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ABSTRACT: With the aim of completing our previous efforts devoted to local
and Rydberg transitions in organic compounds, we provide a series of highly
accurate vertical transition energies for intramolecular charge-transfer transitions
occurring in (π-conjugated) molecular compounds. To this end, we apply a
composite protocol consisting of linear-response CCSDT excitation energies
determined with Dunning’s double-ζ basis set corrected by CC3/CCSDT-3
energies obtained with the corresponding triple-ζ basis. Further basis set
corrections (up to aug-cc-pVQZ) are obtained at the CCSD and CC2 levels. We
report 30 transitions obtained in 17 compounds (aminobenzonitrile, aniline,
azulene, benzonitrile, benzothiadiazole, dimethylaminobenzonitrile, dimethyla-
niline, dipeptide, β-dipeptide, hydrogen chloride, nitroaniline, nitrobenzene,
nitrodimethylaniline, nitropyridine N-oxide, N-phenylpyrrole, phthalazine, and
quinoxaline]. These reference values are then used to benchmark a series of
wave functions [CIS(D), SOPPA, RPA(D), EOM-MP2, CC2, CCSD, CCSD(T)(a)*, CCSDR(3), CCSDT-3, CC3, ADC(2),
ADC(3), and ADC(2.5)], the Green’s function-based Bethe−Salpeter equation (BSE) formalism performed on top of the partially
self-consistent evGW scheme considering two different starting points (BSE/evGW@HF and BSE/evGW@PBE0), and time-
dependent density-functional theory (TD-DFT) combined with several exchange-correlation functionals (B3LYP, PBE0, M06-2X,
CAM-B3LYP, LC-ωHPBE, ωB97X, ωB97X-D, and M11). It turns out that the CC methods including triples, namely,
CCSD(T)(a)*, CCSDR(3), CCSDT-3, and CC3, provide rather small average deviations (≤0.10 eV), with CC3 emerging as the
only chemically accurate approach. ADC(2.5) also performs nicely with a mean absolute error of 0.11 eV for a O(N6) formal scaling,
whereas CC2 and BSE/evGW@PBE0 also deliver very satisfying results given their respective O(N5) and O(N4) computational
scalings. In the TD-DFT context, the best performing functional is ωB97X-D, closely followed by CAM-B3LYP and M06-2X, all
providing mean absolute errors around 0.15 eV relative to the theoretical best estimates.

1. CHARGE-TRANSFER EXCITATIONS

Charge-transfer (CT) transitions are key to the working
principle of many practical applications of photoactive
molecules [organic light-emitting diodes (OLEDs), photo-
voltaics, photosynthesis, ion probes, etc.]. For this reason, they
have been widely studied, and they are generally regarded as a
specific class of excitations, fundamentally different from
valence and Rydberg transitions. While there is no formal
definition of CT, chemists generally consider that, in a CT
transition, the excitation process transfers a significant fraction
of electron density from one molecular fragment, the donor D,
to another fragment, the acceptor A. These two fragments can
be part of the same molecule (intramolecular CT) or belong to
two distinct molecules (intermolecular CT). The CT
excitation induces a significant charge shift in going from the
ground state (GS) to the excited state (ES), the latter being
typically (much) more polar than the former. The reverse
situation in which the dipole strongly decreases upon
excitation can also be observed (e.g., in betaine 301). In
other words, CT transitions are characterized by a large change
in dipole moment as well as a small overlap between the

starting and final molecular orbitals (MOs), or electron
densities, involved in the transition.
From a more theoretical point of view, considering an

overall neutral system, one can show that a CT excitation
energy behaves, for a large-enough separation R between the
donor and the acceptor (the so-called Mulliken limit2), as3,4

Δ = − −E RIP EA 1/CT
D A

(1)

where IPD is the first ionization potential (IP) of the donor,
EAA is the electron affinity (EA) of the acceptor, and −1/R is
the electrostatic interaction between the excited electron
located on the acceptor fragment and the hole left behind
located on the donor fragment. Due to the wrong asymptotic
behavior of the kernel associated with (semi-)local exchange-
correlation functionals (XCFs), it was quickly recognized that
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capturing the correct −1/R asymptotic behavior of eq 1 is
particularly challenging for the time-dependent density-func-
tional theory (TD-DFT).5,6 Furthermore, the energy difference
between the donor ionization potential (IPD) and the acceptor
electron affinity (EAA) tends to be too small when using
Kohn−Sham (KS) orbital energies obtained with semilocal
functionals due to the lack of derivative discontinuity into the
XCF upon electron addition or removal.7 As a result, in its
traditional adiabatic formulation, TD-DFT tends to drastically
underestimate CT transition energies when combined with
local-density approximation (LDA) or generalized-gradient
approximation (GGA) XCFs. Some improvements are
observed for global hybrid functionals (such as B3LYP8−10

and PBE011,12) that combine a uniform fraction of the
Hartree−Fock (HF) exchange with a (semi-)local XCF.
However, unless 100% exact exchange is included, a systematic
underestimation of CT excitation energies remains when D
and A are much separated due to the relative short-sightedness
of global hybrids. Historically, this limitation strongly
motivated the development of range-separated hybrids
(RSHs)13−17 and their optimally tuned versions,18,19 which
provide a more subtle blend by switching gradually, as a
function of the interelectronic distance, from short-range
(semi-)local exchange to long-range HF exchange. In such a
way, one can combine the best of both worlds by benefiting
from the short-range dynamical correlation effects given by
DFT as well as key error cancellation between exchange and
correlation, while using 100% HF exchange in the long range
to entirely take into account the interaction between the
electron and the hole, hence capturing the correct −1/R
asymptotic behavior. RSHs are particularly effective at
describing CT transitions, but often at the cost of a (slight)
overestimation of the transition energies of the corresponding
local excitations.20

As an alternative to TD-DFT, one can use the Bethe−
Salpeter equation (BSE) formalism21−28 starting with GW
quasiparticle energies29−35 (BSE/GW) as specific formulations
of Green’s function many-body perturbation theory. By
construction, this scheme explicitly includes terms describing
the nonlocal electron−hole interactions, together with an
accurate description at the GW level of the ionization
potentials and electron affinities, allowing one to “naturally”
deliver accurate CT energies for a computational cost
comparable to TD-DFT.28,36−39 The description of the
nonlocal electron−hole interaction, thanks to the screened
Coulomb potentialW, allows one to consider CT excitations in
situations differing from the ideal long-range CT through a
vacuum, a property central to the study of intramolecular CT
or CT in effective dielectric media such as organic semi-
conductors.40−45 Of course, one can also turn toward wave-
function approaches, and both the second-order algebraic
diagrammatic construction [ADC(2)]46,47 and approximate
second-order coupled-cluster (CC2)48,49 methods are gen-
erally regarded as well-suited for accurately describing CT
phenomena.

2. CHARGE-TRANSFER METRICS
How does one pinpoint a CT transition? Experimentally, the
identification of CT transitions is typically achieved by
investigating the absorption spectrum: a strong CT induces a
large increase in dipole moment when going from the GS to
the ES, which in turn translates into a broad and structureless
absorption band undergoing significant red-shifts when the

polarity of the solvent increases (the so-called positive
solvatochromism effect). Theory obviously delivers a comple-
mentary view for unveiling CT states. A decade ago, such a
task was often performed by investigating the topology of the
MOs involved in the transition and/or the changes in partial
atomic charges following the electronic excitation. Such
analyses were certainly successful, but they obviously lacked
systematic character. Hence, more quantifiable metrics have
been recently developed.
The first we are aware of is the so-called Λ parameter

defined by Tozer in 2008.50 Λ measures the overlap between
the occupied and virtual orbitals involved in a specific
transition and was originally applied by the Tozer group to
demonstrate the superiority of RSHs for CT and Rydberg
transitions.50 In 2011, Le Bahers, Adamo, and Ciofini came up
with the dCT metric,51 which measures the distance between
the barycenters of density gain and depletion upon excitation;
this model is thus particularly well-acquainted with density-
based approaches.52,53 Following these two seminal works,
many other strategies have been proposed to quantify CTs,
such as Guido’s Δr,54 which measures the electron−hole
distance thanks to an analysis of the charge centroids of the
orbitals involved in the excitation; Etienne’s ϕs, which is based
on the detachment/attachment matrices;55 and the more
general approaches developed by Dreuw’s group,56,57 which
allow analyses not only at the TD-DFT level but also with
more advanced wave-function theories such as ADC(2).
Several of these metrics have been implemented in well-
known quantum chemistry codes and clearly enjoy a strong
popularity in the community. In this framework, we specifically
highlight the purpose-designed TheoDORE package58 encom-
passing many models for investigating ES topologies.
Although these various metrics do not provide a definite

answer to the “what is a CT transition?” question and
potentially deliver distinct answers depending on the nature of
the underlying (density or wave function) description, they
nevertheless offer a large panel of options for quantifying the
CT strength.

