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Abstract

Selected configuration interaction (SCI) methods, when complemented with a
second-order perturbative correction, provide near full configuration interaction (FCI)
quality energies with only a small fraction of the Slater determinants of the FCI space.
However, a selection criterion based on determinants alone does not ensure a spin-pure

wave function. In other words, such SCI wave functions are not eigenfunctions of the Ŝ
2

operator. In many situations (bond breaking, magnetic system, excited state, etc.),
having a spin-adapted wave function is essential for a quantitatively correct description
of the system. Here, we propose an efficient algorithm which, given an arbitrary deter-
minant space, generates all the missing Slater determinants allowing one to obtain
spin-adapted wave functions while avoiding manipulations involving configuration
state functions. For example, generating all the possible determinants with 6 spin-up
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and 6 spin-down electrons in 12 open shells takes 21 CPU cycles per generated Slater
determinant. The selection is still done with individual determinants, and one can take
advantage of the basis of configuration state functions in the diagonalization of the
Hamiltonian to reduce the memory footprint significantly.

1. Introduction

In recent years, selected configuration interaction (SCI) methods1–3

have become more and more popular,4–31 especially for the accurate calcu-

lation of electronic excitation energies.32–39,39–47 Determinant-based SCI

refers to configuration interaction in a truncated space of determinants.

For instance, a SCI with singles and doubles (SCISD) refers to the diagonal-

ization of the CISD Hamiltonian with only a subset of chosen (or selected)

determinants belonging to the CISD space. Many variants of SCI methods

exist differing in two major aspects. The first one is the nature of the

target space: the most common spaces are the multireference CI (MRCI)

space,5,10,48 the (frozen-core) full CI (FCI) space4,8,9,20,34 and the complete

active space (CAS).49 The second aspect in which SCI methods differ are in

the rules used to select the determinants, thus affecting the convergence

with respect to the number of determinants and the computational cost.

The various permutations of such rules results in a plethora of SCI methods.

Discussing the different kinds of selection rules is beyond the scope of

the present article. The reader who is not acquainted with SCI methods

only needs to be aware of a few key aspects: (i) the selection criterion is

chosen to include the most energetically relevant determinants in the vari-

ational space; (ii) SCI methods produce wave functions that are potentially

expanded in an arbitrary set of determinants; (iii) it is of common practice to

compute the Epstein–Nesbet second-order perturbative correction (EPT2)

to the variational energy, in order to estimate the lowest eigenvalues of

the CI Hamiltonian matrix defined by the method (CAS, MRCI, FCI,

etc.); (iv) as the number of determinants grows,EPT2! 0 and the variational

SCI energy converges monotonically to the exact energy of the CI

Hamiltonian.

A balanced description of excited states, magnetic systems, and bond

breakings require the wave functions to be spin-adapted, i.e., eigenfunctions

of the Ŝ
2
operator. The Slater determinant many-particle representation is,

by construction, only strictly an eigenfunction of the Ŝz operator and there-

fore does not ensure a spin-pure wave function. The usual way to enforce
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the wave function to be an eigenfunction of Ŝ
2
is to work in a basis where

each element of the basis is an eigenfunction of Ŝ
2
with the desired eigen-

value. These basis functions are built as linear combinations of Slater

determinants, and are known as configuration state functions (CSF).

A natural option would be to express SCI in terms of CSFs. However,

due to the complexity in the calculation of matrix elements in the CSF basis,

many SCI implementations still rely on determinants. Opting for the CSF

representation would require a major effort for rewriting the software, such

as the important work that was done in the NECI FCIQMC code which

now uses the graphical unitary group approach50–54 and the ORCA pro-

gram which uses the angular-momentum coupling-based approach.55–61

In the present paper we follow a different route and present simple recipes

to ensure that the selected wave functions are spin-adapted without requir-

ing too many modifications in a determinant-based code.

2. Many-particle basis representations

A configuration is a vector of molecular orbital occupation numbers.

For example, the configuration (2, 1, 1, 1, 1) can be written as a linear

combination of six determinants

or of two CSFs with coefficients A and B

By definition, all the determinants belonging to the same CSF are associated

with the same configuration, and the determinants associated with a given

ð2Þ

ð1Þ
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configuration may be involved in multiple CSFs. Expressing Eq. (1) in terms

of CSFs is an overdetermined problem: six parameters (a, b, c, d, e, f ) for

determinants vs two parameters (A, B) for the CSFs, so it has no unique

solution in the general case. Only eigenfunctions of the Ŝ
2
operator possess

the necessary constraints to enable the exact transformation.

