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ABSTRACT
In single-reference coupled-cluster (CC) methods, one has to solve a set of non-linear polynomial equations in order to determine the so-
called amplitudes that are then used to compute the energy and other properties. Although it is of common practice to converge to the
(lowest-energy) ground-state solution, it is also possible, thanks to tailored algorithms, to access higher-energy roots of these equations that
may or may not correspond to genuine excited states. Here, we explore the structure of the energy landscape of variational CC and we
compare it with its (projected) traditional version in the case where the excitation operator is restricted to paired double excitations (pCCD).
By investigating two model systems (the symmetric stretching of the linear H4 molecule and the continuous deformation of the square H4
molecule into a rectangular arrangement) in the presence of weak and strong correlations, the performance of variational pCCD (VpCCD)
and traditional pCCD is gauged against their configuration interaction (CI) equivalent, known as doubly occupied CI, for reference Slater
determinants made of ground- or excited-state Hartree–Fock orbitals or state-specific orbitals optimized directly at the VpCCD level. The
influence of spatial symmetry breaking is also investigated.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0060698

I. COUPLED CLUSTER AND STRONG CORRELATION

Single-reference (SR) coupled-cluster (CC) methods offer a
reliable description of weakly correlated systems through a well-
defined hierarchy of systematically improvable models.1–5 On top
of this hierarchy stands full CC (FCC), which is equivalent to full
configuration interaction (FCI), and consequently provides, at a very
expensive computational cost, the exact wave function and energy of
the system in a given basis set. Fortunately, more affordable meth-
ods have been designed and the popular CCSD(T) method, which
includes singles, doubles, and non-iterative triples, is nowadays con-
sidered as the gold standard of quantum chemistry for ground-state
energies and properties.6,7 Despite its success for weakly correlated
systems, it is now widely known that CCSD(T) flagrantly breaks
down in the presence of strong correlation as one cannot efficiently
describe such systems with a single (reference) Slater determinant.
This has motivated quantum chemists to design multi-reference
CC (MRCC) methods.8–12 However, it is fair to say that these
methods are computationally demanding and still far from being
black-box.

Because SRCC works so well for weak correlation, it would
be convenient to be able to treat strong correlation within the
very same framework. This is further motivated by the fact that
one can compensate for the poor quality of the reference wave
function by simply increasing the maximum excitation degree
of the CC expansion. However, this is inevitably associated
with a rapid growth of the computational cost, and hence, one
cannot always afford this brute-force strategy. The development
of SR-based methods for strong correlation is ongoing, and
some of them (usually based on the “addition-by-subtraction”
principle) have shown promising results. A non-exhaustive
list includes pair coupled-cluster doubles,13–22 singlet-paired
CCD,23,24 the distinguishable cluster methods,25–34 CCD-based
variants involving a well-defined subset of diagrams,35–39 the nCC
hierarchy,40,41 and parametrized CCSD.42 Each of these methods
sheds new light on the failures of SRCC to treat static correla-
tion. For the sake of brevity, we omit the single-reference prefix
hereafter.

The CC wave function ∣ΨCC⟩ is obtained by applying a wave
operator onto a single Slater determinant reference ∣Ψ0⟩ as
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∣ΨCC⟩ = eT̂
∣Ψ0⟩. (1)

In CC theory, the wave operator is defined as the exponential of the
cluster operator,

T̂ =
N

∑
k=1

T̂k, (2)

which is the sum of the kth-degree excitation operator up to k = N
(where N is the number of electrons). In second quantized form, we
have

T̂k =
1
(k!)2∑

ij...
∑

ab...
tab...
ij... a†

aa†
b . . . ajai, (3)

with ai and a†
a being the second quantization annihilation and cre-

ation operators, respectively, which annihilates (creates) an elec-
tron in the spin-orbital i (a). The cluster amplitudes tab...

ij... are the
quantities of interest in order to compute the CC energy (see below).

Throughout the paper, p, q, r, and s denote general spin-
orbitals; i, j, k, and l refer to occupied spin-orbitals (hole states); and
a, b, c, and d to unoccupied spin-orbitals (particle states).

In quantum mechanics, one convenient way to determine the
parameters of a wave function ansätz is to minimize the energy
with respect to its parameters. The Rayleigh–Ritz variational prin-
ciple ensures that the energy thus obtained is an upper bound to the
exact ground-state energy. Following this strategy, the variational
CC (VCC) energy43–51

EVCC =
⟨Ψ0∣eT̂†

ĤeT̂
∣Ψ0⟩

⟨Ψ0∣eT̂†eT̂ ∣Ψ0⟩
(4)

is thus minimized with respect to the cluster amplitudes, which
ensures

min
tab...
ij...

EVCC ≥ EFCI. (5)

Unfortunately, independently of the excitation rank of T̂, this proce-
dure is not tractable in practice. Indeed, because the series expansion
of the exponential in Eq. (4) does not truncate before the Nth-
order term, VCC has an inherent exponential scaling with respect
to system size.

Usually, one sacrifices the attractive upper bound property of
the variational principle in exchange for computational tractability.
To do so, the similarity-transformed Schrödinger equation

e−T̂ĤeT̂
∣Ψ0⟩ = H̄∣Ψ0⟩ = E∣Ψ0⟩ (6)

is projected onto the reference determinant ∣Ψ0⟩, which gives

ETCC = ⟨Ψ0∣H̄∣Ψ0⟩. (7)

This energy can be seen as the expectation value of a
similarity-transformed Hamiltonian H̄ = e−T̂ĤeT̂ for the ref-
erence determinant ∣Ψ0⟩. One can expand H̄ thanks to the
Baker–Campbell–Hausdorff formula and show that this series
naturally truncates after the fourth-order term. This truncation is
due to the two-electron nature of the Hamiltonian and is responsible
for the affordable polynomial scaling of this method (contrary to
the exponential cost of the variational approach). In such a case, the

cluster amplitudes are no longer determined by minimization of the
VCC energy functional (4) but via the amplitude equations

⟨Ψab...
ij... ∣H̄∣Ψ0⟩ = 0, (8)

which are the projection of the similarity-transformed Schrödinger
equation (6) onto excited determinants. In Eq. (8), the determi-
nant ∣Ψab...

ij... ⟩ is obtained by promoting the electrons occupying the
orbitals i, j, . . . in ∣Ψ0⟩ to the vacant orbitals a, b, . . .. One usually
refers to this type of method as traditional CC (TCC).

As reported in Refs. 48, 52, and 53, VCC has been shown to give
correct results in situations where TCC fails. These benchmark stud-
ies evidenced that the breakdowns of TCC cannot be explained solely
by its single-reference nature, as part of the problem actually orig-
inates from its non-variational character. Unfortunately, because
of the exponential scaling of VCC, it is computationally cumber-
some and cannot be applied in practice except for small molecules
in small basis sets. This drawback has motivated the search for
approximate methods that retain the advantages of VCC but at a
polynomial cost. Because VCC inherits its exponential scaling from
the lack of truncation of its energy functional [see Eq. (4)], some
authors have designed ingenious truncation schemes.43,44 The quasi-
variational CC (QVCC) method from Knowles’ and co-workers has
been designed along these lines.50,54–57 This method, which is an
improvement of the former linked pair functional,49 can be seen
as an infinite summation of a given subset of diagrams of the VCC
energy functional. This method has most of the desirable properties
of an approximate VCC theory (see Ref. 54 for an exhaustive dis-
cussion of these properties) but is not an upper bound to the exact
energy. Yet, QVCC has been proved to be much more robust than
TCC in cases where the latter exhibits non-variational collapse below
the FCI energy like, for example, in the symmetric bond stretching
of the nitrogen and acetylene molecules.55–57