3. LITERATURE SURVEY
To evaluate the performances of specific methods for CT
transitions, various sets of reference values have been proposed
over the years. Let us describe a selection of some relevant data
sets.
In their seminal TD-DFT work,50 Peach and co-workers

gathered a group of 14 intramolecular CT transitions obtained
in three model peptides, N-phenylpyrrole (PP), dimethylami-
nobenzonitrile (DMABN), and hydrogen chloride (HCl). The
reference values were taken from a previous CASPT259,60 work
for the peptides,61 extracted from the experiment for DMABN,
and determined at the CC2 level for both PP and HCl. The
same reference values were used in the following years to
assess various DFT approaches.62−64 However, in 2012, the
Tozer group used EOM-CCSD to define new benchmark
transition energies for the smallest peptide as well as for both
planar and twisted DMABN and PP, in a work encompassing
nine reference CT energies.65 The same year, Dev, Agrawal,
and English compiled a set of 16 CT transitions in large
conjugated dyes,66 and they exclusively employed experimental
data as reference. In 2015, Heßelmann considered the 10
CASPT2 values obtained for peptides61 and the two EOM-
CCSD data determined for PP65 as benchmarks for evaluating
the performance of nonstandard TD-DFT schemes.67 All of
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the transitions of the original contribution of Peach and co-
workers were re-evaluated in 2019 by Goerigk’s group,68 who
proposed updated references obtained with CCSDR(3)/cc-
pVTZ69 (or SCS-CC2)70 often using a basis set extrapolation
technique similar to the one applied here (vide inf ra). This set
was completed by three additional cases, namely, p-nitroaniline
(pNA) with a reference value obtained with CCSDR(3), the
benzene-tetracyanoethylene (B-TCNE) intermolecular com-
plex with an EOM-CCSD(T)71 reference, and a large dye (the
so-called DBQ) for which the experiment was used as a
benchmark.72 These variations in reference values along the
years for Tozer’s original set clearly highlight the appetite of
the electronic structure community for high-quality benchmark
values, as well as the lack of indisputability for such data even
for thoroughly studied systems.
We also wish to mention that the general test set developed

by Truhlar and Gagliardi73 contains three CT transitions for
pNA [computed at the γ-CR-EOM-CC(2,3)D level],74

DMABN (experiment), and B-TCNE (experiment). Two of
us considered the same CT transitions to explore the
performances of BSE/GW.75 In 2018, Gui, Holzer, and
Klopper76 used a set of seven CT states in pNA, DMABN,
PP, HCl, and B-TCNE in a similar context. For the first five
molecules, they proposed basis-set-extrapolated CC3/aug-cc-
pVTZ results, therefore providing again new reference values
for those popular systems.
Other sets have been exclusively dedicated to intermolecular

CT transitions, which can be viewed as conceptually simpler,
as the electron “jumps” from one molecule to another during
the CT excitation. Such systems were used already 15 years
ago by Truhlar’s group77,78 and have become very popular for
benchmarking both density- and wave-function-based meth-
ods.18,77−85 In 2009, Stein, Kronik, and Baer used 13
experimental values measured in CT complexes constituting
an aromatic system interacting with TCNE to assess the
performances of their optimally tuned RSH functional.18 The
same systems were further studied at the BSE level in 2011.36

In 2020, Ottochian and co-workers followed a very similar
strategy to benchmark various hybrid and double-hybrid
functionals.83 In 2011, Aquino and co-workers employed

ADC(2) as a reference to benchmark various XCFs for CT
occurring in stacked DNA bases.79 Similar stacked nucleobases
were also studied by Szalay and co-workers in a 2013 work that
reports EOM-CCSD(T) data,80 in 2014 by Blancafort and
Voityuk who obtained CASPT2 energies,81 and in 2021 by the
Matsika group who provided a large set of reference values
obtained at the ADC(3)/cc-pVDZ level.85

Again, the richness of reference values is obviously both an
advantage and a drawback as it is objectively hard to know
which work reports the most accurate transition energies.
Recently, Kozma et al. tackled this question by defining 14
accurate intermolecular CT transitions obtained in molecular
dimers (e.g., ammonia-fluorine, pyrrole-pyrazine, acetone-
nitromethane, etc.).84 In this key work, the reference values
are obtained at the EOM-CCSDT86 or CCSDT-387 level
(depending on the system size) with the cc-pVDZ basis set and
several lower-order wave-function approaches are bench-
marked. Interestingly, this study revealed that for intermo-
lecular CT transitions, CCSDT-3 is more accurate than
CC3,88,89 which is the opposite trend as compared to local and
Rydberg transitions.90 To the very best of our knowledge, ref
84 stands today as the sole work providing reference CT values
obtained at a very high level of theory (i.e., EOM-CCSDT).
Our goal here is to propose to the community a list of highly

accurate vertical transition energies for intramolecular CT
excitations that can be used as reference to assess the pros and
cons of lower-level models. For instance, there have been recent
controversies in the literature regarding the relative accuracy of
various double hybrids for CT transitions,68,83,91,92 whereas
there are significant discrepancies (ca. 0.2 eV) between the
recent CC-based theoretical best estimates (TBEs) obtained
for pNA, DMABN, and PP by distinct groups,68,76 and it is
rather difficult to determine the actual origin (basis set,
geometry, method, etc.) of these differences.
We do hope that the present (rather large) set can help

settle these incertitudes. Obviously, some systems treated here
have been taken from the sets described above, but we have
both computed more accurate geometries (vide inf ra) and
clearly increased the level of theory employed to define the
benchmark TBEs as compared to previous efforts devoted to

Figure 1. Representation of the investigated derivatives.
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intramolacular CT. Although these endeavors are well in line
with our recent efforts devoted to local and Rydberg transitions
of organic compounds93−96 that led to the QUEST database
encompassing approximately 500 reference vertical transition
energies,39,90 it should be noted that the very nature of CT
transitions makes the determination of reference values more
challenging. Indeed, large density shifts ubiquitous to CT
phenomena typically take place in larger compounds than
those previously treated. Consequently, (EOM-)CCSDTQ
calcula t ions are c lear ly beyond reach , whereas
(EOM-)CCSDT calculations lie at the frontier of today’s
possibilities. Beyond completing the QUEST database,39,90 we
also believe that the present reference values nicely comple-
ment the ones recently proposed by the Szalay group for
intermolecular CT excitations.84 Following the philosophy of
the QUEST database, we also wish to avoid any experimental
input to avoid potential biases and ease theoretical cross-
comparisons.

