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Using the simple (symmetric) Hubbard dimer, we analyze some important features of the
GW approximation. We show that the problem of the existence of multiple quasiparticle
solutions in the (perturbative) one-shot GWmethod and its partially self-consistent version
is solved by full self-consistency. We also analyze the neutral excitation spectrum using the
Bethe-Salpeter equation (BSE) formalism within the standard GW approximation and find,
in particular, that 1) some neutral excitation energies become complex when the electron-
electron interaction U increases, which can be traced back to the approximate nature of
the GW quasiparticle energies; 2) the BSE formalism yields accurate correlation energies
over a wide range of U when the trace (or plasmon) formula is employed; 3) the trace
formula is sensitive to the occurrence of complex excitation energies (especially singlet),
while the expression obtained from the adiabatic-connection fluctuation-dissipation
theorem (ACFDT) is more stable (yet less accurate); 4) the trace formula has the
correct behavior for weak (i.e., small U) interaction, unlike the ACFDT expression.

Keywords: hubbard dimer, multiple quasiparticle solutions, GW, bethe-salpter equation, trace formula, adiabatic-
connection fluctuation-dissipation theorem

1 INTRODUCTION

Many-body perturbation theory (MBPT) based on Green’s functions is among the standard tools
in condensed matter physics for the study of ground- and excited-state properties. (Aryasetiawan
and Gunnarsson, 1998; Onida et al., 2002; Martin et al., 2016; Golze et al., 2019). In particular, the
GW approximation (Hedin, 1965; Golze et al., 2019) has become the method of choice for band-
structure and photoemission calculations and, combined with the Bethe-Salpeter equation (BSE@
GW) formalism, (Salpeter and Bethe, 1951; Strinati, 1988; Albrecht et al., 1998; Rohlfing and
Louie, 1998; Benedict et al., 1998; van der Horst et al., 1999a; Blase et al., 2018, 2020), for optical
spectra calculations. Thanks to efficient implementations, (Duchemin and Blase, 2019, 2020,
2021; Bruneval et al., 2016; van Setten et al., 2013; Kaplan et al., 2015, 2016; Krause and Klopper,
2017; Caruso et al., 2012, 2013b,a; Caruso, 2013; Wilhelm et al., 2018), this toolkit is acquiring
increasing popularity in the traditional quantum chemistry community, (Rohlfing and Louie,
1999; van der Horst et al., 1999b; Puschnig and Ambrosch-Draxl, 2002; Tiago et al., 2003;
Boulanger et al., 2014; Jacquemin et al., 2015b; Bruneval et al., 2015; Jacquemin et al., 2015a;
Hirose et al., 2015; Jacquemin et al., 2017a,b; Rangel et al., 2017; Krause and Klopper, 2017; Gui
et al., 2018; Blase et al., 2018; Liu et al., 2020; Blase et al., 2020; Holzer and Klopper, 2018; Holzer
et al., 2018; Loos et al., 2020), partially due to the similarity of the equation structure to that of the
standard Hartree-Fock (HF) (Szabo and Ostlund, 1989) or Kohn-Sham (KS) (Hohenberg and
Kohn, 1964; Kohn and Sham, 1965) mean-field methods. Several studies of the performance of
various flavors of GW in atomic and molecular systems are now present in the literature, (Holm
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and von Barth, 1998; Stan et al., 2006; Stan et al., 2009; Blase
and Attaccalite, 2011; Faber et al., 2011; Bruneval, 2012;
Bruneval and Marques, 2013; Bruneval et al., 2015; Karlsson
and van Leeuwen, 2016; Bruneval et al., 2016; Bruneval, 2016;
Boulanger et al., 2014; Blase et al., 2016; Li et al., 2017; Hung
et al., 2016, 2017; van Setten et al., 2015, 2018; Ou and Subotnik,
2016, 2018; Faber, 2014), providing a clearer picture of the pros
and cons of this approach. There are, however, still some open
issues, such as 1) how to overcome the problem of multiple
quasiparticle solutions, (van Setten et al., 2015; Maggio et al.,
2017; Loos et al., 2018; Véril et al., 2018; Duchemin and Blase,
2020; Loos et al., 2020), 2) what is the best way to calculate
ground-state total energies, (Casida, 2005; Huix-Rotllant et al.,
2011; Caruso et al., 2013b; Casida and Huix-Rotllant, 2016;
Colonna et al., 2014; Olsen and Thygesen, 2014; Hellgren et al.,
2015; Holzer et al., 2018; Li et al., 2019, 2020; Loos et al., 2020),
and 3) what are the limits of the BSE in the simplification
commonly used in the so-called Casida equations. (Strinati,
1988; Rohlfing and Louie, 2000; Sottile et al., 2003; Myöhänen
et al., 2008; Ma et al., 2009a,b; Romaniello et al., 2009b; Sangalli
et al., 2011; Huix-Rotllant et al., 2011; Sakkinen et al., 2012;
Zhang et al., 2013; Rebolini and Toulouse, 2016; Olevano et al.,
2019; Lettmann and Rohlfing, 2019; Loos and Blase, 2020;
Authier and Loos, 2020; Monino and Loos, 2021). In the
present work, we address precisely these questions by using
a very simple and exactly solvable model, the symmetric
Hubbard dimer. Small Hubbard clusters are widely used test
systems for the GW approximation (e.g. Verdozzi et al., 1995;
Schindlmayr et al., 1998; Pollehn et al., 1998; Puig von Friesen
et al., 2010; Romaniello et al., 2009a, 2012). Despite its
simplicity, the Hubbard dimer is able to capture lots of the
underlying physics observed in more realistic systems,
(Romaniello et al., 2009a, 2012; Carrascal et al., 2015, 2018),
such as, for example, the nature of the band-gap opening in
strongly correlated systems as bulk NiO. (Di Sabatino et al.,
2016). Here, we will use it to better understand some features of
the GW approximation and the BSE@GW approach. Of course,
care must be taken when extrapolating conclusions to realistic
systems.