Using VCC instead of TCC has its advantages, but its compu-
tational complexity is very nettlesome. It would be simpler if one
could describe strong correlation while retaining the projective way
of solving the equations and its associated polynomial cost. Surpris-
ingly, restricting the cluster operator to paired double excitations
(pCCD), which is a simplification with respect to CC with doubles
(CCD),58 can give qualitatively good results for strongly correlated
systems.13–22,24 This can be understood thanks to the concept of
seniority number, which is defined as the number of unpaired elec-
trons in a determinant.59 Indeed, the seniority-zero subspace (i.e.,
the set of all closed-shell determinants) has proven to give a good
description of static correlation.60 Unfortunately, doubly occupied
configuration interaction (DOCI), which is a CI calculation in the
seniority-zero subspace, inherits the exponential scaling of its FCI
parent.60–66 However, benchmark results15,16,18,67 have shown that
pCCD provides ground-state energies that are almost indistinguish-
able from the DOCI ones but at a mean-field computational cost,
hence providing a tractable way to qualitatively describe strongly
correlated systems. Note that pCCD is equivalent to the antisym-
metric product of 1-reference orbital geminals (AP1roG),13,14,21,68–77

which has been designed as a computationally tractable approxima-
tion to the antisymmetric product of geminals (APG),78,79 a method
that has been recently further explored by the group of Scuseria.80–85

Because the seniority-zero subspace is not invariant to orbital
rotations, one must energetically optimize the orbitals to obtain
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the optimal pairing scheme (i.e., the orbital set that minimizes
the energy in the seniority-zero subspace).60 In Ref. 13, Limacher
et al. determined this pairing scheme by optimizing the orbitals
at the DOCI level and then using these orbitals for their gem-
inal wave function methods. Later, Henderson et al. designed
an orbital-optimized pCCD (oo-pCCD) procedure that provides
a more straightforward route to obtain this optimal pairing
scheme.15

II. COUPLED CLUSTER AND EXCITED STATES
A. TCC for excited states

Excited-state energies and properties can be computed within
the TCC paradigm through the well-established equation-of-motion
(EOM) formalism.86–90 In EOM-CC, one applies a suitably chosen
(linear) excitation operator on a ground-state CC wave function to
compute excited states. This procedure can be conveniently recast
as a non-Hermitian eigenvalue problem involving the similarity-
transformed Hamiltonian H̄ in a space of excited determinants.5
Like in ground-state TCC, one can systematically expand the exci-
tation space to form a well-defined hierarchy of EOM methods. As
an example, EOM-CCSD restricts the set of excited determinants to
singles and doubles. EOM-CCSD is known to accurately describe
single excitations91,92 but dramatically fails to describe double exci-
tations because of the lack of triples and higher excitations.93,94 This
shortcoming can be corrected by the inclusion of these higher exci-
tations, but this is not without a steep increase of the computational
cost.95–100

Albeit being by far the most popular excited-state formalism,
EOM is not the only route to excited states within CC theory. Indeed,
the amplitude equations (8) constitute a set of non-linear poly-
nomial equations and consequently possess many solutions. These
solutions, sometimes labeled “non-standard,” can be non-physical
or correspond to genuine excited states.101 Therefore, performing a
first standard ground-state CC calculation and a second one con-
verging toward a given excited state provides an alternative way
to obtain excitation energies.102,103 Lee et al. refer to this type of
method as ΔCC103 by analogy with the ΔSCF methods where one
basically follows the same procedure but at the self-consistent field
(SCF) level. Indeed, the use of Hartree–Fock (HF) or Kohn–Sham
higher-energy solutions corresponding to excited states is becom-
ing more and more popular and new algorithms designed to target
such solutions, like the maximum overlap method (MOM)104–107 or
more involved variants,108–122 are being actively developed. In addi-
tion to providing a qualitatively good description of excited states,122

these solutions can also be very helpful for ΔCC methods, as we shall
illustrate below (see also Ref. 103).

The set of orbitals used, particularly the orbitals that constitute
∣Ψ0⟩, strongly influences the performance of ΔCC methods. Impor-
tantly, the use of state-specific orbitals plays the role of a magnifying
glass and facilitates the convergence toward a given CC solution by
enlarging the associated basin of attraction. In addition to the orbital
set, two other factors influence in a significant way the solutions that
can be reached: the guess amplitudes for the CC equations and the
algorithm employed for solving these equations. Even if the chosen
orbitals can enlarge or shrink the basin of attraction of a given solu-
tion, one still has to pick an appropriate starting point within this
basin to be able to converge to the desired solution. Moreover, the

type of iterative algorithms (usually based on the Newton–Raphson
method and/or supplemented by Pulay’s direct inversion in the iter-
ative subspace (DIIS) method123–125) must also be carefully chosen so
as to target, for example, saddle points or maxima instead of minima.
For example, as shown in Ref. 126, the usual CC iterative algorithm
is inappropriate to converge toward excited states.

Because of the non-linearity of the CC equations [see Eq. (8)],
the number of solutions can be higher than the physically meaning-
ful number. However, claiming that a given solution corresponds to
a genuine electronic state (or not) is a rather tricky task as the overall
picture behind the structure of the CC solutions is still far from being
thoroughly understood. Z̀ivković and Monkhorst were the first to
tackle this outstanding problem with their seminal work on the exis-
tence conditions of the higher roots of the CC equations.127,128 How-
ever, their model was too simplistic and most of the pathological
solutions that they found or predicted were due to this unrealis-
tic model as argued later by Jankowski et al. who investigated the
CCD solutions of 1A1 symmetry in the H4 molecule.129–131 Still, they
evidenced that some non-standard solutions may be non-physical.
They also showed that the CC solution structure highly depends on
the reference.131 Few years later, the introduction of the homotopy
method (which gives all the solutions of a set of non-linear equa-
tions) in the CC paradigm enabled the first systematic study on the
structure of the CC energy landscape.132,133 In particular, these stud-
ies showed that, in practice, the number of CC solutions is much
lower than the theoretical upper bound known as Bézout’s number.
We refer the interested reader to the series of papers by Jankowski
et al.134–137 and the book chapter of Piecuch and Kowalski101

for an extensive discussion about the homotopy method and the
higher-energy solutions of the CC equations. We should also men-
tion that the homotopy method has been employed to locate the
CC solutions of the PPP model for some cyclic polyenes,138,139

as well as in the context of MRCC and the Bloch equation
formalism.140–142

More recent studies have further improved our understand-
ing of the CC energy landscape from which multiple solutions
emerge.103,143 As pointed out by Mayhall and Raghavachari in their
study of the CCSD solutions in the NiH molecule, the problem of the
CC solution structure still needs to be addressed for more realistic
systems.143 Lee et al. showed that ΔCC can provide fairly accurate
double excitation and double core–hole energies.103 Recently, we
have pursued along these lines by analyzing the non-standard solu-
tions of the pCCD equations. We have shown that the agreement
between pCCD and DOCI holds for excited states on the condi-
tion that state-specific optimized orbitals are employed.126 More-
over, Ref. 126 brought some answers to Mayhall’s open question
as we have shown that Δoo-pCCD provides double excitation ener-
gies that are comparable in terms of accuracy to the more expensive
EOM-CCSDT method97,98,144–146 for a set of small (yet realistic)
molecules. It is worth mentioning again that all the studies men-
tioned above deal with TCC methods. Note also that Ref. 21 dis-
cusses, in particular, alternative ways to find multiple excited states
for AP1roG (and related methods).

B. VCC for excited states
For the sake of clarity, from here on, we restrict ourselves to

VCCD (i.e., T̂ = T̂2), but the procedure presented below is general
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and can be applied to higher-order variants. To the best of our
knowledge, the present study is the first one to investigate excited
states at the VCC level.

