 (2013).
${ }^{49}$ H. van Aggelen, Y. Yang, and W. Yang, J. Chem. Phys. 140, 18A511 (2014).
${ }^{50}$ Y. Yang, D. Peng, J. Lu, and W. Yang, J. Chem. Phys. 141, 124104 (2014).
${ }^{51}$ X. Zhang and J. M. Herbert, J. Chem. Phys. 142, 064109 (2015).
${ }^{52}$ D. Zhang and W. Yang, J. Chem. Phys. 145, 144105 (2016).
${ }^{53}$ C. Bannwarth, J. K. Yu, E. G. Hohenstein, and T. J. Martínez, J. Chem. Phys. 153, 024110 (2020).
${ }^{54}$ S. J. Bintrim and T. C. Berkelbach, J. Chem. Phys. 154, 041101 (2021).
${ }^{55}$ G. Strinati, H. J. Mattausch, and W. Hanke, Phys. Rev. Lett. 45, 290 (1980).
${ }^{56}$ M. S. Hybertsen and S. G. Louie, Phys. Rev. Lett. 55, 1418 (1985).
${ }^{57}$ M. S. Hybertsen and S. G. Louie, Phys. Rev. B 34, 5390 (1986).
${ }^{58}$ R. W. Godby, M. Schlüter, and L. J. Sham, Phys. Rev. B 37, 10159 (1988).
${ }^{59}$ W. von der Linden and P. Horsch, Phys. Rev. B 37, 8351 (1988).
${ }^{60}$ J. Northrup, M. Hybertsen, and S. Louie, Phys. Rev. Lett. 66, 500 (1991).
${ }^{61}$ X. Blase, X. Zhu, and S. G. Louie, Phys. Rev. B 49, 4973 (1994).
${ }^{62}$ M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. B 52, 1905 (1995).
${ }^{63}$ M. Shishkin and G. Kresse, Phys. Rev. B 75, 235102 (2007).
${ }^{64}$ X. Blase and C. Attaccalite, Appl. Phys. Lett. 99, 171909 (2011).
${ }^{65}$ C. Faber, C. Attaccalite, V. Olevano, E. Runge, and X. Blase, Phys. Rev. B 83, 115123 (2011).
${ }^{66}$ T. Rangel, S. M. Hamed, F. Bruneval, and J. B. Neaton, J. Chem. Theory Comput. 12, 2834 (2016).
${ }^{67}$ X. Gui, C. Holzer, and W. Klopper, J. Chem. Theory Comput. 14, 2127 (2018).
${ }^{68}$ S. V. Faleev, M. van Schilfgaarde, and T. Kotani, Phys. Rev. Lett. 93, 126406 (2004).
${ }^{69}$ M. van Schilfgaarde, T. Kotani, and S. Faleev, Phys. Rev. Lett. 96, 226402 (2006).
${ }^{70}$ T. Kotani, M. van Schilfgaarde, and S. V. Faleev, Phys. Rev. B 76, 165106 (2007).
${ }^{71}$ S.-H. Ke, Phys. Rev. B 84, 205415 (2011).
${ }^{72}$ F. Kaplan, M. E. Harding, C. Seiler, F. Weigend, F. Evers, and M. J. van Setten, J. Chem. Theory Comput. 12, 2528 (2016).
${ }^{73}$ M. Rohlfing and S. G. Louie, Phys. Rev. Lett. 82, 1959 (1999).
${ }^{74}$ J.-W. van der Horst, P. A. Bobbert, M. A. J. Michels, G. Brocks, and P. J. Kelly, Phys. Rev. Lett. 83, 4413 (1999).
${ }^{75}$ P. Puschnig and C. Ambrosch-Draxl, Phys. Rev. Lett. 89, 056405 (2002).
${ }^{76}$ M. L. Tiago, J. E. Northrup, and S. G. Louie, Phys. Rev. B 67, 115212 (2003).
${ }^{77}$ D. Rocca, D. Lu, and G. Galli, J. Chem. Phys. 133, 164109 (2010).
${ }^{78}$ P. Boulanger, D. Jacquemin, I. Duchemin, and X. Blase, J. Chem. Theory Comput. 10, 1212 (2014).
${ }^{79}$ D. Jacquemin, I. Duchemin, and X. Blase, J. Chem. Theory Comput. 11, 3290 (2015).
${ }^{80}$ F. Bruneval, S. M. Hamed, and J. B. Neaton, J. Chem. Phys. 142, 244101 (2015).
${ }^{81}$ D. Jacquemin, I. Duchemin, and X. Blase, J. Chem. Theory Comput. 11, 5340 (2015).
${ }^{82}$ D. Hirose, Y. Noguchi, and O. Sugino, Phys. Rev. B 91, 205111 (2015).
${ }^{83}$ D. Jacquemin, I. Duchemin, and X. Blase, J. Phys. Chem. Lett. 8, 1524 (2017).
${ }^{84}$ D. Jacquemin, I. Duchemin, A. Blondel, and X. Blase, J. Chem. Theory Comput. 13, 767 (2017).
${ }^{85}$ T. Rangel, S. M. Hamed, F. Bruneval, and J. B. Neaton, J. Chem. Phys. 146, 194108 (2017).