The paper is organized as follows. Section 2 provides the key
equations employed in MBPT to calculate removal and addition
energies (or charged excitations), neutral (or optical) excitation
energies, and ground-state correlation energies. In Sec. 3, we
present and discuss the results that we have obtained for the
Hubbard dimer. We finally draw conclusions and perspectives in
Sec. 4.

2 THEORETICAL FRAMEWORK

In the following we provide the key equations of MBPT (Martin
et al., 2016) and, in particular, we discuss how one can calculate
ground- and excited-state properties, namely removal and
addition energies, spectral function, total energies, and neutral
excitation energies.We use atomic units Z �m � e � 1 and work at
zero temperature throughout the paper.

2.1 The GW Approximation
Within MBPT a prominent role is played by the one-body
Green’s function G which has the following spectral
representation in the frequency domain:

G(x1, x2;ω) �∑
]

ψ](x1)ψ*
](x2)

ω − ϵ] + iη sgn(ϵ] − μ), (1)

where μ is the chemical potential, η is a positive infinitesimal, ϵ] �
EN+1
] − EN

0 for ε] > μ, and ϵ] � EN
0 − EN−1

i for ε] < μ. Here, EN
] is

the total energy of the ]th excited state of the N-electron system
(] � 0 being the ground state). In the case of single-determinant
many-body wave functions (such as HF or KS), the so-called
Lehmann amplitudes ψ] (x) reduce to one-body orbitals and
the poles of the Green’s function ε] to one-body orbital energies.

The one-body Green’s function is a powerful quantity that
contains a wealth of information about the physical system. In
particular, as readily seen from Eq. 1, it has poles at the charged
excitation energies of the system, which are proper addition/
removal energies of the N-electron system. Thus, one can also
access the (photoemission) fundamental gap

Eg � IN − AN, (2)

where IN � EN−1
0 − EN

0 is the ionization potential andAN � EN
0 −

EN+1
0 is the electron affinity. Moreover, one can straightforwardly

obtain the spectral function, which is closely related to
photoemission spectra, as

A(x1, x2;ω) � 1
π
sgn(μ − ω)ImG(x1, x2;ω). (3)

The ground-state total energy can also be extracted from G
using the Galitskii-Migdal (GM) formula (Galitskii and Migdal,
1958)

EGM
0 � − i

2
∫ dx1 lim

2→1+
i
z

zt1
+ h(r1)[ ]G(1, 2), (4)

where 1 ≡ (x1, t1) is a space-spin plus time composite variable and
h(r) � − ∇/2 + vext(r) is the one-body Hamiltonian, vext (r) being
the local external potential.

The one-body Green’s function can be obtained by solving a
Dyson equation of the form G � G0 + G0ΣG, where G0 is the
non-interacting Green’s function and the self-energy Σ is an
effective potential which contains all the many-body effects of
the system under study. In practice, Σ must be approximated
and a well-known approximation is the so-called GW
approximation in which the self-energy reads ΣGW � vH +
iGW, where vH is the classical Hartree potential, andW � ε−1vc
is the dynamically screened Coulomb interaction, with ε−1 the
inverse dielectric function and vc the bare Coulomb
interaction. (Hedin, 1965).

The equations stemming from theGW approximation should, in
principle, be solved self-consistently, since Σ is a functional of G.
(Hedin, 1965). Self-consistency, however, is computationally
demanding, and one often performs a single GW correction (for
example using G0 as starting point one buildsW and ΣGW as ΣGW �
vH + iG0W0, with vH � − ivcG0 and W0 � [1 + ivcG0G0]−1vc, from
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which G � {1 − G0ΣGW[G0]}−1G0). This cost-saving and popular
strategy is known as one-shot GW. The main drawback of the one-
shot GW method is its dependence on the starting point (i.e., the
orbitals and energies of the HF or KS mean-field eigenstates)
originating from its perturbative nature. To overcome this
problem, one can introduce some level of self-consistency.
Removal/addition energies are thus obtained by solving iteratively
the so-called quasiparticle equation

ω � ϵHF
i + 〈ϕHF

i

∣∣∣∣ΣGW
c (ω) ϕHF

i

∣∣∣∣ 〉. (5)

Here, we choose to start from HF spatial orbitals ϕHF
i (r) and

energies ϵHF
i , which are corrected by the (real part of the)

correlation contribution of the GW self-energy
ΣGW
c � ΣGW − ΣHF, where ΣHF � vH + ivcG is the HF (hartree

plus exchange) contribution to the self-energy. ΣGW
c is evaluated

with GHF at the first iteration, where GHF is the self-consistent
solution of GHF � G0 + G0ΣHFGHF. At the nth iteration, ΣGW

c is
evaluated as ΣGW

c [Gn−1], where Gn−1 has poles at the energies
from the (n − 1)-th iteration of Eq. 5 and corresponding weights
obtained from the Z factors given in Eq. 6. As a non-linear
equation, Eq. 5 has potentially many solutions ϵGWi,] . The so-called
quasiparticle (QP) solution ϵGWi,]�0 ≡ ϵQPi has the largest
renormalization factor (or spectral intensity)