Because saddle points and maxima of the HF energy functional
represent excited states, one can genuinely wonder if the same holds
for the VCC energy functional (4). Thus, we seek for its stationary
points, i.e., the different sets of cluster amplitudes t with elements
tab
ij satisfying

∂EVCC

∂tab
ij
= rab

ij = 0, (9)

where the VCCD residuals rab
ij are the elements of the tensor r. The

ground-state variational solution obtained via the minimization of
Eq. (4) is also a solution of the more general equation (9), which
provides all the stationary solutions of the VCCD equations. In this
study, we restrict ourselves to solutions with real cluster amplitudes.
The explicit expressions of the residual equations under this assump-
tion are derived in Appendix A. Of course, stationary points of the
VCC energy functional associated with complex cluster amplitudes
may also exist. Indeed, the hermiticity of eT̂†

ĤeT̂ ensures that EVCC
is real for any set of amplitudes.44

Because VCC has an inherent exponential scaling, one can take
advantage of the more convenient FCI representation to implement
VCC algorithms.48,52 Following Van Voorhis and Head-Gordon, we
represent the (unnormalized) CC wave function as a CI vector (i.e.,
in the Slater determinant basis) by N successive applications of the
cluster operator T̂ on the reference wave function,

∣ΨCC⟩ = eT̂
∣Ψ0⟩

= ∣Ψ0⟩+ T̂(∣Ψ0⟩ +
T̂
2
(⋅ ⋅ ⋅(∣Ψ0⟩+

T̂
N − 1

((1 +
T̂
N
)∣Ψ0⟩)) ⋅ ⋅ ⋅)).

(10)

Using this CI representation, the action of second quantized oper-
ators on the CC wave function is quite straightforward, and one
can evaluate the energy (4) and the residuals (A1) by simple matrix
products. Note that the coefficients of the resulting CC wave func-
tion [see Eq. (10)] are equal to the cluster analysis of the CI coeffi-
cients.87,147–149

In their VCCD benchmark study, Van Voorhis and Head-
Gordon52 relied on the standard TCCD iterative procedure (where
one computes an approximate diagonal Jacobian matrix based on
the difference of the Fock matrix elements f q

p) to solve Eq. (9),

tab
ij ← tab

ij −
rab

ij

f a
a + f b

b − f i
i − f j

j

. (11)

However, this approximate form of the Jacobian matrix cannot
be employed to target excited states as it systematically converges
toward the ground state or eventually diverges (see Ref. 126 for an
exhaustive discussion on this point). If one aims at excited states, one
should be aware that they generally are saddle points of the energy
landscape. However, local minima could also correspond to physical
excited states, but it was not the case for the two model systems con-
sidered here. Therefore, to target saddle points, one should take into

account the curvature of the energy landscape. To do so, we consider
the Jacobian matrix J with elements

Jab,cd
ij,kl =

∂rab
ij

∂tcd
kl

, (12)

which is then used to update the amplitudes according to the usual
Newton–Raphson algorithm, i.e.,

t ← t − J−1
⋅ r. (13)

The general expression of the Jacobian matrix elements is given
in Appendix A. Note that this updating scheme of the amplitudes
[see Eq. (13)] is more computationally demanding than the usual
one [see Eq. (11)] as it requires to compute the entire Jacobian
matrix and invert it. We should nonetheless mention that alterna-
tive algorithms are available to target such solutions. For example,
approximate Newton–Raphson schemes that preserve the informa-
tion about the energy curvature contained in the exact Jacobian
matrix, or large-scale iterative solvers where one does not need to
construct the full Jacobian, could also be employed.

In difficult cases, it can be useful to damp the Newton–Raphson
steps. However, one has to ensure that the structure of the Jacobian
matrix is preserved during this process. This can be done by diago-
nalizing the Jacobian and adding a positive/negative constant to the
positive/negative eigenvalues, similar to what we have recently done
for orbital optimization at the pCCD level.126

To fully specify our algorithm, we still need to choose our
reference ∣Ψ0⟩ as well as the starting values of the cluster ampli-
tudes. In this study, we rely on both ground- and excited-state
HF wave functions as references in order to study the influence of
state-specific references. The orbitals employed to construct these
excited-state HF wave functions have been obtained using initial
MOM (IMOM).104–107 State-specific orbitals optimized at the cor-
related level are also considered, as discussed below. Regarding the
starting values of the cluster amplitudes t, once again we have taken
advantage of the FCI representation by obtaining these via a cluster
analysis of the corresponding CI eigenvectors.87,148

C. Orbital optimization for excited states
The solutions obtained via this iterative process [see Eq. (13)]

are stationary points of the VCCD energy functional with respect to
the cluster amplitudes but not with respect to the orbital coefficients.
Indeed, the orbitals have usually been obtained at the HF level and
no longer represent a stationary point when electron correlation is
introduced. The next step is thus to optimize the orbitals at the cor-
responding correlated level to find solutions that are stationary with
respect to both the cluster amplitudes and the orbital coefficients.

As usually done,150,151 we introduce a unitary operator eκ̂ into
the VCCD energy functional,

EVCC(κ̂) =
⟨Ψ0∣eT̂†

e−κ̂Ĥeκ̂eT̂
∣Ψ0⟩

⟨Ψ0∣eT̂†eT̂ ∣Ψ0⟩
, (14)

to account for orbital rotations. Now, Eq. (14) can be minimized
with respect to the cluster amplitudes tab

ij and to the orbital rotation
parameters κpq of the one-electron anti-Hermitian operator κ̂. For a
given set of cluster amplitudes, we search for the stationary points
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with respect to the orbital rotation parameters using the second-
order Newton–Raphson method. We then expand the VCC energy
around κ = 0,

EVCC(κ) ≈ EVCC(0) + g ⋅ κ +
1
2

κ†
⋅H ⋅ κ, (15)

where g is the orbital gradient and H is the orbital Hessian, both
evaluated at κ = 0, i.e.,

gpq =
∂EVCC(κ)

∂κpq
∣

κ=0
, Hpq,rs =

∂2EVCC(κ)
∂κpq∂κrs

∣

κ=0
. (16)

The orbitals are then updated following the usual Newton–Raphson
step

C ← C ⋅ e−H−1
⋅g , (17)

where C is the orbital coefficient matrix. Then, one finds the solu-
tion of Eq. (9) for this new set of orbitals and the procedure is
repeated until convergence. To compute the gradient and the Hes-
sian, one must compute the one- and two-body density matrices,15

with respective elements

γpq = ∑
σ

⟨ΨCC∣a†
qσ apσ ∣ΨCC⟩

⟨ΨCC∣ΨCC⟩
, (18a)

Γpq,rs = ∑
σσ′

⟨ΨCC∣a†
sσ a†

rσ′
aqσ′ apσ ∣ΨCC⟩

⟨ΨCC∣ΨCC⟩
, (18b)

where the orbital index refers to spatial orbitals, and σ and σ′ indi-
cate spin indices. Once again, we take advantage of the CI represen-
tation of the VCCD wave function to compute these quantities. We
express the string of second quantized operators in Eqs. (18a) and
(18b) as a matrix in the Slater determinant basis and then evaluate
the elements of the one- and two-body density matrices by simple
matrix products.

In the present study, we restrict the cluster operator to a pair
double excitation operator

T̂ = ∑
ia

taa
ii P†

aPi, (19)

(with P†
q = a†

q↑a
†
q↓) and investigate the properties of ground and

excited states at the traditional pCCD (TpCCD) and variational
pCCD (VpCCD) levels. This choice is motivated by the two fol-
lowing arguments. First, our aim is to compare the VpCCD solu-
tion structure with its TpCCD counterpart (which has received our
attention recently126) in order to provide new insights into the mul-
tiple solutions of the VCC equations. Second, this restriction of the
cluster operator significantly lowers both the computational cost
and the complexity of the energy landscape, hence simplifying the
present analysis. The VpCCD equations are easily obtained from
their VCCD analogs (see Appendix B for their explicit expressions).
We refer the interested reader to Ref. 15 for a complete list of equa-
tions and an exhaustive discussion of the orbital optimization algo-
rithm in the case of ground-state TpCCD and to Ref. 126 for the case
of excited-state TpCCD.

