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ABSTRACT
While the well-established GW approximation corresponds to a resummation of the direct ring diagrams and is particularly well suited for
weakly correlated systems, the T-matrix approximation does sum ladder diagrams up to infinity and is supposedly more appropriate in the
presence of strong correlation. Here, we derive and implement, for the first time, the static and dynamic Bethe–Salpeter equations when one
considers T-matrix quasiparticle energies and a T-matrix-based kernel. The performance of the static scheme and its perturbative dynamical
correction are assessed by computing the neutral excited states of molecular systems. A comparison with more conventional schemes as well
as other wave function methods is also reported. Our results suggest that the T-matrix-based formalism performs best in few-electron systems
where the electron density remains low.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0088364

I. INTRODUCTION
The GW approximation1 of many-body perturbation theory2

is becoming a method of choice to target charged excitations
(i.e., ionization potentials and electron affinities) in molecular
systems.3–7 These so-called quasiparticle energies can be experi-
mentally measured from direct and inverse photoemission spectro-
scopies. From a more theoretical point of view, GW corresponds
to an elegant resummation of all direct ring diagrams from the
particle–hole (ph) channel, which is particularly justified in the
high-density or weakly correlated regime.8,9 Within the GW approx-
imation, the self-energy—one of the key quantities of Hedin’s
equations1—reads as

ΣGW
(1, 2) = iG(1, 2)W(1, 2), (1)

where G is the one-body Green’s function, W is the dynamically
screened Coulomb potential, and, e.g., 1 ≡ (σ1, r1, t1) is a composite
coordinate gathering spin, space, and time variables.

Alternatives to GW do exist. For example, the T-matrix
(or Bethe–Goldstone) approximation, first introduced in nuclear

physics,10–14 then in condensed matter physics,15–26,119 and more
recently in quantum chemistry,27,28 sums to infinity the ladder
diagrams from the particle–particle (pp) channel and is justified
in the low-density or strongly correlated regime.13–15,29 While the
two-point screened interaction W is the cornerstone of GW, the
T-matrix approximation relies on a more complex (four-point)
effective interaction—the so-called T matrix—yielding the following
self-energy:

ΣGT
(1, 2) = i∫ G(4, 3)T(1, 3; 2, 4)d3d4. (2)

The natural idea of combining the ph and pp channels is also pos-
sible and has been explored, for example, in the Hubbard dimer
within many-body perturbation theory (see Ref. 22 and references
therein) and the uniform electron gas30 within coupled-cluster
theory.29

One of the key features of the T-matrix approximation is
its exactness up to the second order, thanks to the inclusion of
second-order exchange diagrams. This class of diagrams, which are
particularly important in few-electron molecular systems31–34 and
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explain the improvement brought by the second-order screened
exchange (SOSEX) correction applied to GW,35–37 is well known
to be missing in the GW approximation. Moreover, unlike W in
the GW approximation, the T-matrix approximation also contains
spin–flip terms; the spin structure of the T-matrix allows one to
describe important processes such as the emission of spin waves in
ferromagnetics.38

In this work, we focus on neutral excitations and we explore
how the T-matrix approximation performs within the Bethe–
Salpeter equation (BSE) of many-body perturbation theory.39–42

Let us consider closed-shell electronic systems consisting of N
electrons and K one-electron basis functions. The number of singly
occupied and virtual (i.e., unoccupied) spinorbitals is O = N and
V = K −O, respectively. Let us denote the pth spinorbital as ψp(x)
and its one-electron energy as εp. The composite variable x = (σ, r)
gathers spin (σ) and spatial (r) variables. We assume real quan-
tities throughout this paper: i, j, k, and l are occupied orbitals; a,
b, c, and d are unoccupied orbitals; p, q, r, and s indicate arbi-
trary orbitals; and m labels single excitations, while n labels double
electron attachments or double electron detachments.

II. CHARGED EXCITATIONS
By definition, in the quasiparticle approximation, the one-body

Green’s function is2

G(x1, x2;ω) = ∑
i

ψi(x1)ψi(x2)

ω − εi − iη
+∑

a

ψa(x1)ψa(x2)

ω − εa + iη
, (3)

where η is a positive infinitesimal and its nature is completely
defined by the set of orbitals and the corresponding energies that are
used to build it. For example, GHF

(x1, x2; ω) is the Hartree–Fock
(HF) Green’s function built from HF spinorbitals ψHF

p (x) and
energies εHF

p .
Contrary to the GW approximation that relies on the

(two-point) dynamically screened Coulomb potential W computed
from a ph-random-phase approximation (ph-RPA) problem to tar-
get charged excitations,1–6 here we consider the GT approximation
where one employs the (four-point) T matrix obtained from solving
the pp-RPA equations.