Zi,] � 1 − 〈ϕHF
i

∣∣∣∣ zΣGW
c (ω)
zω

ϕHF
i

∣∣∣∣ 〉
∣∣∣∣∣∣∣∣ ω�ϵGWi,][ ]−1, (6)

while the satellite (sat) peaks ϵGWi,]>0 ≡ ϵsati,] share the remaining of
the spectral weight. Moreover, one can show that the following
sum rule is fulfilled (von Barth and Holm, 1996)

∑
]
Zi,] � 1, (7)

where the sum runs over all the solutions of the quasiparticle
equation for a given mean-field eigenstate i. Throughout this
article, i, j, k, and l denote general spatial orbitals, a and b refer to
occupied orbitals, r and s to unoccupied orbitals, while m labels
single excitations a → r.

In eigenvalue self-consistent GW (commonly abbreviated as
evGW), (Hybertsen and Louie, 1986; Shishkin and Kresse, 2007;
Blase and Attaccalite, 2011; Faber et al., 2011; Rangel et al., 2016;
Gui et al., 2018), one only updates the poles ofG, while keeping fix
the orbitals (or weights). G is then used to build ΣGW and W. At
the nth iteration, the removal/addition energies are obtained from
the GW quasiparticle solutions computed from Gn−1W (Gn−1)
where the satellites are discarded at each iteration. Nonetheless, at
the final iteration one can keep the satellite energies to get the full
spectral function (Eq. 3). In fully self-consistent GW (scGW),
(Caruso et al., 2012, 2013b,a; Caruso, 2013; Koval et al., 2014), one
updates the poles and weights of G retaining quasiparticle and
satellite energies at each iteration.

It is instructive to mention that, for a conserving
approximation, the sum of the intensities corresponding to
removal energies equals the number of electrons, i.e.,∑ϵGWi,] < μZi,] � N. scGW is an example of conserving
approximations, while, in general, the one-shot GW does not
conserve the number of electrons.

2.2 Bethe-Salpeter Equation
2.2.1 Neutral Excitations
Linear response theory (Oddershede and Jorgensen, 1977;
Casida, 1995; Petersilka et al., 1996) in MBPT is described
by the Bethe-Salpeter equation. (Strinati, 1988). The standard
BSE within the static GW approximation (referred to as BSE@
GW in this work, which means the use of GW quasiparticle
energies to build the independent-particle excitation energies
and of the GW self-energy to build the static exchange-
correlation kernel) can be recast, assuming a closed-shell
reference state, as a non-Hermitian eigenvalue problem
known as Casida equations:

Aλ Bλ

−Bλ −Aλ( ) Xλ
m

Y λ
m

( ) � Ωλ
m

Xλ
m

Y λ
m

( ), (8)

where Ωλ
m is the mth excitation energy with eigenvector

(Xλ
m Yλ

m)u at interaction strength λ, u is the matrix
transpose, and we have assumed real-valued spatial orbitals.
The non-interacting and physical systems correspond to λ � 0
and 1, respectively. The matrices Aλ and Bλ are of size OV × OV,
where O and V are the number of occupied and virtual orbitals,
respectively, and O+ V is the total number of spatial orbitals.
Introducing the so-called Mulliken notation for the bare two-
electron integrals

(ij|kl) � ∫∫ dr1dr2ϕi(r1)ϕj(r1)vc(r1 − r2)ϕk(r2)ϕl(r2), (9)

and the corresponding (static) screened Coulomb potential
matrix elements

Wij,kl(ω � 0) � ∫∫ dr1dr2ϕi(r1)ϕj(r1)W(r1, r2;ω � 0)ϕk(r2)ϕl(r2),
(10)

the BSE matrix elements read (Maggio and Kresse, 2016).

Aλ,σσ′
ar,bs � δabδrs(ϵQPr − ϵQPa ) + λ ασσ′(ar|sb) −Wab,sr(ω � 0)[ ],

(11a)

Bλ,σσ′
ar,bs � λ ασσ′(ar|bs) −Was,br(ω � 0)[ ], (11b)

where ϵQPi are the GW quasiparticle energies, and α↑↓ � 2 and
α↑↑ � 0 for singlet (i.e., spin-conserved) and triplet (i.e., spin-flip)
excitations, respectively.