A few years ago, Bytautas and Ruedenberg proposed a simple scheme to

truncate large determinant-based wave functions while maintaining spin

purity.62 The squared coefficients of the determinants within the same

configuration are summed together to produce the so-called space-product

weights, which are then used to truncate the wave function. As the truncation

occurs by removing configurations, one can understand from Eqs. (1) and (2)

that the removal of all the determinants associated with a configuration is

equivalent to a removal of all the CSFs associated with the same configura-

tion, hence conserving the spin purity of the wave function.

Following this idea, spin adaptation in determinant-based SCI methods

can be imposed by (i) identifying all the configurations of the determin-

ants composing the variational space, (ii) generating all the determinants

of the required multiplicity corresponding to these configurations, and

(iii) diagonalizing the Hamiltonian in this spin-complete determinant space.

Since the Hamiltonian commutes with the Ŝ
2
operator, the eigenfunction

obtained is automatically spin-adapted. An efficient algorithm to carry out

this procedure is presented in this paper. Because the obtained wave func-

tions are spin-adapted, they can be exactly expressed in terms of CSFs.63–66

Then, we take advantage of the reduction of the number of parameters to

reduce the memory requirement of the Davidson diagonalization, which is

the main bottleneck in today’s SCI algorithms. All the algorithms pres-

ented are implemented in the open-source Quantum Package software.67

3. Algorithm

The wave function of a given electronic state is expressed as jΨi ¼P
IcIjDIi, where each Slater determinant DI is represented as a Waller–

Hartree double determinant,68DI ¼ d
"
i d
#
j , i.e., the product of a determinant

of spin-up (") orbitals d"i and a determinant of spin-down (#) orbitals d#j .
Such a representation can be encoded as a pair of bit strings (di, dj), where

each bit string is of length Norb, the number of molecular orbitals. The

spin-up and spin-down orbitals originate from a restricted Hartree–Fock
or a CAS self-consistent field (CASSCF) calculation, so that the spatial part
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of these orbitals are common for both spin manifolds. Within a bit string,

each bit corresponds to a spin-orbital; the bit is set to 1 if the orbital is occu-

pied, and it is set to 0 if the orbital is empty. In low-level languages such as

Fortran or C, a bit string may be stored as an array of Nint 64-bit integers,

where

N int ¼ Norb � 1

64

j k
+ 1 (3)

This representation allows for efficient determinant comparisons using

bit-wise operation capabilities of modern processors69 and will be convenient

in the following.

All the CPU cycle measurements were performed on an Intel(R)

Xeon(R) Gold 6140 CPU@2.30GHz with the GNU Fortran compiler

7.3.0, by reading the time stamp counter of the CPU with the rdtsc

instruction.

3.1 Identification of the configurations
The configuration pI associated with determinant DI is a vector of integers

defined as

½pI �k ¼
0 when the k�th orbital is unoccupied

1 when the k�th orbital is singly occupied

2 when the k�th orbital is doubly occupied

8><
>:

(4)

If pI is encoded as a pair of bit strings ðpð1ÞI , p
ð2Þ
I Þ, where pð1ÞI and p

ð2Þ
I encode

respectively the singly and doubly occupied orbitals, the configuration can

be computed as

p
ð1Þ
I ¼ di�dj and p

ð2Þ
I ¼ di ^ dj (5)

where � and ^ denote respectively the xor and the and binary operators.

All the selected determinants can be transformed into a list of unique

configurations in linear time if a hash value is associated with each config-

uration.70 Hence, the time for this transformation is negligible.

3.2 Generating all the determinants associated with a
configuration

Given a configuration, one must generate all the possible determinants by

considering either a spin-up or a spin-down electron in the singly occupied

molecular orbitals, keeping the numbers of spin-up and spin-down electrons
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fixed. Note, by doing so, all the generated determinants only differ by these

singly occupied orbitals, so from now on we can consider a more compact

representation: a bit string of n" + n# bits, where n" and n# denote the num-

bers of spin-up and spin-down unpaired electrons. The bit is set to 1 when

the orbital is occupied by a spin-up electron, and 0 when it is occupied by a

spin-down electron. The indices of the singly occupied orbitals are kept in a

look-up table m for later use.

To generate all the determinants keeping the numbers of spin-up and

spin-down electrons constant, we need to build all the possible bit strings

with n" bits set to 1 and n# bits set to 0. This compact representation allows

us to use Anderson’s algorithm (see Fig. 1),71 which generates all the con-

figurations of n" bits set to 1 in a bit string of length n"+ n# in lexicographical
order. To illustrate how this algorithm proceeds, we also show the step-by-

step transformations of the variables with n" ¼ 2 and n# ¼ 2 from which the

sequence (0011, 0101, 0110, 1001, 1010, 1100) is produced.

Fig. 2 gives a pictorial description of the data structures used to generate a

determinant. To build a generated determinant (d", d#) from a permutation

u, one must first fill the doubly occupied orbitals by setting both d" and d#
equal topð2ÞI . Then, one must iterate over the bits of u. If the k-th bit is set to

1, set the mk-th orbital of d" to 1, otherwise set the mk-th orbital of d# to 1.