The non-Hermitian pp-RPA problem reads43–53

⎛
⎜
⎝

App−RPA Bpp−RPA

−(Bpp−RPA
)
⊺
−Cpp−RPA

⎞
⎟
⎠
⋅
⎛
⎜
⎝

XN±2
n

YN±2
n

⎞
⎟
⎠
= ΩN±2

n

⎛
⎜
⎝

XN±2
n

YN±2
n

⎞
⎟
⎠

, (4)

where the elements of various matrices are defined as

App−RPA
ab,cd = δabδcd(εa + εb) + ⟨ab∥cd⟩, (5a)

Bpp−RPA
ab,ij = ⟨ab∥ij⟩, (5b)

Cpp−RPA
ij,kl = −δikδjl(εi + εj) + ⟨ij∥kl⟩, (5c)

and

⟨pq∥rs⟩ = ⟨pq∣rs⟩ − ⟨pq∣sr⟩ (6)

are two-electron integrals in the spinorbital basis, i.e.,

⟨pq∣rs⟩ = ∬ ψp(x1)ψq(x2)
1

∣r1 − r2∣
ψr(x1)ψs(x2)dx1dx2. (7)

In the absence of instabilities (which should not appear in Coulom-
bic systems with repulsive interactions only46), the pp-RPA problem
yields V(V − 1)/2 positive eigenvalues ΩN+2

n and O(O − 1)/2 nega-
tive eigenvalues ΩN−2

n , which correspond to double attachments and
double detachments, respectively. The pp-RPA correlation energy is
given by45,46

Epp−RPA
c = +∑

n
ΩN+2

n − Tr(App−RPA
)

= −∑
n
ΩN−2

n − Tr(Cpp−RPA
), (8)

Considering the time structure of the T-matrix approxima-
tion as T(1, 3; 2, 4) = −δ(t1 − t3)δ(t2 − t4)T(x1, x2; x4, x3; t1 − t2),2
the frequency-dependent T-matrix self-energy can be obtained from
the Fourier transform of Eq. (2) as

ΣGT
(x1, x2;ω) = −i∫ dx3 dx4 ∫

dω′

2π
G(x4, x3;ω′)

× T(x1, x3; x2, x4;ω + ω′). (9)

The correlation part of the T matrix can be constructed from
the knowledge of the pp-RPA eigenvalues and eigenvectors. In the
spinorbital basis, it is defined as T c

pq,rs = Tpq,rs − ⟨pq∥rs⟩ and it has
the following form:52

T c
pq,rs(ω) = ∑

n

⟨pq∣χN+2
n ⟩⟨rs∣χN+2

n ⟩

ω −ΩN+2
n + iη

−∑
n

⟨pq∣χN−2
n ⟩⟨rs∣χN−2

n ⟩

ω −ΩN−2
n − iη

, (10)

with

⟨pq∣χN+2
n ⟩ = ∑

c<d
⟨pq∥cd⟩XN+2

cd,n +∑
k<l
⟨pq∥kl⟩YN+2

kl,n , (11a)

⟨pq∣χN−2
n ⟩ = ∑

c<d
⟨pq∥cd⟩XN−2

cd,n +∑
k<l
⟨pq∥kl⟩XN−2

kl,n . (11b)

Combining Eqs. (3) and (10), the correlation part of the T-matrix
self-energy reads2,22,27,28

ΣGT
pq (ω) = ∑

in

⟨pi∣χN+2
n ⟩⟨qi∣χN+2

n ⟩

ω + εi −Ω
N+2
n + iη

+∑
an

⟨pa∣χN−2
n ⟩⟨qa∣χN−2

n ⟩

ω + εa −ΩN−2
n − iη

. (12)

While the dynamical GW self-energy corresponds to the downfold-
ing of the 2h1p and 2p1h configurations on the 1h and 1p configura-
tions via their coupling with the 1h1p configurations, respectively,54

Eq. (12) shows that, in the case of the T-matrix approximation,
the same 2h1p and 2p1h configurations are downfolded on the
1p and 1h configurations via their coupling with the 2h and 2p
configurations, respectively.