4. COMPUTATIONAL METHODS
The investigated systems are displayed in Figure 1. They
include some of the previously described compounds (see
Section 3), as well as new derivatives.
4.1. Geometries. Unless otherwise stated, we use

CCSD(T)97 or CC388,89 to optimize the ground-state
geometry of each compound. These optimizations are carried
out with Dunning’s cc-pVTZ basis set using CFOUR2.198 that
offers analytical GS nuclear gradients for both methods. As
expected, we applied the most advanced approach, CC3, when
possible, i.e., for the “smallest” systems investigated. The
frozen-core (FC) approximation is enforced during these
geometry optimizations. Cartesian coordinates and the
corresponding optimization method are provided for each
compound in the Supporting Information (SI).
Spatial symmetry is enforced during the geometry

optimization process, which induces some constraints for
specific molecules. For example, the C2v point group is
enforced for aniline, meaning that the amino group is planar.
Experimentally, the NH2 group is puckered, but the symmetry
constraint allows for faster calculations as well as an easier ES
tracking from one method to another. Of course, such
constraints might prevent direct comparisons with experi-
ments, but it is well-known that vertical transition energies
have no clear experimental equivalent anyway.99

4.2. Basis Sets. As further explained below, in a first stage,
we perform ES calculations with Dunning’s cc-pVDZ and cc-
pVTZ basis sets applying systematically the FC approximation.
This allows us to provide TBEs/cc-pVTZ reference values,
which are subsequently employed to benchmark wave-function
methods. There are several reasons for the choice of cc-pVTZ:
(i) the same basis set was used in previous benchmark studies
devoted to intramolecular CT,50,68,100 and (ii) the addition of
diffuse basis functions would yield lower Rydberg transitions
and increase state mixing. This would be detrimental for
identifying CT states in some derivatives (e.g., the peptides).
We note that Kozma and co-workers went for an even more
radical choice (cc-pVDZ) in their recent work,84 but we
acknowledge that the basis set effects are likely larger for the
intramolecular cases treated here. Of course, the absence of
diffuse functions in ES calculations is likely to result in
(slightly) overestimated transition energies, which is why we
also provide estimates with diffuse-containing basis sets. This is
also justified by the different basis set dependencies of wave-

function- and density-based methods.101−103 Therefore, in a
second stage, we also perform (at least) CCSD calcula-
tions97,104−107 with aug-cc-pVTZ, as well as CC248 calculations
with aug-cc-pVTZ and aug-cc-pVQZ, so as to get estimates
with larger basis sets. See below for further details.

4.3. Reference Calculations. The first stage of the present
study deals with the obtention of reference excitation energies
for CT excited states. To identify CT transitions in the
investigated derivatives, we first determine the lowest 8−20
transitions at the LR-CCSD/cc-pVTZ level with GAUSSIAN
16.108 We then analyze the nature of the underlying orbitals
and, when possible, compare with literature results. Next, we
compute the same ESs at both the ADC(2)/cc-pVTZ46,47 and
CAM-B3LYP/cc-pVTZ15 levels of theory using Q-CHEM
5.3109 and GAUSSIAN 16,108 respectively. Establishing the
correspondence between ESs at different levels of theory is
straightforward for the vast majority of the cases. From the
CAM-B3LYP calculations, we compute the CT distance, as
given by Le Bahers’ model,51,52 on the basis of the difference
between the relaxed TD-DFT density and its GS KS-DFT
counterpart. This value is simply labeled dCAM

CT below. Likewise,
from the ADC(2) data, we compute the electron−hole
distance from an analysis of the transition density matrix,56,57

labeled rADC
eh in the following. Finally, we also compute, as a

third estimate of the CT strength, the electron−hole distance
determined from the inverse of the expectation value of the
direct Coulomb operator over BSE electron−hole eigenstates
stemming from the BSE/evGW@HF/cc-pVTZ calculations
(see also the SI). These are performed with the FIESTA
package.110 These latter values are denoted rBSE

eh in the
following. While it would certainly be possible to rely on
alternative metrics (see Section 2), we have selected these
three models to have complementary views on the nature of
the CT states (DFT vs wave function vs Green’s function, ES
density vs transition density vs Coulomb matrix). As
mentioned below, the CT transitions found following such a
protocol are usually in agreement with the known literature.
Next, we use CFOUR98 to determine (EOM-)CCSDT-

3,87,111 CC3,88,89 and CCSDT86,112−115 transition energies for
the states previously identified. For the rather small number of
pathological cases, having an LR-CCSD guess is a valuable
asset to ease the convergence toward the target ESs. To define
our TBEs/cc-pVTZ values, we rely on the following
incremental approach

Δ = Δ + [Δ − Δ ]

= Δ + ΔΔ

‐ ‐ ‐

‐

E E E E

E E

TZ
TBE

cc pVDZ
CCSDT

cc pVTZ
CC3

cc pVDZ
CC3

cc pVDZ
CCSDT

TZ
CC3

(2)

Such an additive scheme is popular in the CC commun-
ity,116−122 and similar approaches have been employed in
studies involving CT states.65,68,76 In Table S5 of the SI, we list
the ΔΔETZ values obtained with CCSDT-3 and CC3, and their
very high degree of similarity is obvious, with an R2 of 0.99 and
a mean absolute deviation between the two sets of data as
small as 0.01 eV. In a second step, we obtain TBEs accounting
for diffuse orbitals by applying a similar scheme, that is

Δ = Δ + [Δ − Δ ]

= Δ + ΔΔ

= Δ + ΔΔ + ΔΔ

‐ ‐ ‐

‐

E E E E

E E

E E E

ATZ
TBE

TZ
TBE

aug cc pVTZ
CCSD

cc pVTZ
CCSD

TZ
TBE

ATZ
CCSD

cc pVDZ
CCSDT

TZ
CC3

ATZ
CCSD

(3)
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in which the term ΔΔEATZ was typically determined with
CCSD, unless CCSDT-3/aug-cc-pVTZ calculations were
technically feasible. In Table S6 in the SI, we compare the
ΔΔEATZ values obtained with CC2, CCSD, and CCSDT-3.
While the basis set corrections are highly dependent on the
considered state and molecule, they are almost unaffected by
the level of theory selected, e.g., the absolute difference
between the CCSD and CCSDT-3 basis set correction is at
most 0.02 and 0.01 eV on average. This clearly highlights the
transferability of basis set effects between these two wave-
function methods. Eventually, to get even closer to the CBS
limit and ease the comparison between wave-function- and
density-based methods, we add additional corrections at the
CC2 level, i.e.,

Δ = Δ + [Δ − Δ ]

= Δ + ΔΔ

= Δ + ΔΔ + ΔΔ + ΔΔ

‐ ‐ ‐ ‐

‐

E E E E

E E

E E E E

AQZ
TBE

ATZ
TBE

aug cc pVQZ
CC2

aug cc pVTZ
CC2

ATZ
TBE

AQZ
CC2

cc pVDZ
CCSDT

TZ
CC3

ATZ
CCSD

AQZ
CC2

(4)

The CC2 calculations with both aug-cc-pVTZ and aug-cc-
pVQZ are performed with TURBOMOLE,123 applying the
resolution-of-identity (RI) approximation with the correspond-
ing basis sets.124 We have confirmed that the RI approximation
has a negligible effect on the present results. As can be seen
below, this last correction is marginal for the vast majority of
states considered here, so that we do expect that the aug-cc-
pVQZ basis set provides very accurate estimates for low-lying
ESs in organic compounds, and we do not foresee further basis
set extension to play a significant role.
4.4. Wave Function and BSE Benchmarks. In the

second phase of the present study, we evaluate the perform-
ances of several wave-function- and Green’s function-based
approaches using the ΔETZ

TBE values defined in Section 4.3 as
references. We systematically apply the FC approximation in
all of these calculations. The following approaches were tested:
CIS(D),125,126 EOM-MP2,127 SOPPA,128,129 RPA(D),130

CC2,48,49 CCSD,97 CCSD(T)(a)* ,131 CCSDR(3),69

CCSDT-3,87,111 CC3,88,89 ADC(2),46,47 ADC(3),47,132,133

ADC(2.5),134 and BSE/GW.21,22,27 The EOM-MP2 and
ADC calculations are performed with Q-CHEM 5.2,109

applying the RI approximation with the cc-pVTZ-RI auxiliary
basis set,124 and tightening the convergence and integral
thresholds. The CIS(D) and CCSD calculations are achieved
with GAUSSIAN 16,108 using default parameters. The SOPPA,
RPA(D), CC2, and CCSDR(3) results are obtained with
DALTON 2017,135 also using default parameters. In the
following, we omit the prefixes LR and EOM as both
formalisms are known to yield identical excitation ener-
gies.106,136

The BSE calculations are performed with the FIESTA
package,110 using Coulomb-fitting RI with the cc-pVTZ-RI
auxiliary basis set.124 The intermediate GW quasiparticle
energies and screened Coulomb potential W are calculated
using a partially self-consistent scheme on the eigenvalues
(evGW) shown in several studies to provide accurate
data137,138 while significantly removing the dependency on
the input KS or HF eigenstates in the final BSE excitation
energies.76,110,139 Dynamical effects in the GW self-energy are
treated within an exact contour-deformation approach. For
good convergence, all MO energy levels within 10 eV of the
HOMO−LUMO gap are explicitly corrected at the GW level,

with lower (higher) states being shifted using the quasiparticle
correction obtained for the lowest (highest) explicitly
corrected level.139 To facilitate the identification of transitions,
we first focus on BSE/evGW calculations starting from HF
eigenstates (BSE/evGW@HF), but we next determine the
BSE/evGW excitation energies obtained starting from
PBE011,12 eigenstates (BSE/evGW@PBE0), which is a more
usual choice in BSE calculations.