In the following, taking the symmetric dissociation of the linear
H4 molecule as a first case study, ground- and excited-state energies

obtained at the TpCCD and VpCCD levels are compared to DOCI
for three different sets of orbitals: ground-state HF orbitals, state-
specific HF orbitals, and state-specific orbitals optimized at the
VpCCD level. In a second stage, we look at the various TpCCD,
VpCCD, and DOCI electronic states in the presence of strong
correlation (i.e., near degeneracies) by examining the continuous
deformation of H4 from a square to a rectangular arrangement.

III. COMPUTATIONAL DETAILS
The computational methods investigated here (HF, MOM,

TpCCD, VpCCD, DOCI, and FCI) have been implemented as stan-
dalone MATHEMATICA modules,152 which makes them easily intercon-
nectable and modifiable depending on the actual purpose. These
are provided in an accompanying notebook available for download
from Zenodo at http://doi.org/10.5281/zenodo.4971904. All the cal-
culations have been performed in the restricted formalism. The only
required input is the one- and two-electron integrals, which are usu-
ally computed with a third-party software like QUANTUM PACKAGE.153–155

The convergence threshold (based on the DIIS commutator) was
set to 10−10 a.u. for the restricted HF (RHF) calculations, while
the convergence thresholds (based on the maximum absolute value
of the gradient) for the cluster amplitude and orbital optimization
procedures were both set to 10−6 a.u.

IV. RESULTS AND DISCUSSION
A. Influence of the orbital set: The linear H4 molecule

As a first example, we consider the symmetric stretching of
the linear H4 molecule in a minimal basis (STO-6G156). This corre-
sponds to a system with four electrons in four spatial orbitals with
respective symmetries σ g , σu, σ∗g , and σ∗u (in ascending energies).
Linear chains of hydrogens are prototypical examples of left–right
correlation and, therefore, have been widely studied in order to
probe electronic structure methods in the presence of such corre-
lation.13,15,25,57,60,157–164 Hereafter, the distance between two consec-
utive hydrogens is denoted by R. The first stage of this study consists
in investigating the quality of the TpCCD and VpCCD ground- and
excited-state energies in the case where the reference wave function
is chosen as the ground-state RHF determinant, a choice that obvi-
ously induces a bias toward the ground state. The VpCCD energies
(solid lines) are plotted alongside the DOCI ones (markers) in the
left-hand-side of Fig. 1. Thanks to the simplicity of this model, one
can access, via MATHEMATICA’s implementation of the Jenkins–Traub
algorithm,165,166 the entire set of solutions (with real cluster ampli-
tudes) associated with the system of polynomial equations (9). These
VpCDD solutions are represented as thin solid lines in Fig. 1, while
the thick parts of the curves correspond to the energies that we have
been able to obtain using the Newton–Raphson algorithm described
earlier (see Sec. II C). Figure 1 also shows the TpCCD energies
(dashed lines) that are also determined with the Jenkins–Traub algo-
rithm applied to Eq. (8). In addition, the difference between TpCCD
(VpCCD) and DOCI energies is also plotted in the top (bottom)
right panel of Fig. 1.

Considering the ground-state RHF determinant as the refer-
ence wave function, the convergence toward the VpCCD ground
state, (σg)

2
(σu)

2, is numerically straightforward all along the
potential energy curve (PEC). On the other hand, converging excited
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FIG. 1. Left: Energies (in hartree) of
the linear H4 molecule in the STO-
6G basis set as functions of the bond
length R (in bohr) for various methods
using the ground-state RHF determinant
as the reference wave function: DOCI
(markers), VpCCD (solid), and TpCCD
(dashed). The real part of the com-
plex TpCCD solutions are represented
as dashed black lines. Right: Energy
differences between DOCI and TpCCD
(VpCCD) as functions of R in the top
(bottom) panel.

states with the Newton–Raphson algorithm has been found to be
much more challenging. We have not been able to converge the two
lowest VpCCD excited states, (σg)

2
(σ∗g )2 and (σu)

2
(σ∗g )2, further

than R = 2.0a0 for this set of orbitals. Even worse, the two other dou-
bly excited states, (σg)

2
(σ∗u )2 and (σu)

2
(σ∗u )2, have been reached

only for R = 1.0a0. This is not the case for the (σ∗g )2
(σ∗u )2 quadru-

ply excited state for which one can converge VpCCD calculations
fairly easily all along the PEC with the Newton–Raphson algorithm.
This might be due to the fact that the corresponding stationary
points are maxima for the quadruply excited state, whereas dou-
bly excited states correspond to saddle points (see below). Despite
such numerical difficulties, the complete set of solutions could be
obtained thanks to the Jenkins–Traub algorithm.

Overall, the VpCCD method provides a fairly good approxi-
mation to the DOCI energies. At small R (i.e., in the weak correla-
tion regime), VpCCD is in much closer agreement with DOCI than
TpCCD, most noticeably for the (σ∗g )2

(σ∗u )2 quadruply excited state.
At large R (i.e., in the strong correlation regime), this comparison is
trickier. Yet, the difference between VpCCD and DOCI seems more
regular (see the bottom-right panel of Fig. 1), whereas the behav-
ior of TpCCD is more erratic (top-right panel). Thus, one can state
that, if one considers the ground-state RHF determinant as the ref-
erence wave function, the main difficulties associated with VpCCD
calculations concern its convergence, as the energies compare very
favorably with the DOCI reference (at least in the weak correlation
regime). At large R, the agreement between VpCCD and DOCI is
less obvious as we shall see below.

Thanks to previous investigations, we know that some
of the TpCCD excited-state solutions can be labeled non-
physical.101,126,129–131,134–137 For example, in the case of the linear
H4 molecule using the ground-state RHF determinant as the refer-
ence wave function, the lowest-lying DOCI excited state (blue mark-
ers in Fig. 1) can be represented by two TpCCD solutions (dashed
blue curves).126 These solutions eventually merge for R > 1.7a0 and
become a complex conjugate pair of solutions with real components

represented as black dashed lines in Fig. 1. The same phenomenon
occurs for the fourth doubly excited state, but the complex conju-
gate pair of solutions exists up to R = 3.4a0 before splitting into two
real solutions (dashed green curves). In the case of VpCCD, there
are only six real-amplitude solutions in the weak correlation regime.
However, for R ≳ 3.5a0, two additional real solutions appear as one
can see in the inset of Fig. 1. The fact that these spurious solutions
appear as a pair indicate that they may exist for smaller R as a pair of
solutions with complex conjugate amplitudes. Because all the solu-
tions are energetically close in this region of the PECs, it is hard to
tell whether a solution is unphysical or not and which one mod-
els better the corresponding DOCI solution. This is why the curve
corresponding to the difference between VpCCD and DOCI for the
fourth doubly excited state stops at R = 3.2a0 in the bottom-right
panel of Fig. 1. The same unpredictability occurs between the green
and purple TpCCD curves in the strong correlation regime. There-
fore, in the weak correlation regime, the problems caused by unphys-
ical solutions seem to be less severe in VpCCD than in TpCCD. Yet,
when the correlation becomes strong, VpCCD is also plagued by
unphysical solutions. Note that unphysical solutions at the VpCCD
level are due to the approximate nature of the method that originates
from the truncation of the cluster operator T̂. On the other hand,
unphysical TpCCD solutions can originate from the same truncation
and/or from the projection step of Eq. (7).