Within the (perturbative) one-shot GT scheme (labeled G0T0
in the following), the quasiparticle energies are obtained via the
linearization of the quasiparticle equation,55–63 i.e.,
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εG0T0
p = εHF

p + ZpΣGT
pp (ε

HF
p ), (13)

where we have assumed a HF starting point, and

Zp =

⎡
⎢
⎢
⎢
⎢
⎣

1 −
∂ΣT

pp(ω)
ω

∣

ω=εHF
p

⎤
⎥
⎥
⎥
⎥
⎦

−1

(14)

is the renormalization factor or weight of the quasiparticle solution.
Other levels of (partial) self-consistency can be considered like the
“eigenvalue” self-consistent GT (evGT)57,63–67 or the quasiparticle
self-consistent GT (qsGT)68–72 schemes.

III. NEUTRAL EXCITATIONS
As the one-body Green’s function is the pillar of the GW and

GT approximations, similarly the two-body Green’s function G2 is
the central quantity of the BSE formalism of many-body perturba-
tion theory39–42 via its link with the two-body correlation function
L, which satisfies the following Dyson equation:

L(1, 2; 1′, 2′) = L0(1, 2; 1′, 2′) + ∫ L0(1, 4; 1′, 3)Ξ(3, 5; 4, 6)

× L(6, 2; 5, 2′)d3d4d5d6, (15)

where

iL0(1, 4; 1′, 3) = G(1, 3)G(4, 1′), (16a)

iL(1, 2; 1′, 2′) = −G2(1, 2; 1′, 2′) +G(1, 1′)G(2, 2′), (16b)

and

Ξ(3, 5; 4, 6) = i
δΣ(3, 4)
δG(6, 5)

(17)

is the so-called BSE kernel that takes into account the variation of
Σ with respect to the variation of G. By taking into account the
interaction of the excited electron and its hole left behind (the infa-
mous excitonic effect), the BSE is able to reliably model (neutral)
optical excitations as measured by absorption spectroscopy. The
moderate cost of the BSE [which scales as O(K4

) in its standard
implementation] and its all-round accuracy are the main reasons
behind its growing popularity in the molecular electronic structure
community.41,42,67,73–91

In order to target neutral (singly) excited states, we first con-
sider the static version of the BSE employing the GT quasiparticle
energies [see Eq. (13)] as well as the T-matrix kernel [i.e., ΣGT in
Eq. (17)]. In this case, the BSE@GT linear eigenvalue problem simply
reads

⎛
⎜
⎝

ABSE BBSE

−BBSE
−ABSE

⎞
⎟
⎠
⋅
⎛
⎜
⎝

XBSE
m

YBSE
m

⎞
⎟
⎠
= ΩBSE

m

⎛
⎜
⎝

XBSE
m

YBSE
m

⎞
⎟
⎠

, (18)

with

ABSE
ia,jb = δijδab(ε

GT
a − ε

GT
i ) + ⟨ib∥aj⟩ + T c

ib,aj(ω = 0), (19a)

BBSE
ia,jb = ⟨ij∥ab⟩ + T c

ij,ab(ω = 0). (19b)

The eigenvalues ΩBSE
m of Eq. (18) provide OV singlet (i.e., spin-

conserved) and OV triplet (i.e., spin–flip) single excitations. Note

that the spin structure of the BSE@GT equations is analogous to
the BSE@GW version,92 and one can separately compute singlet
and triplet excitation energies. Neglecting the coupling between
excitations and de-excitations, i.e., BBSE

= 0, is known as the
Tamm–Dancoff approximation (TDA).

Due to the frequency-independent nature of the static BSE,
it is well known that one cannot access double (and higher)
excitations.92–97 In order to go beyond the static approximation,
it is possible to consider, within the dynamical TDA (dTDA) that
neglects the frequency dependence of the coupling block B, the
dynamical version of the BSE (dBSE).40,94,96 In this case, one must
solve the (non-linear) dynamical eigenvalue problem,

⎛
⎜
⎝

AdBSE
(ΩS) BBSE

−BBSE
−AdBSE

(−ΩS)