4.5. TD-DFT Benchmarks. All of our TD-DFT calcu-
lations are performed with GAUSSIAN 16,108 using the
ultrafine quadrature grid. As the convergence with respect to
the basis set size of vertical excitation energies stemming from
density-based methods (such as TD-DFT) and wave-function-
based methods tends to significantly differ,101−103 we decided
to perform the TD-DFT benchmarks with the aug-cc-pVQZ
basis set (i.e., using the TBE/aug-cc-pVQZ values as
references), which is likely large enough to be close to the
CBS limit for both families of methods. We have selected the
following XCFs to perform our calculations: two global hybrids
with rather low exact exchange percentage, B3LYP
(20%)10,140−142 and PBE0 (25%);11,12 one global hybrid
with a much larger share of exact exchange, M06-2X (54%);78

and five RSHs (CAM-B3LYP,15 LC-ωHPBE,143 ωB97X,17

ωB97X-D,144 and M11145). As mentioned in Section 1, it is
well recognized that the latter XCFs are better suited for
modeling CT transitions. We wish nevertheless to explore the
performances of the global hybrids for “mild” CT as well as the
relative performances of the five RSH functionals for various
CT strengths.

5. RESULTS AND DISCUSSION
5.1. Reference Values. Our reference vertical excitation

energies are listed in Table 1, in which we report CCSD,
CCSDT-3, CC3, and CCSDT values with two basis sets (cc-
pVDZ and cc-pVTZ), as well as literature values and CT
strengths evaluated thanks to the three models described in
Section 4.3. Additional details (oscillator strengths, MO
combinations at the CCSD level, etc.) can be found in the
SI. Taking the rADC

eh values as reference, one notes a satisfactory
agreement with dCAM

CT for rather small CT (for strong CT, the
CAM-B3LYP charge separations appear too small) and a
decent match with rBSE

eh for the cases of large electron−hole
separation (for weak CT, the BSE charge separations appear
too large). This can be clearly seen in Figure S1 in the SI. At
this stage, we of course highlight that in the case of a mild CT
character, a change in basis set could induce nontrifling
variations of the values given by these CT metrics.

5.1.1. Aminobenzonitrile. Aminobenzonitrile (ABN) is a
well-known push−pull molecule that has been the subject of
several previous theoretical studies with wave-function
approaches,146,147,175−179 with these works typically focusing
on the two lowest ESs of local (B2) and CT (A1) characters.
According to the ADC(2) metrics, excitation to this A1 state
induces a charge separation of ca. 1 Å (see Table 1), and there
is a perfect match between the CC3 and CCSDT values,
whereas CCSDT-3 (CCSD) seems to deliver slightly
(significantly) overestimated values. Our TBE/cc-pVTZ, 5.26
eV, perfectly matches the value obtained in the most recent
CASPT2 study we are aware of178 and is also in quite good
agreement with a 20-year-old STEOM-CCSD estimate (5.13
eV).147 Those two works used the cc-pVDZ basis set however.
In contrast, all previous CASPT2 estimates provide smaller
values in the 4.44−5.01 eV range.146,175−177 The experimental
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λmax is located at 4.76 eV in an apolar solvent,148 a value
significantly below our basis-set-corrected vertical transition
energy (5.09 eV), as expected in such a comparison.

5.1.2. Aniline. For aniline, the lowest A1 excited state
involves more than one MO pair (see the SI) and has a weak
CT character (dCAM

CT = 1.02 Å, rADC
eh = 0.83 Å, and rBSE

eh = 1.91
Å). Indeed, this state was previously characterized as local in a
calculation involving the puckered amine,150 whereas we
enforced the C2v point group in the present calculations. The
results listed in Table 1 show a remarkable methodological
stability, with the CC3, CCSDT-3, and CCSDT values all
falling inside a tight 0.04 eV window with the cc-pVDZ basis
set, whereas the differences obtained with the triple-ζ basis set
are relatively small. Our TBE/cc-pVTZ value, 5.87 eV, is
strongly lowered when further basis set corrections are
accounted for (5.48 eV). The latter value is in good agreement
with the investigation of Worth’s group149 although we recall
that we have enforced C2v symmetry here (which also makes
comparisons with experiment difficult).

5.1.3. Azulene. Azulene is a very well-known asymmetric
isomer of naphthalene. Its electronic transitions have been
investigated at various levels of theory,152,153,180,181 likely due
to its unusual non-Kasha fluorescence. According to the
considered metrics, the second (2A1) and third (2B2) singlet
ESs exhibit small CT characters. As can be seen in Table 1,
CC3 transition energies are again very close from the CCSDT
ones, whereas going from the double- to the triple-ζ basis set
decreases the predicted transition energies by roughly −0.10
eV, with further basis set extensions yielding even smaller
changes. Our TBE is very close to a previous CASPT2/6-
31G(d) estimate152 for the A1 ES but is significantly higher
than the multireference result for the B2 ES. Both of our TBEs
exceed the experimental 0-0 energies by approximately 0.3−0.4
eV,153−155 which is the expected trend.

5.1.4. Benzonitrile. The two lowest transitions of A1 and B2
symmetries do not present any significant CT character (not
shown). There is however a higher-lying dark A2 state
corresponding to a CT from the π orbital of the cyano moiety
parallel to the main molecular plane toward the highly
delocalized LUMO (see the SI for representation of the
MOs) that has a CT nature (rADC

eh = 1.18 Å). Our TBE/cc-
pVTZ for this transition is 7.10 eV, which is likely trustworthy
as the CC3 and CCSDT results are much similar with the cc-
pVDZ basis set (see Table 1). To the best of our knowledge,
this specific transition was not investigated previously, but for a
rather old CASPT2 analysis that reports a 7.33 eV value for the
lowest A2 ES.

146

5.1.5. Benzothiadiazole. The bicyclic system benzothiadia-
zole (BTD) is an extremely popular acceptor unit in solar cell
applications.182−184 Surprisingly, while one can find many TD-
DFT investigations of large dyes encompassing a BTD moiety,
there seems to be no previous wave-function investigation of
this (isolated) building block. Contrasting with the previous
molecules, the CCSDT-3 transition energy is closer from the
CCSDT value than its CC3 counterpart although all three
methods provide very similar excitation energies. Our TBE/
aug-cc-pVQZ of 4.28 eV is 0.76 eV above the experimental 0-0
energy,156 but such a large value is not inconsistent with the
large experimental Stokes shift185 and the strong theoretical
elongation of the N−S bonds in going from the GS to the
ES.186

5.1.6. Dimethylaminobenzonitrile. DMABN is the proto-
typical example of a system that underges twisted intra-T
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molecular CT (TICT), and it consequently displays a dual-
fluorescence signature that is strongly dependent on the
medium. This process has been the subject of countless
investigations,62−64,70,146−148,150,157,158,175−177,187−199 and it is
clearly not our intent to review in details all of these works.
Besides its TICT feature, DMABN is undoubtedly one of the
most popular dyes in CT benchmarks.50,65,66,68,73,75,76