The stability analysis of the various stationary points via the
computation of the eigenvalues of the Jacobian matrix (12) provides
useful information on the presence of additional solutions.167,168 For
example, a change in the number of negative eigenvalues (the saddle
point index) indicates the appearance of additional solutions.169 For
R < 3.4a0, the index of the VpCCD solutions, in ascending energies,
increases smoothly (0, 1, 2, 2, 3, and 4) up to the cyan curve, which
is an index-4 stationary point (i.e., a maximum). At R = 3.4a0, the
index associated with the green VpCCD solution decreases by one
unit, this solution becoming an index-1 saddle point. We see in the
inset of Fig. 1 that two additional solutions appear right after this
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FIG. 2. Energies (in hartree) of various RHF solutions as functions of the bond
length R (in bohr) for the linear H4 molecule in the STO-6G basis set.

index variation, these two spurious solutions being index-3 saddle
points.

Because the agreement between DOCI and both TpCCD and
VpCCD ground-state energies is very satisfying when one employs
as reference the ground-state RHF wave function, one can reason-
ably wonder if the same similarity holds in the case of excited states
by considering excited-state RHF wave functions as state-specific
references. We have recently shown that this holds for TpCCD when
one uses state-specific orbitals optimized at this correlated level,126

but it remains to be seen whether this still applies with state-specific
mean-field orbitals. Using IMOM,170 we have obtained five addi-
tional restricted solutions of the RHF equations, corresponding to
the five possible non-Aufbau closed-shell determinants (see Fig. 2).
Note that each excited-state solution corresponds to a different set
of orthogonal orbitals, but these sets are, a priori, not orthogonal to
each other because they originate from distinct Fock operators. Of
course, spatially symmetry-broken RHF solutions do exist, but we
have not considered them here. For R > 2.4a0, an additional solu-
tion, plotted as a black line in Fig. 2, has been found by systematically
occupying the two highest-energy molecular orbitals at each SCF
cycle. The molecular orbitals associated with this H+H−H−H+ ionic
configuration have a more localized character than the orbitals con-
stituting the (σ∗g )2

(σ∗u )2 determinant (the orbitals associated with
these two solutions are available in the supplementary material). A
stability analysis of these RHF solutions171–173 shows that the cyan
curve is a maximum at small R but, for R > 2.4a0, it becomes a
saddle point whereas the ionic configuration (i.e., the black curve)
corresponds to a maximum.

The MOM excited states represented in Fig. 2 can be used as
reference wave functions at both the TCC (see Ref. 103) and VCC
levels. The energies at the three different correlated levels (namely,
DOCI, TpCCD, and VpCCD) using these state-specific excited-state
RHF reference wave functions are plotted in Fig. 3 and are labeled
MOM-DOCI, MOM-TpCCD, and MOM-VpCCD in the following.
As one can see, these energies are visually indistinguishable, except
at large R in the case of the (σ∗g )2

(σ∗u )2 state. Still, the right panel
of Fig. 3 shows that MOM-VpCCD is closer to MOM-DOCI than
MOM-TpCCD by roughly one order of magnitude all along the
PEC. In addition, we can see in the top-right panel that the differ-
ence between MOM-TpCCD and MOM-DOCI is less erratic than
its analog using ground-state RHF orbitals (see Fig. 1).

As expected, using state-specific RHF determinants as refer-
ence rather than the ground-state one significantly improves the
description of excited states at the TpCCD level. Therefore, if one

FIG. 3. Left: Energies (in hartree) of
the linear H4 molecule in the STO-6G
basis set for various methods using
state-specific RHF determinants as
functions of the bond length R (in bohr):
DOCI (dots), VpCCD (solid), and TpCCD
(dashed). Right: Energy differences
between DOCI and TpCCD (VpCCD) as
functions of R in the top (bottom) panel.
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wants to target excited states at the TpCCD level, it is worth invest-
ing in the design of proper state-specific references in order to
make the key projection step in Eq. (7) more effective. Even if it
is less pronounced at the VpCCD level, state-specific RHF refer-
ence determinants also improve the accuracy of the excited-state
energies (with respect to DOCI). The most noticeable positive side
effect of these state-specific references on VpCCD is the greater ease
of convergence. Indeed, as shown in Fig. 3, we have been able to
converge almost all the states up to R ≃ 3.5a0. Therefore, we argue
that using state-specific references enlarges the basin of attraction of
the associated solution and consequently facilitates the convergence
toward it.

The logical next step is to compare DOCI, TpCCD, and
VpCCD at the orbital-optimized (oo) level (as described in Sec. II C).
For ground states, DOCI and pCCD have already been shown to
perform best when one relaxes the spatial symmetry constraint as
it allows the orbitals to be fully localized.14,70,71 On the other hand,
relaxing this constraint also considerably increases, in principle, the
number of attainable solutions. For example, multiple solutions cor-
responding to the ground state have already been observed.14,70,71

However, in the case of excited states, we have only obtained
symmetry-adapted solutions even if the orbital optimization algo-
rithm could, in principle, target symmetry-broken solutions.15 It
may be due to the lack of flexibility associated with the minimal
basis. Indeed, we have shown, at the TpCCD level, that for larger
molecules in larger basis sets, one could also break the spatial sym-
metry to improve the description of excited states.126 We expect
analog symmetry-broken excited-state solutions for larger molecules
in the case of VpCCD.

As shown by Henderson et al.,15 DOCI and TpCCD opti-
mized orbitals are virtually indistinguishable in molecular systems.
Here, we have observed that the VpCCD optimized orbitals are
also virtually indistinguishable from the two other sets. Therefore,
as expected, oo-TpCCD and oo-VpCCD energies are also highly
similar so that we only report oo-VpCCD energies in Fig. 4. The

right panel of Fig. 4 evidences that the accuracy of oo-TpCCD and
oo-VpCCD is similar to their MOM-TpCCD and MOM-VpCCD
counterparts (see Fig. 3), at least in the weak correlation regime
(always having DOCI as the reference results). However, in the
strong correlation regime, the scenario is rather different. The orbital
optimization at the correlated level allows them to strongly local-
ize when the bond is stretched, and hence, the PECs exhibit the
correct dissociation limits. As a direct consequence, the agreement
between VpCCD (and TpCCD) and DOCI is improved at large R
as compared to MOM-VpCCD (and MOM-TpCCD). We can then
conclude that, in the absence of strong correlation effects, state-
specific RHF determinants provide robust and cheaper alternatives
to determinants made of optimized orbitals at the correlated level.
To further illustrate this, we provide the VpCCD optimized orbitals
as well as the MOM orbitals in the supplementary material.