Fig. 1 Anderson’s algorithm. All the configurations of n bits set to 1 are generated in an
integer of n+m bits in lexicographic order. ctz(i) counts the number of trailing zeros,
i≪n shifts i by n bits to the left, i≫n shifts i by n bits to the right, ^ is the bit-wise and
operator, and _ is the bit-wise or operator.
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3.3 Further optimizations
Firstly, instead of creating each determinant from the permutation as shown

in Fig. 2, all the determinants can be generated iteratively by considering

only the orbitals that have changed from the previously generated determi-

nant. This avoids always setting all the n" + n# bits in the bit strings. The

integer obtained by v[k – 1] � v[k] has bits set to 1 at the positions where

the bits differ between v[k – 1] and v[k]. The positions of these bits can

be found in a few cycles by first counting the number of trailing zeros (this

gives the position of the least significant 1), then by Setting the least signif-

icant 1 to 0 using v[k] v[k] ^ (v[k]–1) and iterating until v[k] ¼ 0.

A second optimization is to consider time-reversal symmetry (i.e.,

exchanging all spin-up and spin-down electrons in an even electron systems).
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Fig. 2 The configuration pI is encoded as in Eq. (5). Singly and doubly occupied orbitals
are represented in green and red, respectively. The list of indices m of the singly occu-
pied orbitals is built (in blue), and this mapping is reused to build the determinants
from permutations (yellow) generated by Anderson’s algorithm. Bit strings and arrays
are represented from right to left to be consistent with the binary notation.
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When n" ¼ n#, one can remark that v[ndet� 1�k]¼ ¬v[k], where ndet is the

number of generated determinants:ndet ¼ ðn" + n#Þ!
n"!n#!

. Hence, it is sufficient to

iterate over the first half of the permutations of Anderson’s algorithm, and

generate pairs of determinants per iteration.

3.4 Reduction of the memory requirements
In the latest version of Quantum Package, the spin-pure eigenstates were

obtained by finding the lowest eigenstate of a linear combination of the

Hamiltonian and the Ŝ
2
matrices.67,72 At iteration n, the Davidson algorithm

requires the computation of the matrixW5HU, whereU andW areNdet

� Nstates matrices, where Ndet is the number of determinants, and Nstates is

greater than the number of states of interest and adjusted to reduce the num-

ber of iterations to converge the algorithm.

In terms of storage, the W and U matrices of all n iterations need to be

stored. As the storage increases with iterations, it is common practice to

define a maximum iteration nmax where all the U matrices are compressed

into a single Ndet � Nstates improved U matrix, and the algorithm restarts.

If one wants to monitor the expectation value hŜ2i, one needs also to com-

puteY¼ S2U, and store theYmatrices of all iterations. As the computation

of Ŝ
2
is made only for monitoring purposes, the Y matrices can be stored in

single precision to limit the increase in the memory requirements. Hence,

in the determinant basis, the required space for the diagonalization is 2.5 �
Ndet � Nstates � nmax.

Since the selected determinant space contains all the determinants of each

configuration, we can make an exact transformation from the determinant

basis to the CSF basis,65,66 thus rendering the many-particle basis represen-

tation more compact. Hence, we now store the U and W matrices in the

CSF basis, while the computation W5H U is still performed in the deter-

minant basis for simplicity. As the wave function is guaranteed to be an

eigenstate of Ŝ
2
, it is no longer necessary to compute and store S2, so the

storage requirements are reduced to 2 � Ndet � Nstates + 2 � NCSF �
Nstates � nmax, where NCSF ≪ Ndet is the number of CSFs (see below).

4. Numerical tests

In this section, the configuration interaction using a perturbative selection

made iteratively (CIPSI) algorithm3,67 is used to select determinants of the
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external space: they are selected by the magnitude of their contribution to

the second-order perturbative correction to the energy. The spin-adaptation

step is introduced between the selection step and the diagonalization. We

would like to emphasize that we use CIPSI because it is the method

implemented in Quantum Package, but any CI or SCI could be have been

considered.

4.1 Avoided crossing of LiF
The avoided crossing between the ionic and neutral 1Σ+ states of LiF is a

common benchmark for correlated methods, as the location of the crossing

is highly sensitive to the amount of correlation.73–75 At large distances, the

lowest triplet state is very close in energy to the singlet states. If the wave

function is not spin-adapted, the triplet state will mix with the singlets during

the selection, and the convergence of the CIPSI calculation to the correct

states is not guaranteed.