However, the present work stands again as the first to propose
an estimate of the CCSDT quality. Our TBE/aug-cc-pVQZ,
4.86 eV, should be rather solid given the agreement between
CC3 and CCSDT, and the rather limited basis set effects. This
TBE is exactly the same as the extrapolated CC3/aug-cc-pVTZ
result of ref 76 and is also close to the ADC(3)/cc-pVDZ value
given by Mewes and co-workers (4.94 eV).158 Of course, one
can also find other estimates at lower levels of theory, e.g., 4.88
eV with CCSD/aug-cc-pVDZ,199 4.73 eV with STEOM-
CCSD,147 and 4.90 eV with MRCIS(8,7)+P/ANO-DZ,157 all
three being reasonably close to the current TBE. In contrast,
previous CASPT2 estimates of 4.41,175 4.51,146 4.47,176 and
4.45 eV177 are all significantly too low.
5.1.7. Dimethylaniline (DMA). This derivative was much

less investigated than the previous one, and we could find only
two studies of its excited states involving high-level ab initio
methods [CASPT2160 and CCSDR(3)161]. The metrics
selected in this work describe the two lowest ESs of this
compound as having a small CT character with a charge
separation of ca. 1 Å with ADC(2), the CT nature of the A1
transition being only slightly larger than that of the “local” B2
excitation. Here again, one notes the usual methodological
trends as illustrated by the data gathered in Table 1, with
superb agreement between the CC3 and CCSDT estimates,
and a limited drop in the transition energies when enlarging
the basis set. The basis-set-corrected TBEs of 4.40 and 5.40 eV
are reasonably in line with the literature.160,161

5.1.8. Dipeptide and β-Dipeptide. Both of these model
compounds were originally characterized at the CASPT2 level
by Serrano-Andreś and Fülscher.61 The smaller derivative is a
popular test molecule for CT200,201 and is part of Tozer’s50,65

and Goerigk’s68 sets. In both systems, these works identified
two CT transitions, denoted π1 → π2* and n1 → π2*, the
subscript referring to the amide number in the compound (see
Figure 1). For the smaller dipeptide, Tozer relied on the
CASPT2/ANO-“DZP” values of 7.18 and 8.07 eV as
benchmarks in his original work,50 whereas Goerigk proposed
reference values of 7.17 and 8.33 eV obtained at the
CCSDR(3)/cc-pVTZ level.
If these values seem numerically consistent, these two

transitions are hardly well defined, the mixing of the MO
character making unambiguous assignments impossible. As we
detail in the SI, this is especially the case for the former π1 →
π2* transition that mixes with local excitations. In fact, at the
same CCSD/cc-pVTZ level, Tozer selected the 8.09 eV
transition as a CT ES and the 7.35 eV transition as a local ES,65

whereas Goergik made the opposite assignments. Both choices
are in fact reasonable based on the chosen criteria (see the SI).
Due to this confusion, we considered only the less problematic
n1 → π2* excitation for the dipeptide. For this transition, the
CCSDT value is interestingly between the CC3 and CCSDT-3
estimates, rather than closer to the CC3 value. As such, this
transition has, chemically speaking, an intermolecular nature;
this outcome parallels the finding of Kozma and co-workers,
who found that CCSDT-3 performs better for intermolecular
CTs.84 Our TBE/cc-pVTZ of 8.15 eV is slightly smaller

(larger) than previous CCSDR(3)/TZ (CASPT2/DZ)
estimates.
For the β-dipeptide, the identification of the two CT

transitions is somehow easier than in the sister compound (see
the SI for details). With the cc-pVDZ basis, CCSDT values are
roughly midway to CC3 and CCSDT-3. However, the larger
size and limited symmetry of β-dipeptide make calculations
extremely challenging, and CC3/cc-pVTZ calculations were
beyond our computational reach. For the π1 → π2* excitation,
the CCSDT value is bracketed by the CC3 and CCSDT-3
results, and our TBE of 8.51 eV is slightly below the
CCSDR(3) data of ref 68, whereas the original CASPT2
transition energy is significantly too small.61 For the higher-
lying n1 → π2* excitation, our best estimate obtained with the
same protocol is 8.90 eV, which lies below previous
estimates.61,68

Given the very large MO mixing with both cc-pVDZ and cc-
pVTZ, we did not attempt to obtain a TBE with diffuse-
containing basis sets for these two derivatives.

5.1.9. Hydrogen Chloride. HCl is small enough for allowing
FCI and CCSDTQ calculations, and both yield a transition
energy of 8.10 eV for the hallmark CT excitation with the cc-
pVTZ basis set. This value is almost perfectly reproduced by
both CC3 and CCSDT-3. We could also perform the
CCSDTQ/aug-cc-pVQZ calculation, which returned an
excitation energy of 7.88 eV, within 0.02 eV of our previous
FCI/CBS value obtained on the same geometry, but with a
different computational strategy.93 Given these results, the
original CC2/cc-pVTZ reference value considered in Tozer’s
set (8.23 eV) seems too large by 0.13 eV, whereas the CC3/
aug-cc-pVTZ value of 7.81 eV used in ref 76 could be slightly
too low.

5.1.10. p-Nitroaniline. pNA is a prototypical donor−
acceptor system, the potent nitro group allowing an
electron−hole separation on the order of 2 Å, about twice
the distance determined in the related ABN compound. As in
the other nitro-bearing systems discussed below, CCSDT-3
seems to slightly outperform CC3, although the consistency of
all CC approaches including triples remains excellent. Our
TBEs are 4.57 eV (with cc-pVTZ) and 4.39 eV (with aug-cc-
pVQZ). This latter value is once more exactly equivalent to the
one reported by the Klopper group with an extrapolated CC3/
aug-cc-pVTZ scheme.76 Other wave-function estimates include
a 3.80 eV estimate with CASPT2,176 4.30 eV with γ-CR-
EOMCC(2,3)D/6-31+G(d,p),73 4.72 eV with EOM-CCSD/
aug-cc-pVDZ,202 and 4.54 eV with an extrapolated
CCSDR(3)/cc-pVTZ scheme.68

5.1.11. Nitrobenzene. Similar to the previous case, in
nitrobenzene, the pulling group is stronger than in benzonitrile,
and the lowest A1 state gains a significant CT character (dCAM

CT

= 1.66 Å, rADC
eh = 1.51 Å, and rBSE

eh = 2.07 Å). As for the other
systems treated herein, the interested reader can find several
previous calculations of the ES properties of this substituted
system,162−164,166,203−205 but to the best of our knowledge,
none relied on a CC approach including contributions from
the triples. Nevertheless, we wish to point out the joint
exhaustive work by the Marian and Dreuw groups exploring
the photophysics of nitrobenzene,164 which includes CCSD,
NEVPT2, and ADC(3) values for many ESs. While the CCSD
transition energy is, as expected, too large, there is an excellent
agreement between CCSDT and the other CC methods,
including iterative triples. The obtained TBEs are therefore
likely safe. These TBEs significantly exceed the experimental
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values, as well as the CASPT2162,163 and ADC(3) estimates,164

but are in good agreement with a recent CR-EOM-CCSD(T)/
cc-pVDZ estimate of 5.44 eV.205