B. A strong correlation model: The ring H4 molecule
We now turn our attention to another widely known model

for strong correlation, namely, the ring H4 molecule where the four
hydrogen atoms lie on a circle of diameter d = 6.569a0. As repre-
sented in Fig. 5, varying the angle θ with respect to θ = 90○ connects
two equivalent D2h rectangular geometries with non-degenerate
molecular orbitals. At θ = 90○ though, the D4h square-planar geome-
try has strictly degenerate orbitals and strong multi-reference effects
are at play. Therefore, giving an accurate description of this system
as a function of θ has been shown to be a real challenge for CC
methods.14,25,52,55–57,174,175

In the following, we restrict ourselves to the minimal STO-6G
basis set in which the D2h symmetry-adapted molecular orbitals
are determined solely by symmetry. The resulting four molecular
orbitals, ordered by ascending energy, have the symmetry a1g , b2u,
b3u, and b1g . At θ = 90○, the b2u and b3u orbitals are degenerate
and form a pair of orbitals of eg symmetry in the D4h point group.
Although one can choose to break spatial symmetry to gain

FIG. 4. Left: Energies (in hartree) of
the linear H4 model in a STO-6G basis
set for the orbital-optimized VpCCD
method (solid) and DOCI using the same
orbitals (dots) as functions of the bond
length R (in bohr). Right: Energy differ-
ences between oo-DOCI and oo-TpCCD
(oo-VpCCD) as functions of R in the top
(bottom) panel.
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FIG. 5. The ring H4 model. Here, the diameter of the circle d is set to 6.569a0.

flexibility, in a first stage, we restrict ourselves to the symmetry-
adapted RHF molecular orbitals. In such a situation, excited-state
RHF wave functions correspond to non-Aufbau determinants built
with this set of symmetry-pure orbitals, hence freeing ourselves from
the orbital optimization issue to focus solely on the optimization of
the cluster amplitudes. Because we deal with the seniority-zero sub-
space, the RHF determinants are made, by definition, of two doubly
occupied orbitals. For example, for the ground-state determinant at
θ = 90○, the lowest-energy a1g orbital and one of the doubly degen-
erate b2u and b3u orbitals are doubly occupied. Of course, in this case,
the seniority-zero determinant is a poor approximation of the exact
wave function as it tries to model an inherently multi-reference wave
function with a single Slater determinant.

We start by looking at the description of the ground state using
the symmetry-adapted orbitals. The DOCI (dashed lines), VpCCD
(thick solid lines), and TpCCD (thin solid lines) energies are plotted
in the bottom-left panel of Fig. 6. The configuration of the reference
determinant is a2

1gb2
2u for θ < 90○ and a2

1gb2
3u for θ > 90○. Hereafter,

the electronic configuration of the RHF wave function is given for
θ < 90○; the corresponding configuration for θ > 90○ is obtained by
simply swapping b2u and b3u. The first interesting fact is that TpCCD
does not closely match DOCI for this system. On the other hand,
VpCCD provides energies in fairly good agreement with DOCI.
Therefore, the hermiticity property of VpCCD leads to a notable
improvement over TpCCD. Yet, VpCCD exhibits a cusp at θ = 90○,
which is not present in DOCI. The derivative of the TpCCD PEC
is also discontinuous at θ = 90○ with an upside-down cusp com-
pared to VpCCD. The comparison of the two pCCD variants and
DOCI for the ground-state PEC provides similar insights to those
reported in Ref. 52 in the case of VCCD, TCCD, and FCI. At the
RHF level, the ground state and the lowest-lying excited state form
a conical intersection. This is a drawback of the HF approximation
as FCI produces an avoided crossing (HF and FCI energies are given
in the supplementary material). In the seniority-zero subspace, the
avoided crossing between these two states is not present. Indeed, as
shown in the bottom-left panel of Fig. 6, the DOCI dashed curves
are smooth. Yet, they do not form an avoided crossing.

Then, we turn to the description of the excited states. The sim-
plicity of the ring H4 model in a minimal basis allows us to access

FIG. 6. Center: Energies (in hartree) of the ring H4 model in the STO-6G basis set for the VpCCD method as functions of θ (in degree) using the ground-state RHF
determinant of configuration (a2

1gb2
2u) as reference (symmetry-adapted orbitals are considered). Bottom-left and bottom-right: VpCCD (thick solid), TpCCD (thin solid), and

DOCI (dashed) energies of the ground and first two excited states. Top-right and left panels provide the energies of the quadruply excited state and of the highest-lying
doubly excited states, respectively.
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the entire set of solutions using the Jenkins–Traub algorithm (see
Sec. IV A). All the VpCCD solutions (with real cluster amplitudes)
obtained with a ground-state RHF reference made of symmetry-
adapted orbitals are represented in the center panel of Fig. 6, except
for the quadruply excited state that is plotted in the top-left panel.
The convergence toward the ground state and the quadruply excited
state is fairly straightforward using the Newton–Raphson algorithm
presented in Sec. II. However, the VpCCD solutions represented by
the blue and cyan curves are the only two other solutions that we
have been able to get for all θ values using the Newton–Raphson
algorithm. In addition, we have obtained some parts of the three
highest VpCCD PECs of Fig. 6, but the iterative algorithm was highly
oscillatory and we have not been able to get any of these solutions for
all values of θ.

The agreement between the VpCCD and DOCI excited states
is less evident than for the linear H4 model studied in Sec. IV A.
The first important point to mention here is that there are more
VpCCD than DOCI solutions, for all values of θ. More importantly,
as we shall discuss below, it is challenging to tell which of these solu-
tions are unphysical. We believe that three VpCCD solutions can
be assigned to DOCI states with certainty: the ground state as well
as the pink (quadruply) and cyan (doubly) excited states. However,
even if the VpCCD solution corresponding to the quadruply excited
state (top-left panel) is attainable for all θ, it is a poor approxima-
tion to its DOCI counterpart, exhibiting a cusp and a local max-
imum at θ = 90○. Meanwhile, the two highest-lying DOCI doubly
excited states could correspond to some of the three VpCCD solu-
tions (see the top-right panel of Fig. 6). One could argue that the
brown curve should be associated with the dashed brown curve, but
for the two other VpCCD solutions, it is hard to tell which one is
unphysical. Finally, one can see in the bottom-left panel of Fig. 6
that the lowest-lying doubly excited state could be associated with
two VpCCD solutions. However, these solutions eventually disap-
pear around θ = 80○ and θ = 100○. Similar to the spurious solutions
in the linear H4 model, it is possible that beyond this region, the two
solutions acquire complex-valued cluster amplitudes. Even for the
part of the PECs where the solutions are real, the agreement with
DOCI is quite poor (except around θ = 90○ for the lower VpCCD
solution), the PECs having the wrong topology. Alternatively, one
could argue that the green VpCCD solution is associated with the
lowest-energy DOCI excited state because it has the same topology
as the first RHF excited state. Moreover, this solution exists for all
geometry in contrast to the blue and yellow ones. We think that,
at this stage, it would be arbitrary to assign a particular VpCCD
solution to this DOCI state.

We now compare the previous set of VpCCD solutions with
the ones obtained using non-Aufbau reference determinants made
of the same set of symmetry-adapted orbitals. More specifically, we
consider the lowest-lying RHF excited state of configuration a2

1gb2
3u,

i.e., the other adiabatic state involved in the conical intersection with
the a2

1gb2
2u RHF ground state (see the supplementary material). At

θ = 90○, these two configurations become degenerate, and the choice
of the eg orbital to occupy is arbitrary. Therefore, it seems logic to
compare these two closely related references as a function of θ. This
may shed light on the meaning of the VpCCD solutions observed in
Fig. 6. The four lowest VpCCD solutions of Fig. 6, i.e., the solutions
obtained using the ground-state RHF determinant of configuration
a2

1gb2
2u as reference, are also reported in Fig. 7 alongside the four

FIG. 7. Energies (in hartree) of the ring H4 model in the STO-6G basis set as
functions of θ (in degree) for the four lowest VpCCD solutions obtained with
two symmetry-pure RHF references: the ground-state determinant of configura-
tion a2

1gb2
2u and the lowest excited-state determinant of configuration a2

1gb2
3u. Note

that the dashed lines are used only for readability.

lowest solutions obtained using the lowest-lying RHF excited state
(a2

1gb2
3u) as reference. One can see that three a2

1gb2
3u-VpCCD solu-

tions (dashed) are connected with three a2
1gb2

2u-VpCCD solutions
(solid) at θ = 90○, while the remaining pair of solutions coincide
between θ = 80○ and θ = 100○. For other θ values, the a2