We report in Fig. 3 the potential energy curve of the two lowest singlet

states of LiF computed with and without imposing spin adaptation. For all

the distances, the CIPSI calculations were run blindly (with no user interac-

tion), starting with the CASSCF(2,2)/aug-cc-pVDZwave functions of both

states (four determinants). Only the lowest molecular orbital was frozen,

corresponding to the 1s orbital of the fluorine atom. The calculations were

Fig. 3 Avoided crossing of LiF, with (ΨS2,0 , ΨS2,1 ) and without (Ψ0, Ψ1) imposing spin
symmetry. The energy (in hartree) of the two lowest singlet states of LiF is represented
as a function of the bond length (in Å).
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stopped when the second-order perturbative correction was below 0.1

mEh or when the number of determinants reached 4 million.

Fig. 3 shows that for large distances, without spin adaptation, there are

multiple erratic points for which the two obtained states are not the desired

ones. This curve also shows that all the points obtained with spin-adaptation

converged to the correct states, giving a smooth potential energy curve.

4.2 Dissociation of N2

Selected CI methods provide not only the energies of the states of interest,

but also the corresponding wave functions which can be used for post-

processing. For instance, wave functions computed with CIPSI have shown

to be excellent choices of trial wave functions for quantum Monte Carlo

calculations.19,25,26,36,46,76 When a wave function is used for further calcu-

lations, the spin-adapted characteristic is particularly important because it

can enforce a continuous behavior of wave function along a dissociation

curve, especially when different spin states become quasi-degenerate.

To illustrate the importance of this feature, we compute the dissociation

curve of the singlet ground state of the N2 molecule with the aug-cc-pVDZ

basis set, and estimate the frozen-core FCI energy by extrapolating the var-

iational energy with respect to the renormalized second-order perturbative

correction.67 The curve is first computed using a simple determinant selec-

tion, minimizing the energy without considering the spin operator. Then,

the curve is computed using the spin-adapted determinant selection, and

we report in Fig. 4 the difference in extrapolated FCI energies, as well as

the overlap between the two wave functions at each point of the curve.

The calculation was stopped at every point when the wave function was

Fig. 4 Difference of extrapolated FCI energy obtained with (ΨS2 ) and without (Ψ)
spin-adaptation along the dissociation path of N2 (aug-cc-pVDZ). The overlaps of the
wave functions obtained with the two schemes are reported on the right.
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expanded on more than a million determinants. This corresponds to

second-order perturbative energy corrections smaller than 0.012 hartree.

When the triple bond is broken, N2 dissociates into two nitrogen atoms,

each in its high-spin configuration. At dissociation, the two nitrogen

atoms can be combined in a singlet, in a triplet or in a quintet state, all with

the same energy. Hence, without any particular treatment all these spin

states mix together and produce spin contaminated wave functions. As

the determinant-based Epstein–Nesbet perturbation theory is not invariant

with respect to the magnetic quantum numberms, spin contamination in the

reference wave function affects the second-order perturbative correction

and makes the extrapolations less accurate. This effect can be observed in

Fig. 4 where for distances larger than 2 Å the overlap between the

spin-adapted singlet wave function and the determinant wave function

shows a significant spin contamination, leading to fluctuations in the extrap-

olated energies as large as a millihartree.

Fig. 5 shows the memory requirements of the Davidson routines in the

determinant-based and the CSF-based storage. From this figure, it is clear

that storing the matrices in the CSF basis makes a big difference in terms

of memory requirements, with a reduction by a factor 4 in the case of dis-

sociated N2 at an internuclear distance of 5 Å with the aug-cc-pVDZ basis.

This figure also displays the ratio Ndet/NCSF as a function of Ndet, which

clearly tells us that the number of determinants increases faster than the num-

ber of CSFs. This can be explained by the fact that upon starting with a

closed shell reference, during the CIPSI selection, determinants with a large

number of open shells appear later than determinants with mostly closed

shells. Hence, we expect the reduction in terms of memory requirements

to be increasingly notable as the number of CIPSI iterations increases.

Fig. 5 Dissociated N2 with the aug-cc-pVDZ basis. Left: memory requirements (in GiB)
for the Davidson algorithmwith storage in the determinant basis or in the CSF basis as a
function of Ndet. Right: Ratio of the number of determinants Ndet over the number of
CSFs NCSF, as a function of the number of selected determinants.
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5. Conclusion

We have presented a general algorithm to complement an arbitrary

wave function with all the required Slater determinants to obtain eigenstates

of the Ŝ
2
operator when the Hamiltonian is diagonalized, with negligible

computational overhead. This spin adaptation step is introduced after the

determinant selection of the SCI algorithm. It opens the possibility to switch

to the CSF basis for the diagonalization of the Hamiltonian to reduce the

memory requirements which is one of the limiting step is current SCI algo-

rithms. We would like to emphasize that this spin-adaptation procedure

can be applied to any SCI-type method: CIPSI, SHCI, FCIQMC, etc.

We hope to report further algorithmic improvements in the near future

following the same philosophy.
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