5.1.12. Nitrodimethylaniline (NDMAn). This chemical
compound is likely one of the strongest donor−acceptor
phenyl derivatives that one could envisage. The electron−hole
separation in the lowest A1 ES is enhanced by 0.1−0.3 Å, and
its energy is downshifted by roughly −0.3 eV as compared to
pNA. Otherwise, the methodological trends are exactly the
same as in the parent compound, with the CCSDT result being
bracketed by the CCSDT-3 and CC3 values, and the basis set
effects being within expectation for a low-lying ES. Our TBE/
aug-cc-pVQZ is 0.24 eV larger than the “experimental” λmax in
the gas phase,167 whereas we did not find previous CC
estimates for this derivative.
5.1.13. Nitropyridine N-Oxide (NPNO). This molecule is a

solvatochromic probe,206 and its interactions with various
solvents were studied in details by various theoretical
approaches.168 Besides, it was not investigated theoretically
as far as we know, so that this is the first work reporting CC3
and CCSDT-3 transition energies. Unfortunately, the
CCSDT/cc-pVDZ corrections failed to properly converge for
that specific compound. As a consequence, given the results
obtained for the three previous nitro dyes, we went for the
CCSDT-3/cc-pVTZ result as a reference value. Our TBE/aug-
cc-pVQZ estimates are 4.10 eV, which is 0.30 eV above the
gas-phase λmax value estimated in ref 168 on the basis of the
experimental spectra of ref 206. Again, such a difference
between a vertical transition energy and an experimental
absorption maximum is within expectations for a rigid dye.
5.1.14. N-Phenylpyrrole. PP is a well-known test molecule

that is included in many CT sets.50,65,68,76,174,207,208 We
considered both the planar and twisted (see below) C2v
structures here, as in Tozer’s 2012 work.65 In the former
configuration, the two lowest ESs have a local character,
whereas the third (2B2) and fourth (3A1) transitions have
strong CT characters, with a rADC

eh as large as 3.5 Å for the
latter. With the cc-pVDZ basis set, the CCSDT energies are
bracketed by the CC3 and CCSDT-3 values, which are slightly
too small and too large, respectively. Our TBEs are 5.53 and
6.04 eV with cc-pVTZ and 5.32 and 5.86 eV with aug-cc-
pVQZ. The former are close to the extrapolated CCSDR(3)/
cc-pVTZ values of ref 68, whereas the latter are significantly
larger than the extrapolated CC3/aug-cc-pVTZ estimates of
5.21 and 5.69 eV given in ref 76.
5.1.15. Phthalazine. In this asymmetric bicyclic system, the

two lowest ESs, of n → π* character, involve a moderate CT
character according to the selected metrics. The data listed in
Table 1 show that CC3 and CCSDT agree very well, whereas
the CCSDT-3 transition energies seem too large by
approximately 0.1 eV. Our TBE/cc-pVTZ values of 3.93 and
4.34 eV are most probably trustworthy for this basis set and
decrease only very slightly with the addition of diffuse basis
functions. The most refined previous estimates we are aware of
are the CC2/aug-cc-pVDZ results of Etinski and Marian169

and the CASPT2/cc-pVQZ values of Mori and co-workers,170

and it seems reasonable to state that the TBEs gathered in
Table 1 are more accurate. Our vertical energies are, as
expected, larger than both experimental peak positions171,209

and 0-0 energies.172

5.1.16. Quinoxaline. In quinoxaline, we identified three
transitions possessing a partial CT character with the selected
basis set and models: two π → π* ESs as well as a higher-lying

n → π* ES. Confirming the trends obtained above, one notes
that the CCSDT excitations energies are roughly between their
CCSDT-3 and CC3 counterparts for the states with a
significant electron−hole separation (rADC

eh > 1.5 Å) but closer
to the CC3 results for the transitions with a milder CT
character (rADC

eh ∼ 1.0 Å). Unexpectedly, the basis set effects
seem significantly larger for quinoxaline than for phthalazine.
For the lowest transition considered, 1B2, the present TBE/
aug-cc-pVQZ of 4.63 eV exceeds significantly the previous
CC2/aug-cc-pVDZ169 and CASPT2/cc-pVQZ170 results.
Finally, for the two ESs for which experimental values have
been reported,171,173 the correct sign for the positive difference
is once more obtained.

5.1.17. Twisted DMABN and PP. Finally, we consider
DMABN and PP in their twisted conformations, in which
orthogonality between the NMe2 or pyrrole group and the
phenyl moiety was enforced. The GS structures were
optimized in the C2v symmetry. In such a conformation, the
donor and acceptor units are effectively electronically
uncoupled, and one creates two (DMABN) or four (PP)
low-lying CT transitions from the nitrogen lone pair
(DMABN) or the pyrrole π system (PP) toward the two
lowest phenyl π* orbitals. This also very crudely mimics the
possible TICT behavior of these compounds. At the cc-pVDZ
level, the CCSDT value falls systematically between the CC3
and CCSDT-3 results, the respective average errors of these
two methods being −0.04 and +0.07 eV for the six ESs
computed on the twisted molecules. In all cases, the basis set
effects are rather limited, with the cc-pVTZ results being only
decreased by ca. −0.10 eV when going to aug-cc-pVQZ, except
for the A1 transition of PP, for which the basis set effects are
slightly larger. For the twisted DMABN, our TBE/aug-cc-
pVQZ values are slightly below the extrapolated CCSD/aug-
cc-pVTZ data obtained by Tozer.65 For twisted PP, the same
observation holds and the present TBEs are also larger than
the CASPT2/DZP values obtained two decades ago.174 In
both cases, direct comparisons with experiment, e.g.,
fluorescence from the TICT structure, remain beyond reach
as GS geometries are considered here rather than ES
geometries.

5.2. Benchmarks. 5.2.1. Wave Function and BSE. Having
a series of TBEs of CCSDT quality at hand, it seems natural to
investigate the performances of lower-order approaches. We
evaluate here wave-function-, Green’s function-, and density-
based methods. For the two former families, we rely on the
TBE/cc-pVTZ data as the basis set dependency is similar for
these groups of methods. The corresponding results are
collected in Table 2. For the vast majority of the cases, the
identification of the states was straightforward for all tested
methods, except again for the two peptide derivatives, for
which a careful inspection of the orbitals/densities was
required to reach the correct attribution. At the bottom of
Table 2, we also provide statistical quantities obtained by
considering these TBEs as the reference. We report mean
signed error (MSE), mean absolute error (MAE), standard
deviation of the errors (SDE), root-mean-square error
(RMSE), and maximal positive [max(+)] and negative
[max(−))] errors. For one transition, our TBE is of
CCSDT-3 rather than CCSDT quality, so that the
corresponding CCSDT-3 and CC3 results are obviously not
included in the statistical analysis (see the footnote in Table
2). Finally, a graphical representation of the error patterns can
be found in Figure 2.
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As can be seen in Table 2 and Figure 2, CIS(D) typically
overestimates transition energies, except for the twisted
compounds. Hence, this leads to a quite large MSE value of
0.27 eV. The CIS(D) MAE, 0.35 eV, significantly exceeds the
0.22 eV value reported for the local transitions of the very large
QUEST database,90 hinting that CT states are likely difficult
for CIS(D). RPA(D) is somehow superior as its MSE is close
to zero, and its MAE is smaller, 0.34 eV, though the differences
between the two methods seem to decrease when the CT
character increases. A similar MAE of 0.35 eV was reported
with RPA(D) for the valence singlet transitions of Thiel’s
set.210 EOM-MP2, another “computationally light” method,
also named CCSD(2) in some works, systematically over-
shoots the transition energy (except for HCl), the MAE being
very large (>0.50 eV). Note, however, that a quite systematic
error pattern is obtained (see Figure 2), as shown by the very
acceptable SDE of 0.19 eV. This typical feature of EOM-MP2
(clear overestimation of the transition energies with a
significant increase of the magnitude of the error with system
size) was also clearly identified in our previous benchmarks
focusing on Rydberg and local transitions.90 For their
intermolecular CT set, Kozma and co-workers reported a
very similar SDE (0.15 eV) but a smaller MSE (0.31 eV) for
the same method, with a clear overestimation trend being also
found.84 SOPPA mirrors somehow the behavior of EOM-MP2,
with strong underestimations (MSE of −0.62 eV), but in a
rather systematic way, so that the SDE is also rather small
(0.21 eV). We note that the fact that the SOPPA under-
estimates transition energies has already been reported in

several benchmarks64,210,211 and is not specific to CT states
although the errors are particularly large here.
As expected,133 CC2 and ADC(2) excitation energies are

highly correlated (the R2 between the two series of transition
energies attains 0.995), and we found that the former method
has a slight edge in terms of accuracy. For the present CT set,
CC2 and ADC(2) are also more accurate than both CIS(D)
and EOM-MP2, with MAEs of 0.12 eV (CC2) and 0.16 eV
[ADC(2)]. Various research groups reported similar average
errors for local transitions in molecules of similar
sizes.90,95,133,134,212−216 Interestingly, when considering only
the subset of strong CT (rADC

eh ≥ 1.75 Å), one notes larger
errors with significant (and nearly systematic) underestima-
tions leading to negative MSEs of −0.14 and −0.19 eV for
CC2 and ADC(2), respectively. In other words, both methods
tend to undershoot the CT transition energies when the
electron−hole separation becomes sizable. This trend is fully
consistent with the investigation of Kozma and co-workers
devoted to intermolecular CT ESs:84 they reported a MSE of
−0.36 eV for both methods.
The contrast is clear with CCSD that overestimates quite

considerably the transition energies, especially for the strong
CT subset with a MSE of +0.37 eV. On the brighter side,
CCSD provides quite systematic errors with an SDE of 0.16
eV. These trends are typical of CCSD and were reported in
several benchmarks considering local and Rydberg excita-
tions.75,90,93,95,134,212,216−221 An MSE of +0.30 eV and an SDE
of 0.08 eV have been reported for the 14 intermolecular CT
transitions of ref 84.