⎞
⎟
⎠
⋅
⎛
⎜
⎝

XdBSE
S

YdBSE
S

⎞
⎟
⎠
= ΩS

⎛
⎜
⎝

XdBSE
S

YdBSE
S

⎞
⎟
⎠

(20)

with

AdBSE
ia,jb (ω) = δijδab(ε

GT
a − ε

GT
i ) + ⟨ib∥aj⟩ + T̃ c

ib,aj(ω), (21)

where, by following Strinati’s seminal work,40 one can derive the
following expression for the elements of the dynamical T matrix:

T̃ c
ib,aj(ω) = ∑

n

⟨ib∣χN+2
n ⟩⟨aj∣χN+2

n ⟩

ω −ΩN+2
n + (εGT

i + εGT
j ) + iη

+∑
n

⟨ib∣χN−2
n ⟩⟨aj∣χN−2

n ⟩

ω +ΩN−2
n − (εGT

a + εGT
b ) + iη

, (22)

from which one can check that we recover the static expression
(10) in the limit ΩN±2

n →∞. Equation (22) highlights the inter-
esting dynamical structure of the T matrix, where, similar to the
dBSE@GW scheme,40,94,96 the 2h2p configurations are downfolded
on the 1h1p configurations.98 Additional details about the derivation
of Eq. (22) are reported in the Appendix.

Because solving a non-linear eigenvalue problem is compu-
tationally challenging, here we rely on the perturbative scheme
developed in Ref. 96 in order to access dynamically corrected single
excitations for which additional relaxation effects coming from
higher excitations are taken into account.92,94,96,97,99–104 Below, we
quickly recap this dynamical perturbative scheme.

Based on Rayleigh–Schrödinger perturbation theory, the non-
linear eigenproblem (20) can be split as a zeroth-order static
reference and a first-order dynamic perturbation such that

⎛
⎜
⎝

AdBSE
(ΩS) BBSE

−BBSE
−ABSE

(−ΩS)

⎞
⎟
⎠

=
⎛
⎜
⎝

ABSE BBSE

−BBSE
−ABSE

⎞
⎟
⎠
+
⎛
⎜
⎝

A(1)(ΩS) 0

0 −A(1)(−ΩS)

⎞
⎟
⎠

(23)

with

A(1)ia,jb(ω) = T̃
c
ib,aj(ω) − T

c
ib,aj(ω = 0). (24)

As usual, one can naturally expand the Sth BSE excitation energy
and its corresponding eigenvector as
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ΩS = Ω
BSE
S +Ω(1)S + ⋅ ⋅ ⋅ , (25a)

⎛
⎜
⎝

XS

YS

⎞
⎟
⎠
=
⎛
⎜
⎝

XBSE
S

YBSE
S

⎞
⎟
⎠
+
⎛
⎜
⎝

X(1)S

Y(1)S

⎞
⎟
⎠
+ ⋅ ⋅ ⋅ . (25b)

Solving the static BSE [see Eq. (18)] yields the (zeroth-order) static
ΩBSE

S excitation energies and their corresponding eigenvectors XBSE
S

and YBSE
S . The first-order correction to the Sth excitation energy is,

within the dTDA,

Ω(1)S = (XBSE
S )

⊺
⋅ A(1)(ΩBSE

S ) ⋅ X
BSE
S . (26)

This correction can be renormalized by computing, at no extra cost,
the renormalization factor, which reads

ζS =

⎡
⎢
⎢
⎢
⎢
⎣

1 − (XBSE
S )

⊺
⋅
∂A(1)(ΩS)

ΩS
∣

ΩS=Ω
BSE
S

⋅ XBSE
S

⎤
⎥
⎥
⎥
⎥
⎦

−1

. (27)

This yields our final expression for the dynamically corrected BSE
excitation energies,

Ωdyn
S = Ωstat

S + ΔΩ
dyn
S = ΩBSE

S + ζSΩ(1)S . (28)

Note again that the present perturbative scheme does not allow one
to access double excitations as only excitations calculated within the
static approach can be dynamically corrected.