1gb2
2u-VpCCD

solution disappears.
As already mentioned earlier, the two lowest diabatic RHF

states, a2
1gb2

2u and a2
1gb2

3u, intersect at θ = 90○. Hence, the lowest adi-
abatic RHF state has a cusp at θ = 90○. Cusps observed in ground-
state CC PECs are often claimed to be unphysical.23,52 However, it
has been pointed out by Burton and Thom that these cusps are not
unphysical but are consequences of the RHF reference used to con-
struct the corresponding CC wave functions.174 They further argued
that these cusps indicate crossing of solutions at the CC level. This
is indeed what we observe in Fig. 7 where the cusps on the VpCCD
PECs are actually formed by two VpCCD solutions obtained with
distinct reference RHF wave functions. In short, the inherent single-
reference character of pCCD prevents it from correctly describing
the FCI avoided crossing. On the other hand, a non-orthogonal CI
(which is inherently multi-reference) between the two RHF states
reproduces the correct shape of the PEC.174 We should also mention
that the projected CC method introduced by Qiu et al., in which one
constructs a CCSD wave function on top of a projected HF reference,
does not exhibit such a cusp.175

As stated earlier, the D2h molecular orbitals are fully deter-
mined by the spatial symmetry of the system. The correspond-
ing set of symmetry-adapted (sa) orbitals is represented in Fig. 8
and ordered by ascending energies. However, one may wonder
if there exist solutions associated with (spatial) symmetry-broken
orbital sets. A stability analysis in the space of real RHF solutions
reveals that the symmetry-pure ground-state RHF solution is a min-
imum with respect to occupied–virtual rotations.171–173 Thus, there

J. Chem. Phys. 155, 104105 (2021); doi: 10.1063/5.0060698 155, 104105-10

© Author(s) 2021

https://scitation.org/journal/jcp
https://www.scitation.org/doi/suppl/10.1063/5.0060698


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 8. Left: Energies (in hartree) of the ring H4 model in the STO-6G basis set at various correlated levels (VpCCD, TpCCD, and DOCI) and for various orbital sets (see
right panel) as functions of θ (in degree). Right: Orbital representation of the set of symmetry-adapted (sa) orbitals and the two sets of symmetry-broken (sb) orbitals. For
each set of orbitals, the reference determinant is built from the two leftmost orbitals. The irreducible representation of each orbital in the corresponding point group of the
electron density is given in parentheses.

is, a priori, no spatially symmetry-broken RHF solution lower in
energy.

Next, we study the influence of orbital rotations on the VpCCD
energy for the ground state of the ring H4 model. The diagonal-
ization of the orbital Hessian [see Eq. (16)] associated with this
solution shows that this stationary point is an index-2 saddle point.
Therefore, there is at least one additional state below the sa-VpCCD
ground-state PEC. Indeed, by following the direction provided by
the eigenvectors associated with the two distinct negative eigenval-
ues, we have been able to locate two additional VpCCD solutions.
The first one, labeled “sb1” (symmetry-broken) in Fig. 8, results
from occupied–occupied and virtual–virtual rotations. Let us recall
that, although the HF energy is invariant under occupied–occupied
and virtual–virtual rotations, it is not the case for pCCD as the
seniority-zero subspace depends on the orbital basis used to define
it.60 The direction associated with the second negative eigenvalue
involves occupied–virtual rotations. Going downhill following the
eigenvector associated with this eigenvalue leads to a different spa-
tially symmetry-broken solution (see the “sb2” orbital set in Fig. 8).
The point group of the electron density associated with each solu-
tion and the irreducible representation of each orbital are also given
in the right panel of Fig. 8. A stability analysis of these two addi-
tional solutions shows that they are minima with respect to orbital
rotations. Note that, for each set of symmetry-broken orbitals, four
of the six possible reference determinants yield the same corre-
lated energies. The two other references, 1a2

11b2
2 and 2a2

12b2
2 for

the sb1 set and 1a2
g 2b2

u and 1b2
u2a2

g for the sb2 set, yield energies
close to the quadruply excited state obtained with symmetry-adapted
orbitals.

The left panel of Fig. 8 shows that the agreement between
VpCCD and DOCI is much better when one considers the two
sets of symmetry-broken orbitals. In addition, we emphasize that
the sb1-DOCI/VpCCD PECs (which exhibit a cusp at θ = 90○) are

fairly good approximations of the ground-state FCI PEC while con-
taining only seniority-zero determinants. Likewise, the cuspless sb2-
DOCI/VpCCD PECs are close in energy to the lowest-lying FCI
excited-state one. The downside is that the corresponding wave
functions do not possess the correct spatial symmetry. This is the
famous Löwdin symmetry dilemma.176–178 Moreover, for these two
orbital sets, the TpCCD energies are in good agreement with DOCI
(see the supplementary material). Yet, VpCCD is closer to DOCI
than TpCCD as already seen in the linear H4 case (see Sec. IV A).
The cusps exhibited by the sb1-DOCI/VpCCD PECs are also due
to a crossing between two diabatic states. More specifically, it orig-
inates from a change of axis along which the D2h symmetry breaks,
leading to two different C2v subgroups related by a rotation of π/2.
Unfortunately, we have not been able to converge to the higher-lying
symmetry-broken C2v state.

One would have noticed that we have not plotted the excited-
state TpCCD energies in Fig. 6. In fact, TpCCD suffers from the
same issues related to additional solutions and their physical mean-
ing. Similar to VpCCD, projection on non-Aufbau references leads
to moderate improvements. Yet, the TpCCD energy landscapes
remain plagued by unphysical solutions. Consequently, it is hardly
possible to assign a TpCCD solution to a given DOCI excited state,
as discussed in the case of VpCCD.

Finally, we would like to mention that the improvement of
VpCCD/TpCCD brought by state-specific reference wave functions
is mitigated in comparison to the case of the linear H4 molecule.
Therefore, it seems that state-specific (MOM or oo-pCCD) refer-
ences provide a very significant improvement for weak correlation
but does not help much in the presence of strong correlation. In
such a case, if one is willing to sacrifice the spatial symmetry of
the wave function, the description of the ground state (at least) can
be improved. Symmetry-broken excited-state wave functions also
exist at the VpCCD level, but we have struggled to systematically
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converge toward these solutions. Hence, their performance still need
to be properly assessed. This is left for future work.

V. CONCLUSION
Recently, there has been renewed interest in single-reference

methods for excited states in the context of Hartree–Fock, density-
functional, and coupled-cluster theories.103–122,126,143,169 This has
been made possible thanks to the development of new algorithms
specifically designed to target higher-energy solutions of these non-
linear equations. These so-called non-standard solutions provide
genuine alternatives to the usual linear response and equation-of-
motion formalisms (which are naturally biased toward the reference
ground state) for the determination of accurate excited-state ener-
gies in molecular systems. This is especially true for double exci-
tations that are known to be difficult to model with the two latter
formalisms.91–94,99,179–181 There is, therefore, a real need for a better
understanding of the structure of the energy landscape associated
with these methods. In this study, we have focused on the case of
CC.

Due to the non-linearity of the CC equations, the topology
of its energy landscape from which multiple solutions emerge is
still far from being thoroughly understood. During the last few
decades though, several groups have been tackling this formidable
problem.101,103,126,143,182 In a recent study,126 we have pursued along
these lines by investigating the structure of the CC energy surface
and the comparison between DOCI and TpCCD for excited states.
More specifically, we have shown that the agreement that has been
observed for ground-state energies13–16,18,67 remains in the case of
excited states only if one minimizes the TpCCD energy with respect
to the orbital coefficients. In the present study, we have investigated
the solution structure of the VCC method, a version of CC where
the cluster amplitudes and the energy are determined variationally
instead of the usual projective way. To the best of our knowledge,
VCC excited states have never been investigated before.