Figure 2. Error patterns against TBE/cc-pVTZ for wave function and BSE approaches.
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The results obtained with the CC methods including
contributions from the triples are much more satisfying.
Indeed, the MAEs are on the order of 0.10 eV (or smaller) and
the SDEs are below the 0.05 eV threshold. A near-perfect
correlation among CCSD(T)(a)*, CCSDR(3), and CCSDT-3
transitions is noticeable (R2 larger than 0.999 for all possible
pairs of methods; see also Figure 2). Comparing the two
approaches with perturbative triples, namely, CCSD(T)(a)*
and CCSDR(3), one notes very similar deviations, with a slight
edge for the second method. Consistent with the results
discussed above, CCSDT-3 systematically overestimates the
TBEs, whereas CC3 tends to provide slightly too small values.
While the sign and magnitude of the differences between the
excitation energies obtained with these two CC approaches
nicely parallel the findings of Kozma et al.,84 we find, in
contrast to their work, that CC3 is superior as it provides
chemically accurate CT excitation energies. This statement
holds also when considering only the strong CT subset and is
in line with the results obtained for local and Rydberg
transitions of compounds of similar size.90,95

Consistent with our recent investigations,90,134 ADC(3)
does not significantly improve over ADC(2) as it yields large
overestimations for the strong CT subset with a MSE of +0.25

eV and a MAE of +0.30 eV, together with a significant
dispersion (see Figure 2). Therefore, the trends obtained with
ADC(3) are opposite to the ones noticed above for ADC(2).
The ADC(2.5) approach,134 which simply consists of taking
the average between the ADC(2) and ADC(3) transition
energies, is more accurate than the two other ADC methods
with a negligible MSE, a MAE of ca. 0.11 eV, and a SDE of
0.14 eV. These values indicate that ADC(2.5) outperforms all
of the wave-function methods tested here, sharing the same

N( )6 or a lower N( )5 computational scaling. These
statistical values are totally similar to their local and Rydberg
counterparts obtained in the QUEST database (respective
MAEs of 0.08 and 0.09 eV),90 hinting that ADC(2.5) might be
a valuable compromise for many families of transitions.
The BSE/evGW calculations were performed with two very

different sets of eigenstates (HF and PBE0) as input. The well-
known positive impact of the evGW procedure75,76,110,215

undoubtedly emerges in Table 2. Indeed, one obtains a mean
absolute deviation (MAD) of 0.33 eV only between the two
sets, whereas much larger variations would be reached by
comparing TD-PBE0 and TD-HF. There is also a strong
correlation (R2 of 0.981) between the two sets of transition
energies. In terms of performances, it is clearly and

Table 3. TD-DFT Transition Energies (in eV) Obtained with the aug-cc-pVQZ Basis Seta

molecule state TBE B3LYP PBE0 M06-2X CAM-B3LYP LC-ωHPBE ωB97X ωB97X-D M11

ABN 2A1 (π → π*) 5.09 4.87 4.96 5.11 5.06 5.22 5.17 5.10 5.11
aniline 2A1 (π → π*) 5.48 5.24 5.37 5.46 5.42 5.62 5.57 5.49 5.28
azulene 2A1 (π → π*) 3.84 3.60 3.67 3.83 3.72 3.82 3.77 3.72 3.83

2B2 (π → π*) 4.49 4.62 4.71 4.81 4.76 4.85 4.82 4.76 4.84
benzonitrile 1A2 (πCN →π*) 7.05 6.20 6.29 6.24 6.59 6.85 6.77 6.60 6.75
BTD 1B2 (π → π*) 4.28 3.78 3.89 4.19 4.10 4.39 4.28 4.13 4.34
DMABN 2A1 (π → π*) 4.86 4.65 4.74 4.93 4.90 5.07 5.02 4.93 4.99
DMAn 1B2 (π → π*) 4.40 4.41 4.50 4.71 4.67 4.82 4.77 4.67 4.75

2A1 (π → π*) 5.40 5.22 5.31 5.46 5.42 5.57 5.53 5.45 5.47
HCl 1 Π (n → σ*) 7.88 7.32 7.57 7.54 7.50 7.94 7.86 7.68 7.34
nitroaniline 2A1 (π → π*) 4.39 3.92 4.08 4.45 4.34 4.68 4.59 4.41 4.59
nitrobenzene 2A1 (π → π*) 5.39 4.72 4.89 5.30 5.11 5.46 5.34 5.17 5.39
NDMAn 2A1 (π → π*) 4.13 3.67 3.82 4.23 4.14 4.49 4.41 4.22 4.38
NPNO 2A1 (π → π*) 4.10 3.81 3.95 4.22 4.14 4.34 4.30 4.22 4.33
PP 2B2 (π → π*) 5.32 4.73 4.86 5.24 5.22 5.66 5.52 5.28 5.44

3A1 (π → π*) 5.86 4.92 5.09 5.83 5.90 6.81 6.52 6.02 6.45
phthalazine 1A2 (n → π*) 3.91 3.52 3.65 4.02 4.05 4.27 4.25 4.03 4.08

1B1 (n → π*) 4.31 3.94 4.05 4.24 4.39 4.59 4.57 4.38 4.32
quinoxaline 1B2 (π → π*) 4.63 4.08 4.20 4.61 4.50 4.87 4.73 4.53 4.77

3A1 (π → π*) 5.65 5.70 5.81 5.96 5.91 6.08 6.02 5.93 6.03
2B1 (n → π*) 6.22 5.69 5.86 6.44 6.46 6.94 6.80 6.44 6.50

twisted DMABN 1A2 (n → π*) 4.12 3.20 3.34 3.96 3.95 4.38 4.28 3.96 4.11
1B1 (n → π*) 4.75 3.87 4.04 4.81 4.72 5.38 5.14 4.69 5.03

twisted PP 2B2 (π → π*) 5.58 4.34 4.54 5.29 5.33 6.32 6.05 5.40 5.96
2A1 (π → π*) 5.65 4.43 4.64 5.47 5.54 6.52 6.10 5.65 6.09
1A2 (π → π*) 5.95 4.97 5.17 5.81 5.90 6.56 6.40 6.00 5.78
1B1 (π → π*) 6.17 5.08 5.31 6.08 6.14 6.90 6.70 6.25