IV. COMPUTATIONAL DETAILS

The present formalism has been implemented in the elec-
tronic structure package QuAcK,105 which is freely available at
https://github.com/pfloos/QuAcK. We consider here only systems
with closed-shell singlet ground states. Thus, the GW and GT
calculations are performed by considering a (restricted) HF start-
ing point and standard Gaussian basis sets (defined with cartesian
functions) are employed. Note that all quasiparticle energies, which
are obtained via Eq. (13), are corrected in the same way. Finally,
the infinitesimal η is set to zero for all calculations. The evGT and
qsGT schemes have been also implemented but are not considered
here, mainly because, for the small molecular systems studied here
(see below), we have observed very small differences between
one-shot and self-consistent quasiparticle energies. Although the
dynamical correction is computed throughout in the dTDA, the
zeroth-order excitonic Hamiltonian [see Eq. (18)] is always the “full”
BSE static Hamiltonian, i.e., without TDA. Reference full config-
uration interaction (FCI) calculations have been performed using
QUANTUM PACKAGE.106

In terms of computational cost, the overall scaling of BSE@GT
is equivalent to BSE@GW as they both correspond to seeking the
lowest eigenvalues of a matrix of size (2OV × 2OV). Searching iter-
atively for the lowest eigenstates can be routinely performed via
Davidson’s algorithm with a O(K4

) computational cost.107 The
cost of the dynamical correction, which is thoroughly discussed in

Ref. 96, is more expensive but is again equivalent in both formalisms.
Both the computational cost associated with the computation of the
T-matrix and screening W scale as O(K6

) in their standard imple-
mentation as one must obtain all the eigenvalues and eigenvectors
of the pp-RPA and ph-RPA problems, respectively.108 However, the
prefactor of the pp-RPA calculation is significantly larger than its ph-
RPA counterpart due to the larger size of the pp-RPA matrices and
its non-Hermitian nature.45–48,50–52 Moreover, within the T-matrix
formalism, one must compute both the singlet and triplet contribu-
tions of the T-matrix, while for singlet states, only the singlet part
of W is required. Although similar approaches remain to be devel-
oped for the T-matrix formalism, contour deformation and density
fitting techniques can be efficiently implemented in the case of GW
to reduce the scaling to O(K3

).109–111

V. RESULTS AND DISCUSSION
A. Excited states of the hydrogen molecule

As a first didactical example, we consider the lowest singlet and
triplet excited states of the hydrogen molecule H2 and the varia-
tion of the respective vertical transition energies upon dissociation.
The excitation energies associated with these low-lying excited states
are represented in Fig. 1 as the function of the internuclear dis-
tance RH–H at the FCI (black), BSE@G0W0 (blue), and BSE@G0T0
(red) levels with the cc-pVTZ basis. The variation of the HOMO
and LUMO quasiparticle energies, as well as the HOMO–LUMO
gap computed at the G0W0 and G0T0 levels, is depicted in Fig. 2.
This shows that, as already observed in the Hubbard dimer22 and in
molecular systems,27 the G0W0 and G0T0 quasiparticle energies are
similar near the Fermi level.

Overall, as evidenced by Fig. 1, the performance of BSE@G0W0
and BSE@G0T0 is analogous for this system. For the lowest singlet
excited state of B 1Σ+u symmetry, the T-matrix-based formalism is
slightly better when RH–H increases but ultimately fails to reproduce
the FCI results. For the E 1Σ+g state, BSE@G0T0 is more accurate
than BSE@G0W0 for small bond length and the scenario is reversed
after the avoided crossing with the doubly excited state of F 1Σ+g
symmetry. Of course, both formalisms cannot “see” the F 1Σ+g states
as the static BSE formalism is blind to double excitations. There-
fore, it cannot model properly the avoided crossing between E 1Σ+g
and F 1Σ+g states. For the B’ 1Σ+u and C1Πu states, BSE@G0W0 and
BSE@G0T0 reproduces fairly well the FCI potential energy curves
with a modest preference for the latter.

Similar observations can be made for the triplet states, the GW-
and GT-based formalisms yielding very similar excitation energies,
except for the c3Πu state for which BSE@G0W0 has clearly the
edge. Moreover, triplet instabilities seem to affect BSE@G0T0 slightly
earlier than BSE@G0W0.

In Fig. 3, we show the energy shift provided by the dynamical
correction for the lowest singlet and lowest triplet excited states of
H2 as the function of RH–H. These dynamically corrected schemes are
labeled dBSE@G0W0 and dBSE@G0T0. For the singlet state of B 1Σ+u
symmetry, the dynamical correction slightly improves the excitation
energies at small internuclear distances for both schemes, while, for
larger bond lengths, an improvement is only visible at the T-matrix
level. Note that, for this system with few electrons, the dynami-
cal corrections are quite small in magnitude. In the case of the
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FIG. 1. Singlet (left) and triplet (right) excitation energies (in eV) of H2 as a function of the internuclear distance RH–H (in Å) computed at the FCI (black), BSE@G0W 0 (blue),
and BSE@G0T0 (red) levels with the cc-pVTZ basis. Raw data are reported in the supplementary material.