In the absence of instabilities (i.e., when Aλ − Bλ is positive-
definite), (Dreuw and Head-Gordon, 2005), Eq. 8 is usually
transformed into an Hermitian eigenvalue problem of half the
dimension

(Aλ − Bλ)1/2(Aλ + Bλ)(Aλ − Bλ)1/2Vλ
m � (Ωλ

m)2Vλ
m, (12)

where the excitation amplitudes are

(Xλ + Y λ)m � (Ωλ
m)−1/2(Aλ − Bλ)+1/2Vλ

m, (13a)

(Xλ − Y λ)m � (Ωλ
m)+1/2(Aλ − Bλ)−1/2Vλ

m. (13b)

Singlet (Ω↑↓
m ≡ Ωλ�1,↑↓

m ) and triplet (Ω↑↑
m ≡ Ωλ�1,↑↑

m ) excitation
energies are obtained by diagonalizing Eq. 8 at λ � 1.
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2.2.2 Correlation Energies
Our goal here is to compare the BSE correlation energy EBSE

c
obtained using two formulas, namely the trace (or plasmon)
formula (Rowe, 1968; Ring and Schuck, 1980) and the
expression obtained using the adiabatic-connection
fluctuation-dissipation theorem (ACFDT) formalism. (Furche
and Van Voorhis, 2005; Toulouse et al., 2009, 2010; Hellgren
and von Barth, 2010; Angyan et al., 2011; Heßelmann and
Görling, 2011; Colonna et al., 2014; Maggio and Kresse,
2016; Holzer et al., 2018; Loos et al., 2020). The two
approaches have been recently compared at the random-
phase approximation (RPA) level for the case of Be2, (Li
et al., 2020), showing similar improved performances at the
RPA@GW@PBE level with respect to the RPA@PBE level and
an impressive accuracy by introducing BSE (BSE@GW@HF)
correction in the trace formula. Here we would like to get more
insights into the quality of these two approaches.

The ground-state correlation energy within the trace formula
is calculated as

ETr@BSE
c � ETr@BSE

c,↑↓ + ETr@BSE
c,↑↑

� 1
2
∑
m

Ω↑↓
m − Tr(A↑↓)⎡⎣ ⎤⎦ + 1

2
∑
m

Ω↑↑
m − Tr(A↑↑)⎡⎣ ⎤⎦,

(14)

where Aσσ′ ≡Aλ�1,σσ′ is defined in Eq.11a and Tr denotes the
matrix trace. We note that the trace formula is an approximate
expression of the correlation energy since it relies on the so-called
quasi-boson approximation and on the killing condition on the
zeroth-order Slater determinant ground state (Li et al., 2020 for
more details). Note that here both sums in Eq. 14 run over all
resonant (hence real- and complex-valued) excitation energies
while they are usually restricted to the real-valued resonant BSE
excitation energies. Thus, the Tr@BSE correlation energy is
potentially a complex-valued function in the presence of
singlet and/or triplet instabilities.

The ACFDT formalism, (Furche and Van Voorhis, 2005),
instead, provides an in-principle exact expression for the
correlation energy within time-dependent density-functional
theory (TDDFT). (Runge and Gross, 1984; Petersilka et al.,
1996; Ullrich, 2012). In practice, however, one always ends up
with an approximate expression, which quality relies on the
approximations to the exchange-correlation potential of the
KS system and to the kernel of the TDDFT linear response
equations. In this work, therefore, we use the ACFDT
expression within the BSE formalism and we explore how well
it performs and how it compares to the trace Eq. 14.

Within the ACFDT framework, only the singlet states do
contribute for a closed-shell ground state, and the ground-state
BSE correlation energy

EAC@BSE
c � 1

2
∫1

0
dλTr(K↑↓Pλ,↑↓) (15)

is obtained via integration along the adiabatic connection
path from the non-interacting system at λ � 0 to the physical
system λ � 1, where

K � ~A
λ�1

Bλ�1

Bλ�1 ~A
λ�1( ) (16)

is the interaction kernel, (Angyan et al., 2011; Holzer et al., 2018;
Loos et al., 2020) ~A

λ,σσ ′

ar,bs � ασσ ′λ(ar|sb), and

Pλ � Y λ(Y λ)u Yλ(Xλ)u
Xλ(Y λ)u Xλ(Xλ)u( ) − 0 0

0 1
( ) (17)

is the correlation part of the two-body density matrix at interaction
strength λ. Here again, the AC@BSE correlation energy might
become complex-valued in the presence of singlet instabilities.

Note that the trace and ACFDT formulas yield, for any set of
eigenstates, the same correlation energy at the RPA level. (Angyan
et al., 2011). Moreover, in contrast to density-functional theory
where the electron density is fixed along the adiabatic path,
(Langreth and Perdew, 1979; Gunnarsson and Lundqvist, 1976;
Zhang and Burke, 2004), at the BSE@GW level, the density is not
maintained as λ varies. Therefore, an additional contribution to Eq.
15 originating from the variation of the Green’s function along the
adiabatic connection should, in principle, be added. However, as
commonly done within RPA (Toulouse et al., 2009, 2010; Angyan
et al., 2011; Colonna et al., 2014) and BSE, (Holzer et al., 2018; Loos
et al., 2020), we neglect this additional contribution.

3 RESULTS

As discussed in Sec. 1, in this work, we consider the (symmetric)
Hubbard dimer as test case, which is governed by the following
Hamiltonian

Ĥ � −t ∑
σ�↑,↓

ĉ†1σ ĉ2σ + ĉ†2σ ĉ1σ( ) + U n̂1↑n̂1↓ + n̂2↑n̂2↓( ). (18)

Here n̂1σ � ĉ†1σ ĉ1σ (n̂2σ � ĉ†2σ ĉ2σ) is the spin density operator on
site 1 (site 2), ĉ†1σ and ĉ1σ (ĉ†2σ and ĉ2σ) are the creation and
annihilation operators for an electron at site 1 (site 2) with spin σ,
U is the on-site (spin-independent) interaction, and − t is the
hopping kinetic energy. The physics of the Hubbard model arises
from the competition between the hopping term, which prefers to
delocalize electrons, and the on-site interaction, which favors
localization. The ratio U/t is a measure for the relative
contribution of both terms and is the intrinsic, dimensionless
coupling constant of the Hubbard model, which we use in the
following. In this work we consider the dimer at one-half filling.