MSE −0.53 −0.39 −0.02 −0.04 0.35 0.24 0.01 0.12
MSE (strong CT) −0.73 −0.57 −0.03 −0.02 0.51 0.35 0.03 0.21
MAE 0.55 0.43 0.15 0.14 0.37 0.27 0.13 0.22
MAE (strong CT) 0.73 0.57 0.12 0.10 0.51 0.35 0.10 0.23
SDE 0.38 0.35 0.23 0.18 0.28 0.22 0.17 0.25
RMSE 0.65 0.52 0.22 0.19 0.45 0.32 0.17 0.27
max(+) 0.13 0.22 0.32 0.27 0.95 0.66 0.28 0.59
max(−) −1.24 −1.04 −0.81 −0.46 −0.20 −0.28 −0.45 −0.54

aStatistical quantities are reported at the bottom of the table. See the caption of Table 2 for more details.
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unsurprisingly more favorable to perform the evGW calcu-
lations on the basis of KS orbitals. Indeed, for the full set, BSE/
evGW@PBE0 yields a MAE of 0.20 eV (0.16 eV for the strong
CT subset), which is somewhat similar to the ADC(2)
performances, although BSE/evGW@PBE0 yields less con-
sistent results than these two wave-function theories with a
non-negligible SDE of 0.28 eV. One should recall here that
BSE/evGW@PBE0 scales as N( )4 and can be applied to very
large systems so that its global accuracy for the CT transition
remains very satisfying in comparison to the associated
computational cost. While TD-DFT calculations (see the
next subsection) can certainly offer a similar accuracy with
proper tuning (range-separation parameter, amount of short-/
long-range exact exchange) for this specific family of systems,
the BSE formalism, which relies on the electron−hole screened
Coulomb potential instead of the exchange-correlation kernel,
allows one to tackle with a similar accuracy local,76,110,222−224

cyanines,225 and CT excitations. This is an important property
in the present case of intramolecular CT excited states that
show a weak to strong (Frenkel) character. Finally, we note
that the quality of the BSE transition energies is also closely
related to the ones of the quasiparticles.76,222 This also holds at
the TD-DFT level.226

5.2.2. TD-DFT. Let us now turn toward the TD-DFT results
listed in Table 3 and displayed in Figure 3. In this case, we
switch to the TBE/aug-cc-pVQZ reference data to have a fairer
comparison between the density-based TD-DFT method and
the wave-function methods employed to produce these TBEs.
Indeed, it is well-known that TD-DFT is less sensitive to the
basis set size than wave-function approaches. Therefore, near-
CBS limit excitation energies seem to be the most-suited
option for a trustworthy comparison between these two
families. This choice is however not without consequences.
First, TD-DFT calculations become unnecessarily expensive.
Second, and more importantly, this extended basis set, which
contains diffuse basis functions, yields significant orbital mixing
at the TD-DFT level, blurring the precise nature of the ESs and
making the attribution of the various transitions more
challenging, a drawback especially marked with LC-ωHPBE
and M11.
As expected from previous CT benchmarks,5,6,20,50,65 B3LYP

and PBE0 tend to underestimate vertical transition energies
with errors on the order of −1.0 eV for the pathological cases
characterized by a negligible overlap between the occupied and
virtual MOs involved in the transition. Likewise, the fact that
RSHs tend to be more accurate than B3LYP or PBE0 is no
surprise for a benchmark study focused on CT transitions.
Nonetheless, the statistical quantities listed at the bottom of
Table 3 show some interesting trends. First, M06-2X, a global
hybrid containing 54% exact exchange, performs well with a
MSE of -0.02 eV and a MAE of 0.15 eV (even 0.12 eV for the
states in which rADC

eh ≥ 1.75 Å). Although the SDE (0.23 eV)
and the largest negative deviation (−0.81 eV for benzonitrile)
are sizable, it appears that M06-2X provides quite accurate CT
transition energies even for the difficult twisted compounds.
Given that the same XCF was shown to be efficient for several
other families of transitions,215,227−229 M06-2X appears as a
handy “Swiss army knife” approach in the TD-DFT framework
although it is not suited for CT excitations where the distance
between the hole and the electron is very large.
If one now turns toward the RSH family, one notices that

the smallest statistical deviations are obtained with ωB97X-D
with a MSE close to zero, a MAE below 0.15 eV, combined

with SDE and RMSE smaller than 0.20 eV. CAM-B3LYP
exhibits very similar performances although the MSEs are
slightly negative, likely due to the use of “only” 65% exact
exchange in the long range in CAM-B3LYP instead of 100% in
ωB97X-D. This induces slight underestimations of the
transition energies for the twisted compounds with CAM-
B3LYP. The MAE that we determined for CAM-B3LYP (0.14
eV) is significantly smaller than the ones reported in both refs
50 (0.27 eV) and 68 (0.46 eV). This might be explained by the
fact that the very challenging di- and tripeptides were included
in these previous works. For our test set, the three other RSHs,
which include larger shares of exact exchange, tend to be less
effective with MAEs of 0.22 eV (M11), 0.27 eV (ωB97X), and
0.37 eV (LC-ωHPBE) and positive MSEs for these three
functionals. It is noteworthy that the MAE reported in ref 68
for ωB97X is slightly smaller (0.23 eV). Of course, one should
keep in mind that the performances of a specific XCF within
TD-DFT are very dependent on the nature of the considered
transitions. Therefore, the error bars obtained here are likely
only relevant for similar intramolecular CT excitations.

6. CONCLUSIONS
We have considered, in a series of π-conjugated compounds, a
set of 30 electronic excitation energies presenting a mild to

Figure 3. Error patterns against TBE/aug-cc-pVQZ for TD-DFT
relying on several XCFs.
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strong intramolecular CT character, the electron−hole
separation induced by the electronic transition spanning
from 0.83 to 4.35 Å according to an analysis of the ADC(2)
transition densities. Using ground-state geometries determined
at the CC3/cc-pVTZ or CCSD(T)/cc-pVTZ level, we have
defined theoretical best estimates (TBEs) for these vertical
transition energies by correcting CXSDT/cc-pVDZ values by
the difference between CC3/cc-pVTZ and CC3/cc-pVDZ
[see eq 2]. These TBEs were further extended to aug-cc-pVTZ
and aug-cc-pVQZ by applying a basis set correction approach
using CCSDT-3, CCSD, and CC2 transition energies [see eqs
3 and 4].
For almost every compound and state considered here, the

present TBEs are the most accurate published to date.
Although higher-level calculations (e.g., CCSDTQ) were not
technically feasible in the present context, the fact that highly
consistent CCSDT-3, CC3, and CCSDT values were almost
systematically obtained provides strong confidence in the
quality of the present reference data. In more details, for
excitations of mild CT character, CC3 and CCSDT transition
energies are typically highly similar, as for local valence
transitions,90 whereas for transitions with a more pronounced
CT nature, the CCSDT energies are bracketed by CCSDT-3
(high) and CC3 (low). In “pure” intermolecular CT excitation,
CCSDT-3 was in fact found to better match CCSDT than
CC3.84

We hope that the present reference energies will be useful
for the electronic structure community developing and
assessing new ES theories. As a first step in this direction,
we have benchmarked 10 popular wave-function methods, the
Bethe−Salpeter equation (BSE) formalism from Green’s
function many-body perturbation theory, as well as TD-DFT
with various global and range-separated hybrid functionals.
The four CC models including contributions for the triple
excitations [i.e., CCSD(T)(a)*, CCSDR(3), CCSDT-3, and
CC3] deliver very solid results with small errors and highly
consistent excitation energies. Among these approaches, CC3
is the only one providing chemically accurate excitation
energies (error smaller than 0.043 eV). The computational
cost of these methods is however high. Regarding computa-
tionally cheaper methods with a formal N( )6 scaling with
system size, it turns out that (EOM-)CCSD overestimates the
transition energies significantly but with rather systematic
errors, whereas ADC(2.5) appears to be a valuable alternative
for a similar computational cost. Indeed, ADC(2.5) delivers a
MAE of ∼0.10 eV. Among the N( )5 methods, CC2 is the
most effective with typical underestimations of roughly −0.15
eV but consistent estimates. ADC(2) yields similar, yet slightly
less accurate, results as CC2. Among the computationally
efficient wave-function schemes, RPA(D) seems to be a
reasonable choice. For the most effective N( )4 approaches
allowing calculations on very large systems, one can likely
select BSE/evGW@PBE0, which yields consistent estimates
for the strong CT transitions, although with a larger dispersion
than CC2 or CCSD. With TD-DFT, the most accurate
transition energies are produced with (in decreasing order of
accuracy) ωB97X-D, CAM-B3LYP, and M06-2X, with all three
models providing typical errors of approximately 0.15 eV, but
again with slightly higher dispersion than most wave-function
methods. The interested reader will find in the SI a table listing
the benchmarked methods, their formal scaling, and the
obtained MAEs (Table S7).

The present complementary set of reference energies for CT
excited states is currently being merged into the QUEST
database of highly accurate excitation energies, which now
gathers more than 500 chemically accurate transition
energies.90
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