FIG. 2. HOMO and LUMO quasiparticle energies as well as the HOMO–LUMO
gap (in eV) of H2 as the function of the internuclear distance RH–H (in Å) computed
at the G0W 0 (blue) and G0T0 (red) levels with the cc-pVTZ basis. Raw data are
reported in the supplementary material.

triplet state of b 3Σ+u symmetry, the dynamical correction worsens
the results compared to FCI, especially in the case of BSE@G0W0.

B. Excited states of beryllium hydride
As a second example, we consider the symmetric dissociation

of linear molecule beryllium hydride (BeH2), a system for which
one can assume that screening plays a more important role than in
the previous example. The variation of the lowest singlet and triplet
excitation energies as the function of the distance RBe–H is shown
in Fig. 4, while the quasiparticle energies of the frontier orbitals
and the associated (fundamental) gap computed at the G0W0 and
G0T0 levels are depicted in Fig. 5. All calculations are performed
with the cc-pVDZ basis. Again, one notes that the G0W0 and G0T0
quasiparticle energies are very similar near the Fermi level. There-
fore, one can safely assume that any significant variation of the
excitation energies computed within the GW- and GT-based for-
malisms originates mainly from their distinct kernel. The excitation
energies computed with the dynamical schemes, dBSE@G0W0 and
dBSE@G0T0, are reported as thin solid lines. Here, one can show that
dynamical corrections improve agreement between BSE and FCI in
most cases.

For the four lowest singlet excited states (left panel of Fig. 4),
dBSE@G0T0 is clearly better than dBSE@G0W0, while the opposite
trend is observed for the four lowest triplet states (right panel of
Fig. 4). Note that, for large RBe–H, the two BSE-based schemes pro-
vide only a qualitative description of the excited states with errors of
several eVs. Nonetheless, the overall ordering of the excited states is
globally respected.

C. Excited states of water
As a third and final example, we compute the excitation ener-

gies associated with the two lowest singlet and two lowest triplet
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FIG. 3. Error with respect to FCI for the lowest singlet (left) and the lowest triplet (right) excitation energies of H2 as the function of the internuclear distance RH–H (in Å)
computed within the static schemes (BSE@G0W 0 and BSE@G0T0) and the dynamically corrected schemes (dBSE@G0W 0 and dBSE@G0T0). The cc-pVTZ basis is
employed for all calculations. Raw data are reported in the supplementary material.

FIG. 4. Singlet (left) and triplet (right) excitation energies (in eV) of BeH2 as a function of the distance RBe–H (in Å) computed at the FCI (black), BSE@G0W 0 (blue), and
BSE@G0T0 (red) levels with the cc-pVDZ basis. The dynamically corrected BSE excitation energies are represented as thin lines for dBSE@G0W 0 (blue) and dBSE@G0T0
(red). Raw data are reported in the supplementary material.
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FIG. 5. HOMO and LUMO quasiparticle energies as well as the HOMO–LUMO gap
(in eV) of BeH2 as the function of the internuclear distance RBe–H (in Å) computed
at the BSE@G0W 0 (blue) and BSE@G0T0 (red) levels with the cc-pVDZ basis.
Raw data are reported in the supplementary material.

excited states of water at equilibrium geometry (see Fig. 6). Note
that all these excited states are of Rydberg nature and correspond
to n→ 3s and n→ 3p transitions for the B1 and A2 states, respec-
tively.113 In addition to the BSE-based models studied in the present
paper, we have selected well-known wave function methods,114–117

namely, configuration interaction with singles (CIS), CIS with per-
turbative doubles [CIS(D)], time-dependent Hartree–Fock (TDHF),
and FCI (taken as reference), and computed the excitation energies
of these transitions. It is worth mentioning here that the TDHF (or
RPAx) equations within the TDA are strictly equivalent to the CIS
equation117 and that CIS(D) is a simple perturbative double cor-
rection to CIS and can be considered as an excited-state analog of
second-order Møller–Plesset perturbation theory.115,116

Two key observations can be made: (i) BSE@G0W0 is by far the
best performer with a slight overestimation on the order of 0.1 eV
(as compared to FCI) and (ii) BSE@G0T0 systematically underesti-
mates the excitation energies [similarly to CIS(D)] and outperforms
CIS, CIS(D), and TDHF for the singlet states only. These general
trends are also observed for other systems, and they well evidence
the crucial role of screening in GW, hinting that a screened ver-
sion of the T-matrix formalism as proposed in Ref. 22 might be a
promising way for improvement.