Restricting ourselves to the case of pCCD (in which the clus-
ter operator includes only pair excitations), we have looked at the
VpCCD solution structure of two model systems, namely, the lin-
ear and ring H4 molecules, both in the minimal STO-6G basis.
The former system has been used to investigate the influence of
the orbital set on the VpCCD and TpCCD energy landscape. In
contrast to TpCCD, VpCCD provides a much better approxima-
tion to the DOCI solution structure when one builds the refer-
ence determinant with ground-state RHF orbitals, at least in the
weak correlation regime. When the correlation becomes strong, i.e.,
when the hydrogen chain is stretched, additional spurious solu-
tions appear due to the truncation of the excitation operator T̂,
and VpCCD does not seem to improve with respect to TpCCD.
In either regime, however, these excited-state solutions are hardly
attainable using an iterative Newton–Raphson algorithm. Therefore,
we replaced the ground-state RHF reference wave function by state-
specific excited-state RHF references computed with MOM and tar-
geted the corresponding VpCCD solution for each of them. We
have observed that these state-specific references enlarge the basin of
attraction of their associated solution, hence easing the convergence
of the Newton–Raphson algorithm toward the targeted VpCCD
solution. In addition, considering state-specific RHF orbitals greatly

improves the TpCCD results for excited states. However, the dif-
ference between TpCCD and DOCI energies remains roughly one
order of magnitude larger than the one between VpCCD and
DOCI.

Then, we have turned our attention to the situation where the
reference orbitals are optimized at the correlated level. In the weak
correlation regime, the agreement between DOCI and the two vari-
ants of pCCD (TpCCD and VpCCD) is only slightly better than
with MOM orbitals. However, in the strong correlation regime, the
orbital optimization procedure allows the orbitals to localize fur-
ther (while keeping their spatial symmetry), hence improving the
accuracy of VpCCD and TpCCD (with respect to DOCI) at large
internuclear separation. The take-home message of this first part
is that TpCCD energies computed with state-specific RHF orbitals
provide a good balance between robustness and computational cost
to describe excited states, at least in the weak correlation regime. Of
course, further studies on real molecules are required to assess the
accuracy of these methods.

In a second stage, we have studied the ring H4 molecule to
investigate the influence of strong correlation on the energy land-
scape. We have seen that spurious VpCCD solutions, due to the
truncation of the cluster operator, seem unavoidable in the pres-
ence of strong static correlation. Therefore, the description of excited
states is much less accurate than in the weak correlation regime.
Even worse, these spurious solutions prevent an unambiguous
assignment of (some of) the excited states. This problem remains if
one considers state-specific references at the VpCCD level. TpCCD
suffers from the same issues, but in a more severe way. In addition,
inspired by Burton and Thom,174 we have investigated the physical
origin of the cusps of the PEC at the VpCCD level. In agreement with
Burton and Thom,174 we have shown that, at the VpCCD level, these
cusps are due to crossing of diabatic states obtained with distinct
reference determinants.

Finally, we have investigated spatially symmetry-broken
VpCCD solutions of the ring H4 molecule. In a minimal basis set, the
symmetry-adapted molecular orbitals are completely determined by
the D2h symmetry of the system. Yet, one can deliberately break this
symmetry to relax the constraints imposed on the molecular orbitals.
Doing so, we have shown that it is possible to locate two symmetry-
broken VpCCD ground-state wave functions with energies in much
better agreement with FCI, improving in the process the agreement
between DOCI and VpCCD.

SUPPLEMENTARY MATERIAL

See the supplementary material for a standalone MATHEMATICA

notebook gathering modules for the computational methods inves-
tigated here (HF, MOM, TpCCD, VpCCD, DOCI, and FCI), raw
data for each figure, orbitals obtained at various levels of theory, and
files containing the one- and two-electron integrals for the systems
studied in the present manuscript.
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APPENDIX A: VCCD RESIDUAL AND JACOBIAN
MATRICES

In this appendix, we provide all the equations required to
implement the Newton–Raphson algorithm in order to optimize the
VCCD amplitudes. The corresponding equations for VpCCD are
reported in Appendix B. For the sake of clarity, hereafter we denote
the CC wave function and its energy as ∣ΨCC⟩ ≡ ∣Ψ⟩ and EVCC ≡ E. In
this case, the derivative of the VCC energy functional with respect to
the cluster amplitudes reads

rab
ij =

∂E(t)
∂tab

ij
=

∂

∂tab
ij
(
⟨Ψ∣Ĥ∣Ψ⟩
⟨Ψ∣Ψ⟩

)

=
∂⟨Ψ∣Ĥ∣Ψ⟩

∂tab
ij

⟨Ψ∣Ψ⟩
⟨Ψ∣Ψ⟩2

−
⟨Ψ∣Ĥ∣Ψ⟩
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∂⟨Ψ∣Ψ⟩
∂tab

ij

= 2
Re[⟨Ψ∣Ĥa†

aa†
baiaj∣Ψ⟩]

⟨Ψ∣Ψ⟩
− 2E

Re[⟨Ψ∣a†
aa†

baiaj⟩Ψ]
⟨Ψ∣Ψ⟩

= 2
⟨Ψ∣Ĥa†

aa†
baiaj∣Ψ⟩

⟨Ψ∣Ψ⟩
− 2E
⟨Ψ∣a†

aa†
baiaj∣Ψ⟩
⟨Ψ∣Ψ⟩

, (A1)

where we have used the assumptions that both the cluster ampli-
tudes and orbital coefficients are real to simplify the second to last
equality. Then, we differentiate the residual with respect to the clus-
ter amplitudes to obtain the Jacobian matrix elements required to
target saddle points. This yields the following formula:

Jab,cd
ij,kl =

∂rab
ij

∂tcd
kl
=

∂2E(t)
∂tab

ij ∂tcd
kl

= 4
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c a†
dakal∣Ψ⟩

⟨Ψ∣Ψ⟩

− 4
⟨Ψ∣Ĥa†
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− 4E
⟨Ψ∣a†

aa†
baiaja†
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⟨Ψ∣Ψ⟩
. (A2)

APPENDIX B: VpCCD RESIDUAL, JACOBIAN
AND DENSITY MATRICES

For the sake of completeness, we also provide the equations in
the case of VpCCD. These can be easily derived from their VCCD
analogs gathered in Appendix A by setting jσ = iσ̄ , bσ = aσ̄ , lσ = kσ̄ ,
and dσ = cσ̄ , where the indices now refer to spatial orbitals and σ̄
is the opposite spin of σ. Dropping the spin indices, the matrix
elements of the VpCCD residual are

raa
ii = 2

⟨Ψ∣Ĥa†
aa†

aaiai∣Ψ⟩
⟨Ψ∣Ψ⟩

− 2E
⟨Ψ∣a†

aa†
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⟨Ψ∣Ψ⟩

, (B1)

and the matrix elements of the VpCCD Jacobian matrix are

Jaa,cc
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⟨Ψ∣Ψ⟩

+ 8E
⟨Ψ∣a†

c a†
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⟨Ψ∣Ψ⟩
. (B2)

Following Ref. 15, in the case of pCCD, one can take advantage
of the fact that ∣Ψ⟩ is a linear combination of seniority-zero deter-
minants to compute the one-body density matrix γ [see Eq. (18a)]
and the two-body density matrix Γ [see Eq. (18b)]. Indeed, many
elements of γ and Γ are zero due to seniority considerations. There-
fore, one only needs to compute the “diagonal” elements γpp of the
one-body density matrix, while for the two-body density matrix, the
only non-zero elements are Γpp,qq, Γpq,pq, and Γpq,qp = −

1
2 Γpq,pq.
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1J. Čížek, J. Chem. Phys. 45, 4256 (1966).
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