3.1 Quasiparticle Energies in the GW
Approximation
We test different flavors of self-consistency in GW calculations:
one-shot GW, evGW, partial self-consistency through the
alignment of the chemical potential (pscGW), where we shift
G0 or GHF in such a way that the resulting G has the same
chemical potential than the shifted G0 or shifted GHF,
(Schindlmayr, 1997), and scGW. In the one-shot formalism,
we also test two different starting points: the truly non-
interacting Green’s function G0 (U � 0) and the HF Green’s
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function GHF. These two schemes are respectively labeled as
G0W0 and GHFWHF in the following.

The G0W0 self-energy (in the site basis) and removal/
addition energies are already given in Ref. (Romaniello
et al., 2012) for the Hubbard dimer at one-half filling. For
completeness we report them in Supplementary Appendix S1,
together with the renormalization factors, which are discussed
in Sec. 3.1.1.

Starting from GHF, which reads

GHF,IJ(ω) � 1
2

(−1)(I−J)
ω − (t + U/2) + iη

+ 1
ω + (t − U/2) − iη

[ ], (19)

where I and J run over the sites, the (correlation part of the)
GHFWHF self-energy is ΣGW

c,IJ (ω) � ΣGW
IJ (ω) − δIJU/2 with

ΣGW
c,IJ (ω) �

U2t

2h
1

ω − (t + h + U/2) + iη
+ (−1)I−J
ω + (t + h − U/2) − iη

[ ],
(20)

where h � ��������
4t2 + 4Ut

√
. Here we used the following expression for

the polarizability P � − iGG with elements

PIJ(ω) � (−1)I−J
4

1
ω − 2t + iη

− 1
ω + 2t − iη

[ ] (21)

to build the screened interactionW � vc + vcPW, whose only non-
zero matrix elements read

WII,JJ(ω) � UδIJ + (−1)I−JU
2t

h

1
ω − h + iη

− 1
ω + h − iη

[ ] (22)

due to the local nature of the electron-electron interaction. The
quantities defined in Eqs 19−22 can then be transformed to the
bonding (bn) and antibonding (an) basis (which is used to recast
the BSE as Eq. 8) thanks to the following expressions:

|bn〉 � |1〉 + |2〉�
2

√ , |an〉 � |1〉 − |2〉�
2

√ . (23)

Therefore, the one-shot removal/addition energies read

ϵ1,± � +h
2
+ U

2
±
���������������
(h + 2t)2 + 4tU2/h
√

2
, (24a)

ϵ2,± � −h
2
+ U

2
±
���������������
(h + 2t)2 + 4tU2/h
√

2
, (24b)

with the quasiparticle solutions being ϵQPbn � ϵ1,− and
ϵQPan � ϵ2,+, which correspond to the bonding and antibonding
energies, respectively. As readily seen in Eqs 24a, 24b, in addition
to the quasiparticle, there is a unique satellite per eigenstate given
by ϵsatbn � ϵ1,+ and ϵsatan � ϵ2,−. Moreover, the closed-form
expression of the renormalization factors (Eq. 6) reads

ZQP
bn/an �

t h2 + 2ht + 2U2 + h
���������������
(h + 2t)2 + 4tU2/h
√[ ]

h3 + 4h2t + 4ht2 + 4tU2 − h2
���������������
(h + 2t)2 + 4tU2/h
√ (25)

and Zsat
bn/an � 1 − ZQP

bn/an.
The evGW and scGW calculations were performed

numerically using the meromorphic representation of G,
following Ref. (Puig von Friesen et al., 2010) with some slight
modifications (Supplementary Appendix S2 for more details).
At each iteration, the solution of the Dyson equations for G and
W (Sec. 2.1) produces extra poles. In order to keep the number of
poles under control in scGW, the poles with intensities smaller
than a user-defined threshold (set from 10–4 to 10–6 depending on
the ratioU/t) are discarded and the corresponding spectral weight
is redistributed among the remaining poles.

In Figure 1, we present the spectral function of G (Eq. 3) for
different values of the ratio U/t (U/t � 1, 5, 10, and 15) and using
GHF as starting point. We consider three GW variants: GHFWHF,
evGW, and scGW. For U/t ≲ 3, all the schemes considered here
provide a faithful description of the quasiparticle energies. For
larger U/t, GW (regardless of the level of self-consistency) tends
to underestimate the fundamental gap Eg (Eq. 2), as shown in the
upper left panel of Figure 2. GHFWHF and evGW give a very
similar estimate of Eg, whereas the quasiparticle intensity ZQP

bn/an
defined in Eq. 25 is quite different and overestimated by both
methods, at least in the range of U/t considered in Figure 2
(center left panel).

The main effects of full self-consistency are the reduction of Eg
(see upper left panel of Figure 2), and the creation of extra
satellites with decreasing intensity (see upper panel of Figure 1).
For small U/t, the fundamental gap is similar to the one predicted
by other methods while for increasing U/t the agreement worsen
and Eg is grossly underestimated. The quasiparticle intensity is
very similar to the one predicted by GHFWHF. Concerning the
position of the satellites, we observe that the one-shot GHFWHF

scheme gives the most promising results. Numerical values of
quasiparticle and first satellite energies as well as their respective
intensities in the spectral functions presented in Figure 1 are
gathered in Table 1.