VI. CONCLUSION
We have derived and implemented, for the first time, the

static and dynamic Bethe–Salpeter equations when one considers
T-matrix quasiparticle energies and a T-matrix-based kernel. The
performance of the static scheme and its perturbative dynamical cor-
rection have been assessed by computing the neutral excited states
of several molecular systems. Our results suggest that, in the context
of the computation of molecular excitation energies, the BSE@GT
formalism performs best in few-electron systems where the electron
density remains low. The overall accuracy of the present scheme still
needs to be assessed for larger systems (where screening is known
to be more important). For such purposes, a comprehensive bench-
mark study would be required and we are planning to do so in the
future.

It would be interesting to investigate its performance for the
computation of ground-state correlation energies within the adia-
batic connection fluctuation dissipation formalism, where BSE@GW
has been shown to be particularly outstanding.89,90,118 The combi-
nation of GT and GW via the range separation of the Coulomb
operator to avoid double counting of the low-order diagrams is

FIG. 6. Error with respect to FCI for the singlet (left) and triplet (right) excitation energies (in eV) of H2O at equilibrium geometry computed at various levels of theory with the
aug-cc-pVDZ basis. The geometry and the reference FCI values have been extracted from the QUEST database.112 Raw data are reported in the supplementary material.
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also a promising avenue. The work along these lines is currently
in progress. Finally, the unrestricted and spin–flip extensions of the
present formalism are currently being developed.

SUPPLEMENTARY MATERIAL

See the supplementary material for the raw data of each figure.
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APPENDIX: BSE WITH A DYNAMICAL T-MATRIX
KERNEL

In order to derive the dynamical kernel T̃ c
ib,aj given in Eq. (22),

we follow Ref. 55 (see also Ref. 90) and start from the equation for
the BSE amplitude,

χS(1, 1′) = ∫ d3d4d5d6L0(1, 4, 1′, 3)Ξ(3, 5, 4, 6)χS(6, 5), (A1)

where L0 is given by Eq. (16a) and the T-matrix kernel is

Ξ(3, 5, 4, 6) = i
δΣ(3, 4)
δG(6, 5)

≈ −T(3, 5, 4, 6). (A2)

Equation (A1) is derived by assuming that (i) the (resonant) pole
ωS = ES − E0 > 0 of L is isolated from the other poles (which is
usually the case for neutral excitations in finite systems) and (ii) the
poles of L0 are different from ωS (which is also generally the case).
The so-called T-matrix self-energy Σ is given by Eq. (2) with2,22

T(3, 8, 4, 7) = −v(3, 8)δ(3, 4)δ(7, 8) + v(3, 8)δ(4, 8)δ(3, 7)

+ i∫ d1′d2′v(3, 8)G(3, 1′)G(8, 2′)T(1′, 2′, 4, 7),

(A3)

where v is the bare Coulomb operator, and we neglect the func-
tional derivative δT/δG in the kernel Ξ. The first two terms in the

right-hand side of Eq. (A3) are the Hartree and exchange contri-
butions to the T-matrix, whereas the last term is the correlation
contribution. Making the time dependence of Eq. (A1) explicit
and defining T(3, 5, 4, 6) = −δ(τ+35)δ(τ

+
64)T(x3, x5, x4, x6; τ34), one

obtains

χS(x1, x1′ , τ11′)e−iωS(t1+t1′ )/2

= −i∫ dx3dx4dx5dx6 ∫ dt3dt4G(x1, x3; τ13)

×G(x4, x1′ ; τ11′)T(x3, x5, x4, x6; τ34)χS(x6, x5;−τ34)

× e−iωSτ34/2 (A4)

[where τij = ti − tj and τ+ij = t+i − tj with t+i = ti + η (η→ 0+)] and

T (x3, x5, x4, x6; τ34)

= v(x3, x5)δ(τ34)δ(x3, x4)δ(x6, x5) − v(x3, x5)δ(τ34)

× δ(x3, x6)δ(x4, x5) + i∫ dx7 dx8 ∫ dt7v(x3, x5)