${ }^{86}$ K. Krause and W. Klopper, J. Comput. Chem. 38, 383 (2017).
${ }^{87}$ C. Liu, J. Kloppenburg, Y. Yao, X. Ren, H. Appel, Y. Kanai, and V. Blum, J. Chem. Phys. 152, 044105 (2020).
${ }^{88}$ C. Holzer and W. Klopper, J. Chem. Phys. 149, 101101 (2018).
${ }^{89}$ C. Holzer, X. Gui, M. E. Harding, G. Kresse, T. Helgaker, and W. Klopper, J. Chem. Phys. 149, 144106 (2018).
${ }^{90}$ P.-F. Loos, A. Scemama, I. Duchemin, D. Jacquemin, and X. Blase, J. Phys. Chem. Lett. 11, 3536 (2020).
${ }^{91}$ P.-F. Loos, M. Comin, X. Blase, and D. Jacquemin, J. Chem. Theory Comput. 17, 3666 (2021).
${ }^{92}$ E. Monino and P.-F. Loos, J. Chem. Theory Comput. 17, 2852 (2021).
${ }^{93}$ P.-F. Loos, M. Boggio-Pasqua, A. Scemama, M. Caffarel, and D. Jacquemin, J. Chem. Theory Comput. 15, 1939 (2019).
${ }^{94}$ P. Romaniello, D. Sangalli, J. A. Berger, F. Sottile, L. G. Molinari, L. Reining, and G. Onida, J. Chem. Phys. 130, 044108 (2009).
${ }^{95}$ D. Sangalli, P. Romaniello, G. Onida, and A. Marini, J. Chem. Phys. 134, 034115 (2011).
${ }^{96}$ P.-F. Loos and X. Blase, J. Chem. Phys. 153, 114120 (2020).
${ }^{97}$ J. Authier and P.-F. Loos, J. Chem. Phys. 153, 184105 (2020).
${ }^{98}$ S. J. Bintrim and T. C. Berkelbach, "Full-frequency dynamical Bethe-Salpeter equation without frequency and a study of double excitations," arXiv:2110.03850 [cond-mat.mtrl-sci] (2021).
${ }^{99}$ M. Rohlfing and S. G. Louie, Phys. Rev. B 62, 4927 (2000).
${ }^{100}$ Y. Ma, M. Rohlfing, and C. Molteni, Phys. Rev. B 80, 241405 (2009).
${ }^{101}$ Y. Ma, M. Rohlfing, and C. Molteni, J. Chem. Theory Comput. 6, 257 (2009).
${ }^{102}$ D. Zhang, S. N. Steinmann, and W. Yang, J. Chem. Phys. 139, 154109 (2013).
${ }^{103}$ E. Rebolini and J. Toulouse, J. Chem. Phys. 144, 094107 (2016).
${ }^{104}$ V. Olevano, J. Toulouse, and P. Schuck, J. Chem. Phys. 150, 084112 (2019).
${ }^{105}$ P. F. Loos, (2019). "QuAcK: A software for emerging quantum electronic structure methods" Github. https://github.com/pfloos/QuAcK.
${ }^{106}$ Y. Garniron, T. Applencourt, K. Gasperich, A. Benali, A. Ferté, J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David, J.-P. Malrieu, M. Véril, M. Caffarel, P.-F. Loos, E. Giner, and A. Scemama, J. Chem. Theory Comput. 15, 3591 (2019).
${ }^{107}$ E. R. Davidson, J. Comput. Phys. 17, 87 (1975).
${ }^{108}$ N. Shenvi, H. van Aggelen, Y. Yang, and W. Yang, J. Chem. Phys. 141, 024119 (2014).
${ }^{109}$ I. Duchemin and X. Blase, J. Chem. Phys. 150, 174120 (2019).
${ }^{110}$ I. Duchemin and X. Blase, J. Chem. Theory Comput. 16, 1742 (2020).
${ }^{111}$ I. Duchemin and X. Blase, J. Chem. Theory Comput. 17, 2383 (2021).
${ }^{112}$ M. Véril, A. Scemama, M. Caffarel, F. Lipparini, M. Boggio-Pasqua, D. Jacquemin, and P.-F. Loos, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 11, e1517 (2021).
${ }^{113}$ P.-F. Loos, A. Scemama, A. Blondel, Y. Garniron, M. Caffarel, and D. Jacquemin, J. Chem. Theory Comput. 14, 4360 (2018).
${ }^{114}$ J. E. D. Bene, R. Ditchfield, and J. A. Pople, J. Chem. Phys. 55, 2236 (1971).
${ }^{115}$ M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chem. Phys. Lett. 219, 21 (1994).
${ }^{116}$ M. Head-Gordon, D. Maurice, and M. Oumi, Chem. Phys. Lett. 246, 114 (1995).
${ }^{117}$ A. Dreuw and M. Head-Gordon, Chem. Rev. 105, 4009 (2005).
${ }^{18}$ E. Maggio and G. Kresse, Phys. Rev. B 93, 235113 (2016).
${ }^{119}$ V. M. Galitskii, "The energy spectrum of a non-ideal Fermi gas," Sov. Phys. JETP 7, 104 (1958) [Zh. Eksp. Teor. Fiz. 34, 151 (1958)].