We notice that a similar analysis for H2 in a minimal basis has
been presented in Ref. (Hellgren et al., 2015) with analogous
conclusions.

For the sake of completeness, we also report in the bottom left
panel of Figure 2 the total energy calculated using the Galitskii-
Migdal formula (Eq. 4). Since the Galitskii-Migdal total energy is
not stationary with respect to changes in G, one gets meaningful
energies only at self-consistency. However, for the Hubbard
dimer, we do not observe a significant impact of self-
consistency, as one can see from Figure 1 by comparing the
total energy at the GHFWHF, evGW, and scGW levels. For each of
these schemes which correspond to a different level of self-
consistency, the Galitskii-Migdal formula provides accurate
total energies only for relatively small U/t (≲ 3).

If we considerGHF as starting point and we define the chemical
potential as μ � (ϵQPan + ϵQPbn )/2, then the alignment of the chemical
potential has no effect on the spectrum, this means that GHFWHF

and pscGW are equivalent.

3.1.1 G0: A Bad Starting Point
In the following we will illustrate how the starting point can
influence the resulting quasiparticle energies. The Green’s
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function obtained from the one-shot G0W0 does not satisfy
particle-hole symmetry, the fundamental gap is
underestimated (top right panel of Figure 2) yet more
accurate than GHFWHF (top left panel of Figure 2), the
quasiparticle intensity relative to the bonding component is
close to the exact result up to U/t ≈ 16 (center right panel of
Figure 2), while overestimated for the antibonding components.
Moreover, we note that the intensities of the two poles of the
bonding component crosses at U/t � 24. This means that if we
sort the quasiparticle and the satellite according to their intensity
at a given U/t, the nature of the two poles is interchanged when
one increases U/t, which results in a discontinuity in the QP

energy. Meanwhile, the total number of particle is not conserved
(N < 2). For G0W0 we found a small deviation from N � 2 for
small U/t (e.g. N � 1.98828 at U � 1), which becomes larger by
increasing the interaction (e.g. N � 1.55485 for U/t � 10). Instead,
starting from GHF the particle number is always conserved. We
checked that for the self-consistent calculations the total particle
number is conserved, as it should.

Considering G0 as starting point in evGW, we encounter the
problem described in Ref. (Véril et al., 2018), namely the
discontinuity of various key properties (such as the
fundamental gap in the top right panel of Figure 2) with
respect to the interaction strength U/t. This issue is solved, for

FIGURE 1 | Spectral function ofG (Eq. 3) as a function of (ω−μ)/t (where μ �U/2 is the chemical potential) at various values of the ratioU/t (U/t � 1, 5, 10, and 15) for
different levels of theory: exact (black), GHFWHF (red), evGW (blue), and scGW (green). All approximate schemes are obtained using GHF as starting point.

FIGURE 2 | Fundamental gap (Eg), quasiparticle weight factors (ZQP
bn/an), and ground state energy (E0) as functions of U/t obtained from one-shot GW (dashed red

line), evGW (dashed-dotted blue line), scGW (dotted green line) using GHF (left) or G0 (right) as starting point. The black curves are the exact results.
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the Hubbard dimer, by considering a better starting point or
using the fully self-consistent scheme scGW. Note, however, that
improving the starting point does not always cure the
discontinuity problem as this issue stems from the
quasiparticle approximation itself. Full self-consistency,
instead, avoids systematically discontinuities since no
distinction is made between quasiparticle and satellites.
Unfortunately, full self-consistency is much more involved
from a computational point of view and, moreover, it does not
give an overall improvement of the various properties of interest,
at least for the Hubbard dimer, for which GHFWHF is to be
preferred. For more realistic (molecular) systems, it was shown in
Ref. (Berger et al., 2020). that the computationally cheaper self-
consistent COHSEX scheme solves the problem of multiple
quasiparticle solutions.

3.2 Bethe-Salpeter Equation
For the Hubbard dimer the matrices Aλ and Bλ in Eq. (8) are just
single matrix elements and they simply read, for both spin
manifolds,

Aλ,↑↓ � ΔϵGW + λ
U

2
, Bλ,↑↓ � λ

U

2
4tU

h2
+ 1( ), (26a)

Aλ,↑↑ � ΔϵGW − λ
U

2
, Bλ,↑↑ � λ

U

2
4tU

h2
− 1( ), (26b)

while ~A
λ,↑↓ � λU. We employ the screened Coulomb potential

given in Eq. 22 at ω � 0 for the kernel, and the GW quasiparticle
energies from Eqs 24a and 24b to build the GW approximation
of the fundamental gap ΔϵGW � ϵQP

an − ϵQP
bn . For comparison

purposes, we also use the exact quasiparticle energies [see Eq.
(C3) of Ref. (Romaniello et al., 2012).], which consists in
replacing ΔεGW by the exact fundamental gap
Eg �

��������
16t2 + U2

√ − 2t. In such a case, one is able to
specifically test how accurate the BSE formalism is at
catching the excitonic effect via the introduction of the
screened Coulomb potential.