×G(x3, x7; τ37)G(x5, x8; τ+37)T(x7, x8, x4, x6; τ74). (A5)

Using the Fourier transform G(τ) = ∫ dω
2π G(ω)e−iωτ , changing the

variable from t3 to τ34 and taking the limit t1′ = t+1 , we have

χS(x1, x1′ , 0−) = −i∫ dx3 dx4 dx5 dx6 ∫ dτ34 ∫
dω′

2π
×G(x1, x3;ω′ + ωS)G(x4, x1′ ;ω′)eiω′τ34

× T(x3, x5, x4, x6; τ34)χS(x6, x5;−τ34)

× e−iωSτ34/2. (A6)

Using the Lehman representation of the one-body Green’s function
in the quasiparticle approximation given by Eq. (3), and multiply the
left- and right-hand sides by (εa − εi − ωS) ∫ dx1dx′1ψa(x1)ψi(x′1),
we obtain

(εa − εi − ωS)∫ dx1dx′1ψa(x1)ψi(x′1)χS(x1, x1′ , 0−)

= −∫ dx3 dx4 dx5 dx6 ∫ dτ34ψa(x3)ψi(x4)

× [Θ(τ34)eiεiτ34 +Θ(−τ34)ei(εa−ωS)τ34]

× T(x3, x5, x4, x6; τ34)χS(x6, x5;−τ34)eiωSτ34/2 (A7)

(where Θ is the Heaviside step function) using the fact that

Θ(±τ)e−iατ
= ∓

1
2πi

lim
η→0+ ∫

dω
1

ω − α ± iη
e−iωτ. (A8)

For the resonant case, i.e., ωS > 0, we have

χS(x1, x1′ , τ1) = −eiωS ∣τ1 ∣/2
∑
jb
ψb(x1)ψj(x1′)⟨N∣ĉ†j ĉb∣N, S⟩

× [Θ(τ1)e−iεbτ1 +Θ(−τ1)e−iεjτ1], (A9)

where ĉ†p and ĉp are the usual creation and annihilation operators,
respectively, and ∣N⟩ and ∣N, S⟩ are the ground state and the Sth
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excited state, respectively, of the N-electron system. After some
algebraic steps, one obtains

− (εa − εi − ωS)⟨N∣ĉ†i ĉa∣N, S⟩

= ∑
jb
⟨N∣ĉ†j ĉb∣N, S⟩{

i
2π ∫

dω lim
η→0+

T ib,aj(ω)e
−iωη

×
⎡
⎢
⎢
⎢
⎣

1
ωS − ω + εj + εi + iη

+
1

ωS + ω − εb − εa + iη

⎤
⎥
⎥
⎥
⎦

⎫⎪⎪
⎬
⎪⎪⎭

, (A10)

where we have defined

T ib,aj(τ34) = ∫ dx3dx4dx5dx6ψa(x3)ψi(x4)

× T(x3, x5, x4, x6; τ34)ψb(x6)ψj(x5). (A11)

Using the definition Xia,S = ⟨N∣ĉ†i ĉa∣N, S⟩, we arrive at

(εa − εi − ωS)Xia,S +∑
jb

Xjb,S⟨ib∥aj⟩ +∑
jb

Xjb,ST̃ c
ib,aj(ωS) = 0, (A12)

where the spectral representation of the dynamical T-matrix is

T̃ c
ib,aj(ωS) =

i
2π ∫

dω lim
η→0+

T c
ib,aj(ω)e

−iωη

×
⎡
⎢
⎢
⎢
⎣

1
ωS − ω + εj + εi + iη

+
1

ωS + ω − εb − εa + iη

⎤
⎥
⎥
⎥
⎦

,

(A13)

with T c
ib,aj = T ib,aj − ⟨ib∥aj⟩ being the correlation part of T. Equa-

tion (A12) represents a non-linear eigenvalue equation to calcu-
late the positive excitation energies of a system, which can be
rewritten as

∑
jb

Aia,jb(ωS)Xjb,S = ωSXia,S, (A14)

with

Aia,jb(ωS) = (εa − εi)δijδab + ⟨ib∥aj⟩ + T̃ c
ib,aj(ωS). (A15)

If one drops the dynamical part T̃ c, one ends up with the usual
time-dependent Hartree–Fock (TDHF) equations.117 To calculate
the correlation contribution, one can employ Eq. (10) in Eq. (A13),
and, after integration over the frequency, one obtains Eq. (22).
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