We notice that, within the so-called Tamm-Dancoff
approximation (TDA) where one neglects the coupling matrix
Bλ between the resonant and anti-resonant parts of the BSE
Hamiltonian (Eq. 8), BSE yields RPA with exchange (RPAx)
excitation energies for the Hubbard dimer. This is the case also for
approximations to the BSE kernel which are beyond GW, such as
the T-matrix approximation. (Romaniello et al., 2012; Zhang
et al., 2017; Li et al., 2021), and it is again related to the local
nature of the electron-electron interaction. Hence, to test the
effect of approximations on correlation for this model system we
must go beyond the TDA.

3.2.1 Neutral Excitations
In Figure 3, we report the real part of the singlet and triplet
excitation energies obtained from the solution of Eq. 8 for λ � 1.
For comparison, we report also the exact excitation energies
obtained as differences of the excited- and ground-state total
energies of the Hubbard dimer obtained by diagonalizing the
Hamiltonian (18) in the Slater determinant basis
{|1↑, 1↓, |1↑, 2↓, |1↓, 2↑, |2↑, 2↓} built from the sites [Ref.
(Romaniello et al., 2009a) for the exact total energies]. For theT
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singlet manifold, this yields, for the single excitation Ω↑↓
1 and

double excitation Ω↑↓
2 , the following expressions:

Ω↑↓
1 � 1

2
U + ��������

16t2 + U2
√( ),Ω↑↓

2 � ��������
16t2 + U2

√
, (27)

while the unique triplet transition energy is

Ω↑↑
1 � 1

2
−U + ��������

16t2 + U2
√( ). (28)

Of course, one cannot access the double excitation within the
static approximation of BSE, (Strinati, 1988; Romaniello et al.,
2009b; Loos and Blase, 2020), so only the lowest singlet and triplet
excitations, Ω↑↓

1 and Ω↑↑
1 , are studied below.

Using one-shot GHFWHF quasiparticle energies (BSE@
GHFWHF) produces complex excitation energies (see right
panel of Figure 3). We find the same scenario also with other
flavors of GW (not reported in the figure), such as scGW. The
occurrence of complex poles and singlet/triplet instabilities at the
BSE level are well documented (Holzer et al., 2018; Blase et al.,
2020; Loos et al., 2020) and is not specific to the Hubbard dimer.
For example, one finds complex poles also for H2 along its
dissociation path, (Li and Olevano, 2021), but also for larger
diatomic molecules. (Loos et al., 2020). For U/t > 12.4794, the
singlet energy becomes pure imaginary, the same is observed for
the triplet energy for 7.3524 < U/t < 12.4794. These two points
corresponds to discontinuities in the first derivative of the
excitation energies with respect to U/t (Figure 3). The BSE
excitation energies are good approximations to their exact
analogs only for U/t ≲ 2 for the singlet and U/t ≲ 6 for the
triplet. Using exact quasiparticle energies instead produces real
excitation energies, with the singlet energy in very good
agreement with the exact result; the triplet energy, instead,
largely overestimates the exact value. This seems to suggest
that complex poles are caused by the approximate nature of
the GW quasiparticle energies, although, of course, the quality of
the kernel also plays a role. Indeed, setting W � 0 but using GW
QP energies, BSE yields real-valued excitation energies. It would
be interesting to further investigate this issue by using the exact
kernel together with GWQP energies. This is left for future work.

3.2.2 Correlation Energy
For the Hubbard dimer, we have EHF � − 2t + U/2, and the
correlation energy given in Eq. 15 can be calculated analytically.
After a lengthy but simple derivation, one gets

EAC@BSE
c � −U

2
+ t2 − 2U2

2U(2t + 3U){ΔϵGW−
1

2(t + U)
�������������������������������������������
[−U2 + 2(t + U)ΔϵGW] U(2t + 3U) + 2(t + U)ΔϵGW[ ]√ }

− t + 2U

2
����������
U(2t + 3U)√ 3t + 4U

2t + 3U
+ t

U
( )ΔϵGW

atan − U
����������
U(2t + 3U)√

2ΔϵGW(t + U) +
�������������������������������������������
[−U2 + 2(t + U)ΔϵGW][U(2t + 3U) + 2(t + U)ΔϵGW]
√⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭.

Results are reported in Figure 4 and are compared with the
exact correlation energy (Romaniello et al., 2009a)

Ec � −
��������
16t2 + U2

√
2

+ 2t. (29)

The AC@BSE correlation energy does not possess the correct
asymptotic behavior for small U, as Taylor expanding Eq. 29 for
small U, we obtain

EAC@BSE
c � −U

2

32t
− 5U3

96t2
+ 323U4

6144t3
+O(U4), (30)

while the exact correlation energy behaves as

Ec � −U
2

16t
+ U4

1024t3
+O(U6). (31)

Moreover, we found that the radius of convergence of the
small-U/t expansion of EAC@BSE

c is very small due to a square-root
branch point for U/t ≈ − 2/3.

In the case of the trace formula Eq. 14, the singlet and triplet
contributions behave as

ETr@BSE
c,↑↓ � −U

2

32t
− 7U3

128t2
+ 99U4

2048t3
+O(U5), (32a)

ETr@BSE
c,↑↑ � −U

2

32t
+ 7U3

128t2
− 157U4

2048t3
+O(U5), (32b)

FIGURE 3 | Real and imaginary parts of the singlet (solid) and triplet (dotted) neutral excitations, Ω↑↓
1 and Ω↑↑

1 , as functions of U/t: exact (black), BSE with exact
quasiparticle energies and WHF (gray), BSE@GHFWHF (red).
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which guarantees the correct asymptotic behavior for the total
Tr@BSE correlation energy

ETr@BSE
c � −U

2

16t
− 29U4

1024t3
+O(U5), (33)

and cancels the cubic term (as it should).
The trace formula is strongly affected by the appearance of the

imaginary excitation energies: as shown in Figure 4 where we plot
the real and complex components of the BSE@GHFWHF correlation
energy as functions of U/t at various levels of theory, irregularities
(i.e., discontinuities in the first derivative of the energy) appear at the
values ofU/t for which the triplet and singlet energies become purely
imaginary. The ACFDT expression, instead, is more stable over the
range of U/t considered here with only a small cusp on the energy
surface at the singlet instability point after which the real part of
Ec
AC@BSE behaves linearly with respect to U/t. Overall, however, the

correlation energy obtained by the trace formula is almost on top of
its exact counterpart over a wide range of U/t, with a rather small
contribution from the triplet component, i.e., |ETr@BSE

c,↑↑ |≪ |ETr@BSE
c,↑↓ |.

For comparison purposes, the RPA correlation energy, which is
obtained from the trace or ACDFT formula using BSE@GHFWHF

with W � 0 in the BSE kernel, is also reported in Figure 4. Both
formulas yield the same correlation energies as expected, and they
show no irregularities thanks to the fact that BSE excitation energies
are real-valued at the RPA level. Also correlation energies obtained
using BSE@exact (also shown in Figure 4) do not show irregularities
for the same reason. Moreover, they show a visible upshift with
respect to the corresponding AC@BSE@GHFWHF and Tr@BSE@
GHFWHF results, which worsens the agreement with the exact
correlation energy. Finally, we observe that both expressions for
the correlation energy (at BSE@GW level) produce better results
than the Galitskii-Migdal Eq. 4, as one can see from Figure 4, in
particular at large U/t.

4 CONCLUSION

In this work we have used the symmetric Hubbard dimer to better
understand some features of theGW approximation and of BSE@
GW. In particular, we have found that the unphysical discontinuities

that may occur in quasiparticle energies computed using one-shot or
partially self-consistent GW schemes disappear using full self-
consistency. However, full self-consistency does not give an overall
improvement in term of accuracy and, at least for the Hubbard dimer,
GHFWHF is to be preferred.

We have also analyzed the performance of the BSE@GW approach
for neutral excitations and correlation energies.We have found that, at
any level of self-consistency, the excitation energies become complex
for some critical values of U/t. This seems related to the approximate
nature of theGW quasiparticle energies, since using exact quasiparticle
energies (hence the exact fundamental gap) solves this issue. The BSE
excitation energies are good approximations to the exact analogs only
for a small range of U/t (or U/t ≲ 2 for the lowest singlet-singlet
transition and U/t ≲ 6 for the singlet-triplet transition), while the
strong-correlation regime remains a challenge.

The correlation energy obtained from these excitation energies
using the trace (or plasmon) formula has been found to be in very
good agreement with the exact results over the whole range of U/t
for which these energies are real. The occurrence of complex singlet
and triplet excitation energies shows up as irregularities in the
correlation energy. The ACFDT formula, instead, is less sensitive to
this. However, we have found that the AC@BSE correlation energy
is less accurate than the one obtained using the trace formula. Both,
however, perform better than the standard Galitskii-Migdal
formula. Finally, we have studied the small-U expansion of the
correlation energy obtained with the trace and ACFDT formulas
and we found that the former, contrary to the latter, has the correct
behavior when one includes both the singlet and triplet energy
contributions. Our findings point out to a possible fundamental
problem of the AC@BSE formalism.

Although our study is restricted to the half-filled Hubbard dimer,
some of our findings are transferable to realistic (molecular) systems.
In particular: 1) a fully self-consistent solution of the GW equation
cures the problemofmultipleQP solutions, avoiding in the process the
appearance of discontinuities in key physical quantities such as total or
excitation energies, ionization potentials, and electron affinities; 2) a
“bad” starting point (G0 in the case of the Hubbard dimer) may result
in the appearence ofmultipleQP solutions; 3) potential energy surfaces
computed with the trace formula and within the ACFDT formalism
may exhibit irregularities due to the appearence of complex BSE

FIGURE 4 | Real and imaginary parts of the BSE@GHFWHF correlation energy as a function of U/t at various levels of theory: total (dotted blue line) and singlet-only
(dashed green line) Tr@BSE, AC@BSE (dot-dashed magenta line), RPA (triple-dotted orange line), GM (double-dot-dashed red line), and exact (solid black line). For
comparison also the BSE@exact (Tr@BSE, double-dotted dark grey line; AC@BSE, dot-dashed light grey line) correlation energies are shown. Discontinuities in the first
derivative of the energy (corresponding to the appearance of complex poles) are indicated by open circles.
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excitation energies; 4) for the Hubbard dimer at half-filling, the trace
formula has the correct asymptotic behavior (thanks to the inclusion of
singlet and triplet excitation energies) for weak interaction, contrary to
its ACFDT counterpart. It would be interesting to check if it is also the
case in realistic systems.
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